The field of the invention is trigger devices for hydrostatically set borehole tools and more particularly where the restraint is in axial alignment with the trigger to reduce the tool profile.
Tools have been remotely triggered in the past by a variety of ways. One way shown in U.S. Pat. No. 6,382,234 is to use an electric heater to melt a plug that then opens a flow port to allow an actuating piston to displace. In this device the actuating piston is not mechanically restrained, rather fluid is retained by a plug. As long as the fusible plug is intact the fluid ahead of the piston has nowhere to go. When heat melts the plug the fluid can be displaced as the setting piston responds to a spring force unleashed by the fluid ahead of the piston having a place to be displaced.
Another design shown in U.S. Pat. No. 7,819,198 holds a coiled spring in a wound state around an actuator. A wire holding the spring and surrounding housing over the actuator is melted which allows the spring to radially displace the components retaining the actuator radially so that the actuator can move axially to set a tool.
The latter design stacks components radially which dramatically increases the diameter of the lock for the tool actuator. In some applications space is simply not available for such a bulky lock mechanism. Melting a fusible plug as in the former design also requires a great deal of power to generate the heat needed to defeat the fusible plug. There are further uncertainties with the degree of melting that insures the ability to displace enough fluid at the needed rate to get the ultimate borehole tool to set.
What is needed and provided with the present invention is a low profile design that aligns the mechanical restraint axially with the lock elements and the shaft or pin that needs to move to get the tool set either by opening a port to take advantage of available hydrostatic or to move an actuation rod when the available hydrostatic may be insufficient to actuate the borehole tool. These and other aspects of the present invention will be more readily apparent from a review of the description of the preferred embodiment and the associated drawing, while recognizing that the full scope of the invention is to be determined from the appended claims.
A pin whose movement triggers setting of the borehole tool, is initially held by a collet that is supported off a surrounding housing. A spring is supported off the pin and would push a housing that locks the collet to the pin axially to unsupport the collet but for the presence of a Kevlar® wire that has an associated heater. The wire pulls the housing that locks the collet against the spring bias and has an end attached to the pin. Melting the wire allows the spring to move the housing that traps the collet to the pin. At that point hydrostatic pressure can move the pin to either open a port on the borehole tool to set it hydrostatically or to move an actuation rod attached to the pin to set the borehole tool mechanically or with a combination of mechanical and hydraulic force.
To set a tool associated with this assembly, the pin 10 has to move to the right. Once the heater 54 burns through the retainer 50, the force of spring 44 moves inner sleeve 36 to the right which moves tapered surface 38 out from behind the collet heads 30 so that heads 30 can move out radially toward the surrounding outer housing 39. This allows patterns 32 and 34 to separate. The hydrostatic pressure at port 24 pushes bias piston 12 to the right. The piston 12 can be configured to be pushed right as in
For example, for a configuration where the piston 12 is configured to move left instead of to the right as shown, that movement can push a link 62 to move a retainer 64 axially to allow springs 66 to pull up slips 68 relative to tapered guides 70 for radial extension of slips 68 which are part of a liner hanger. This happens because retainer 64 holds together band 72. When band 72 is allowed to grow circumferentially after retainer 64 moves axially the force of springs 66 takes over to set the liner hanger by radially extending the slips 68.
Those skilled in the art will appreciate that the alignment of the retainer 50 axially allows a lower profile design for the assembly. The use of a coiled spring 44 within sleeve 36 further contributes to the low profile. Using the axially oriented Kevlar® wire assures that it will fail reliably with applied heat to allow stored potential energy in the tool to move components axially to allow ultimate movement of piston 12 in the desired direction for hydraulic and/or mechanical setting of the borehole tool, one example of which is a liner hanger.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
Number | Name | Date | Kind |
---|---|---|---|
5025861 | Huber | Jun 1991 | A |
5680905 | Green | Oct 1997 | A |
6021095 | Tubel | Feb 2000 | A |
6382234 | Birckhead et al. | May 2002 | B1 |
7819198 | Birckhead et al. | Oct 2010 | B2 |
20160168945 | Halbert | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180045004 A1 | Feb 2018 | US |