This application is related to U.S. patent application Ser. No. 11/737,362, entitled FESTOONED TRIM CLIP SYSTEM AND METHOD FOR ATTACHING FESTOONED CLIPS TO A SUBSTRATE, by Andrew W. Santin, et al., the teachings of which are expressly incorporated herein by reference.
This invention relates to trim and upholstery attachment mechanisms, and more particularly to clips for attaching trim and upholstery to foam and other resilient or flexible substrates.
Modern fabric trim covers and their interconnected spring and cushion components (collectively termed “upholstery”), such as those used in vehicles, often carefully sculpted and shaped to produce a comfortable and aesthetically pleasing effect. As such, the fabric (typically cloth, vinyl or leather with an appropriate backing material) is secured at many locations along its surface to a resilient or flexible backing that defines the cushioned substrate of the upholstered item (for example, a seat bottom, cushion, back or headrest). The substrate is typically constructed from a resilient material. This resilient/flexible material can be synthetic foam (for example polyurethane and/or isocyanate-based foam) or another cushioning material, such as traditional rubberized horsehair, hog hair, and the like. In general, the close-fitting appearance of the upholstery to the substrate requires that the fabric be tacked down to the substrate at any intermediate dips, Vees or trenches in the surface. Otherwise, the fabric will tend to billow or “tent” at these non-planar surface features.
Traditional methods for tacking down trim covers at trenches entail the use of a plastic bead along the inner side of the trim cover. This bead is often located at an inner seam that is a sewn or welded, or otherwise adhered, joint between fabric pieces. Likewise the foam substrate includes an exposed metal wire that may be molded into the substrate along a trench in its surface during its construction. So-called “hog-rings,” consisting of bendable metal ringlets, are then secured to both the plastic bead and the metal wire. These rings are each applied by a tool, such as a hog-ring gun from a supply of wire. As each hog ring is secured, it forms an immovable, permanent joint between the fabric and the substrate. Clearly, this permanent joint is difficult to repair if needed and requires significant skill to create in the first place. In addition, this method of seat cover attachment leads to the development of injuries, such as carpal tunnel syndrome in employees who operate the hog ring tool over an extended period of time. Finally, the use of metal components may be undesirable where the seat includes electrical heating elements due to the metal's predisposition to conduct both heat and electricity.
More recently, trim covers have been secured to resilient substrates using detachable connections that allow repairs to be effected and are often more-easily applied without the used of highly skilled labor. In one example, one side of a hook and loop fastener is attached to a trench in the resilient substrate. The inner surface of the trim cover carries the opposing side of the fastener. This approach is reliable, but expensive, in terms of material wasted and consumed to attain a secure fit. It also requires a rather large-width trench to be formed in the resilient substrate to ensure a sufficient area of engagement between fastener sides.
Another recent approach involves the used of a series of clips that are molded into the trench as a foam substrate is manufactured. A version of this structure, and other prior art attachment mechanisms, are described in U.S. Published Patent Application US/2003/0215601 A1, entitled ATTACHMENT DEVICE, dated Nov. 20, 2003, by Peede, et al. the teachings of which are expressly incorporated herein by reference. A simplified version of such a clip and its use are shown in
The clip includes a base 150 having a relatively thin cross section and an increased surface area adapted to act as an anchor within the (foam) substrate material 252. As shown (
The above-described prior art clips are typically constructed from a resilient material, which allows for the flexure imparted by insertion of the listing bead into their respective cavities. However, these clips should also adhere firmly to the foam or other resilient substrate material. Hence, the clip material should exhibit properties so that it appropriately adheres to the substrate so that it will not eventually detach under long-term use. Many polymeric materials, however, are not capable of enduring the requisite range of operating temperatures to which a vehicle interior and the underlying clips may be exposed—for example, during molding and roll-forming of the foam. In general, a clip may experience temperatures as low, or lower than −40 F and as high as 180 F, or higher.
It should be noted also, that the process of inserting clips into a foam mold cavity, used for example to form seat parts, is typically a manual operation that is time-consuming, labor-intensive and sometimes subject to inaccurate placement. Clips are dispensed from inside loosely packed boxes, and each one must be individually picked, reoriented properly, and inserted into the appropriate location in the mold cavity for subsequent foam application thereover. This process contains inherent inefficiencies that the worker cannot fully overcome. Moreover, loosely packing ganged groups of clips, connected by intermediate connecting segments further complicates handling. It has been found that a loosely packed supply of ganged clips generally assumes a “bird's nest” entanglement that is extremely difficult to unravel. This problem is addressed in the above-incorporated, commonly assigned, U.S. patent application Ser. No. 11/737,362, entitled FESTOONED TRIM CLIP SYSTEM AND METHOD FOR ATTACHING FESTOONED CLIPS TO A SUBSTRATE by providing an effective and novel system and method for joining groups or continuous chains of “festooned” clips together for dispensing to workers and automated devices. This system and method allows the festooned clips to be pulled apart rapidly for insertion into a foam mold cavity.
A significant and increasing concern in the construction and installation of foam-mounted automotive upholstery clips relates to the overall height of the clip with respect to the foam cushion substrate. Improvements in manufacturing processes and foam formulations have allowed the thickness of the foam layer to be reduced in recent years. Such a reduction saves material, thereby reducing costs and decreasing waste at the end of the seat's product life. Reducing cushion thickness also allows for more accurate conformance of the cushion and overlying upholstery to a complex seat contour (e.g. avoiding an overstuffed and/or billowing appearance for the seat). However, thinner foam layers cause conventional height clips (typically 13 millimeters, or higher, from base to top) may protrude visibly from the foam layer when upholstered, and/or become noticeable as a hard, pointy protuberance to a seated individual—particularly an individual of heightened body weight. This may sometimes be referred to as the “princess-and-the-pea” effect.
Simply reducing the height of an existing clip is not a trivial exercise. The materials, dimensions and geometry employed for the clip may not accommodate a smaller-length leg. That is, the shorter the clip leg, the more force that is required to spread the barbs to receive a listing. The legs must exhibit a reasonable pull-out force over a wide range of temperatures (as above) to prevent the seat from detaching. Likewise, the legs and barbs must allow the listing to be passed therethrough during the upholstery-attachment process with the application of reasonably low force by a worker or robot—so as to prevent fatigue to the worker and/or damage to the seat and upholstery. Hence, selection of materials, dimensions and relative geometry between clip components is critical and necessitates a novel approach to the lowered-height-clip's design.
Accordingly, it is desirable to provide a lower-profile automotive upholstery clip that exhibits good chemically activated adhesion to foam, resilience and holding strength over a wide range of field operating temperatures, resistance to breakage during installation of listing beads—while requiring relatively low push-in force to be exerted by the worker. This clip design should lend itself to a variety of multi-clip ganging and festooning arrangements (as described below) so as to make dispensing and installation of the clip easier and more cost-effective.
This invention overcomes the disadvantages of the prior art by providing a low-profile clip adapted to secure a listing bead to a foam substrate. Such a low-profile clip employs a novel geometry and is constructed from a material that affords resilience, durability, high resistance to a wide range of temperatures during field use and seat assembly and ease of bead installation with high pull-out strength. In an illustrative embodiment, the clip includes a base and a pair of legs extending upwardly from the base and defining therebetween a central region constructed and arrangement to capture the listing bead. Each of the legs extends upwardly from the base to a top barb that defines a gap narrower than central region. In this embodiment, the legs each extend outwardly and vertically upwardly from the base at a first angle of approximately 80 to 85 degrees, and relative to the horizontal plane of the base to each of the respective barbs at a second angle, with respect to a line parallel to the base of approximately 88 to 90 degrees. Each of the legs has an approximate thickness taken along a direction of the parallel line of between approximately 1.0 and 2.0 millimeters. In this manner the clip exhibits high performance while defining an overall height from tops of the legs to a bottom of the base of approximately ten millimeters or less making the clip particularly desirable for use in modern, thinner foam substrates.
In an illustrative embodiment, each of the barbs are free of upward extensions and define each of a pair of sloping top surfaces directed downwardly toward the gap and the base. Notably, the bottom surface of each of the barbs defines an angle that is approximately the same as an angle of an engaging surface of the listing bead. The clip is constructed from a blended polycarbonate material, which provides good performance characteristics and exhibits good chemical adhesion to liquid foam.
According to further embodiments of the invention, the low-profile clip can be a standalone, single-clip-element unit, or can implemented as part of a single or multi-ganged clip that can be grouped into a festooned arrangement. That is, a plurality of clips are arranged together into a discrete assembly along a line of extension so that a human or automated handler can retrieve a grouping, separate one-clip-at-a-time from the grouping, and apply the separated clip to a mold cavity or other assembly structure. Each clip can include a base with opposing ends aligned in the direction of extension and transverse to an elongation direction for a connecting segment (if any) between ganged clip members. In an illustrative embodiment, these base ends include opposing male and female connectors. In this embodiment the male connector is a cylinder with an axis that extends transverse to the direction of elongation and the female connector defines a conforming cylindrical inner diameter, which allows it to nest over the male cylinder. A gap opening is provided at the far edge of the female connector to provide clearance for the base that connects the male cylinder to the clip member base end. This gap can be sized to allow a predetermined range of angular rotation of the male connector about its axis within the female connector. Clips can be stored as discrete groupings that are stacked in a container or paid out in a continuous grouping from a spool.
In an alternate embodiment, the male connector can be side braces that extend from the clip member's base end and thereby define a slot between the base end and the male cylinder. The female connector can be sized in lateral width and thickness to ride within the slot as the adjoining clips are angularly rotated with respect to each other. This arrangement affords a greater range or bending that can be useful in continuous feed implementations. The bases of clip members can be provided with holes that are engaged by a tractor pin-feed mechanism, or another drive formation can be provided to the clips. Any of the clips contemplated herein can be assembled into unitary or detachable multi-ganged arrangements of clip members separated by (narrowed) connecting segments. In a dual ganged configuration, male and female connectors on opposing clip members of a given clip can be located on opposite base end sides, thereby allowing clips to be attached to each other ambidextrously.
The invention description below refers to the accompanying drawings, of which:
The clips 410 of this invention can be constructed from a variety of materials, which will also be described in further detail below. In general, the material should be durable, capable of withstanding reasonable levels of heat and pressure, and flexible so as to provide a good spring material. To this end, it is noted that each clip member 412 includes a pair of upright leg assemblies 416 extending from a generally planar, central base 520, which define therebetween a gap 418. This gap 418 allows insertion of the bead of a listing member (or other structure-to-be-secured) thereinto. In general, the legs are adapted to move elastically away from each other as a listing bead is passed through the gap.
Referring particularly to
Notably, extending from opposite ends of the base 520 (in a direction transverse to the elongation of the segment 414) is provided a pair of attachment members or “connectors” 510 and 512. In this embodiment, one attachment member 510 is an elongated cylindrical male connector and the opposing attachment member 512 is an open, semi-cylindrical female connector. The diameter DM of the male connector conforms relatively closely to the inner diameter DF of the female connector. In fact, DM can be slightly larger than DF in order to define a friction fit to maintain a given angular orientation between joined connectors 510, 512.
As shown particularly in
Referring further to grouping 400 shown in
In the depicted embodiment, a central enlarged tab 560 is provided along the connecting segment 414. This tab is optional, and is, in part, a byproduct of the molding processors used to form the clip 410. However, this tab 560, as well as other structures on the clip 410, can be used to provide an identifying mark (such as the depicted “X”), which may indicate information manufacturing date, lot number and/or other desirable data. The enlarged tab 560 may also assist a worker in grasping the given clip for assembly into a foam structure. Similarly, the clip may provide a useful grasping point for removal of the clip from a clip-formation mold using manual or automated possesses.
In this embodiment, the base 520 of each clip also includes opposing throughout holes 570. These holes are optional, but can be sized and arranged so as to allow the clip segment to be driven by an appropriately sized and shaped tractor-pin-feed drive unit. Such a unit is particularly desirable where clips are fed in a continuous line, as will be described further below.
The number of clips grouped together, in accordance with the arrangement of
In the exemplary storage embodiment of
In use, a worker or mechanical device removes a grouping of clips 730 from the top of a stack in one of the compartments 720. As needed each individual clip is then detached from the grouping by either (a) applying front-to rear tension to pull the clip away from the adjacent clip in the grouping pulling them apart (thereby spreading the female connector gap 530 and overcoming the spring force of each female connector, or (b) are sliding the clip laterally (in the direction of extension of the connecting segment (414)) relative to an adjacent clip in the grouping. Lateral sliding requires less force in most instances, but may require more dexterity than simply pulling clips apart. In either case the material of the clip member and the dimensions of male and female connectors are adapted to allow application of reasonable force without causing the clips to break. Once separated, clips can be assembled into a mold cavity by hand, or automated action, as described generally below.
Because the novel system for allowing grouping of clips of this embodiment provides for an unlimited length and a moderate degree of angular rotation between assembled groupings of clips, the system lends itself to the provision of a long, continuous length of clips on a reel or spool. An exemplary spooled arrangement of clips is shown in
Also referring briefly to
An alternate embodiment for a clip 1010 is shown in
As shown further in
Another technique for providing a festooned grouping of clips is shown in
While a tape or strip-base holding system has advantages in that it is highly flexible, it should be noted that this arrangement also provides an extra component that may add waste, and may become fouled in certain machinery. Thus, this embodiment may not be desirable in some instances.
With reference now to
As shown in
The above-described embodiments show and define a dual-ganged clip. A dual-ganged clip has certain advantages in particular applications. It allows for ambidextrous interconnection, is not so elongated as to flop or flex excessively and is relatively easy to manipulate. However, it is expressly contemplated that the number of ganged clip members on a given groupable clip structure can be greater or less than the two joined clip members 412 shown and described above.
Thus,
In another embodiment, a single clip member 1510 is shown in
By employing appropriate manufacturing techniques, clips can be formed using extrusion, injection molding or other commercially available forming procedures. In a case of an extrusion, clips should be formed so that their features are relatively similar in an elongated direction. As the reader may surmise, such extrusion manufacturing procedures are readily employed for forming a single clip, such as that shown in
Once the liquid clip material has solidified within the mold 1600, the mold sections 1610, 1620 and 1630 are withdrawn as shown in
Note that it is contemplated that available part-forming techniques can be employed to mold (or otherwise form) a plurality of clips together in a festooned grouping that with the constituent clips already removably connected together. In other words an entire festooned grouping is molded together. In such a procedure, a thin liquid-impermeable boundary is established between male and female connectors as they are molded. When the side pieces of such a mold are removed, the previously separated male and female connectors are brought into contact with each other. At this time they are separate components and capable of rotating with respect to each other.
As described above, it is desirable to construct a clip in accordance with this invention using materials that exhibit durability, heat-resistance, and the ability to chemically bond with ordinary foams as used in commercially available seat cushions. Durability and heat resistance are particularly desirable as it is common for the temperature of foam to rise substantially during the molding process, which may melt and/or thermally deform clips constructed from certain materials. Clips may also be prone to breakage and deformation due to the application of roll crushers (which may be heated) to the foam cushion to aid in its formation. These rollers may undesirable crush clips that are constructed from weaker/less-durable materials.
With reference to
It is contemplated that foams can typically comprise polyurethane compositions that are based upon methylene-diphenyl-diisocyanate (MDI) and toluene-diisocyanate (TDI), respectively representing the commercial application of so-called cold cure and hot cure foam technologies. Each of these types of foams have been shown to react chemically with certain types of hard polymers (plastics) during curing from a liquid to a solid state. A variety of materials possess these characteristics, and can be used to form clips. Some examples include, but are not limited to, nylon, polybutylene terephthalate (PBT), and polycarbonate (PC) compounds. In particular, polycarbonate can be transparent, allowing defects to be detected, has excellent molding characteristics, allowing small features to be defined in parts and has superior heat-resistance, which better survives the exothermic effects of certain foams (in which temperatures can exceed 130 C), without melting or deforming under the pressure of a roll crusher. Polycarbonate is also quite durable and long-lived under cyclic loading.
Reference is now made to
While the illustrative embodiment in shown in connection with a listing bead, joined to a fabric covering, the clip of this embodiment can be joined to other elements of the seat, such as a rail or wire that comprises part of the spring structure of the seat below the foam cushion. Because the lower side of the cushion in modern vehicles is becoming increasingly occupied by sensors, heating elements and other electronic and/or mechanical components, the ability to provide a lower-profile clip to the underside of the cushion can be highly desirable Thus, as described herein, the term “bead”, shall refer to any element having a cross-sectional profile than can be effectively captured by the clip of this invention (both higher-profile and lower profile) on any location of the seat (all of these seat elements being termed collectively herein as “upholstery”). Likewise, a “bead” can be a component with a cross-sectional profile that is shaped to “marry” specifically to the clip of this invention, or can be a more-generalized cross sectional shape, such as a circle, oval or regular/irregular polygon. Moreover, the “beads” can be constructed from polymer, metal, composites, or a combination of the same.
When the bead is received into the region 2174, it is thereby captured by the bottom faces of the lower, inwardly directed hook portions 2176 of the barbs 2172. The barbs 2172 include upward extensions or wings 2180 that form a widened funnel to assist a manual worker (or insertion device) in guiding the listing bead into the gap 2170. The overall height HPT of the prior art clip, including a downwardly directed reinforcing bottom plate 2182, is approximately 13.18 millimeters. As described above, this clip geometry is highly effective at securing listing, but its overall height may cause its top (including barbs 2172) to protrude into the upholstery covering, particularly when the foam substrate containing the prior art clip 2100 is compressed by a seated individual. Hence, it is highly desirable to provide a lower-profile clip, such as the clip 1920 shown adjacent to the prior art clip 2100.
The illustrative clip 1920 is constructed with a generally linear and planar base 2130. A pair of clip legs 2132 extend upwardly from the base 2130 to a pair of barbs 2134. These barbs omit outward and/or upward end extensions/wings, such as the prior art projections 2180. Their tops 2136 are angled at an angle HBT of between approximately 25 and 35 degrees with an illustrative value of 32.84 degrees. The barbs 2134 taper toward, and terminate at, opposed, rounded-over ends at a gap 2138 that opens into a central region 2140, adapted to receive and secure a listing bead having a geometry to be described further below. The gap 2138 has a width of between approximately 1.2 and 3.0 millimeters with an illustrative value of 1.80 millimeters. The sides of the barbs across the gap are approximately perpendicular with respect to the base. The exemplary radii of respective roundovers and fillets will be described further with respect to
Note that any angles taken with reference to the base are considered to be taken with reference to a horizontal plane generally passing through the base in a direction of extension of the base. In this embodiment the top base surface of the clip is essentially flat, so the horizontal reference plane is actually coplanar with the base top. Where the base has irregular surfaces in alternate embodiment, an arbitrary horizontal plane that passes through the roots of the clip legs, where they extend from the base can be used as the reference plane for clip member measurements as provided herein. Hence the base need not be, itself, planar in alternate embodiments.
Referring further to
While the illustrative clip legs generally exhibit upper and lower segments that are each substantially linear and directed at differing angles, it is expressly contemplated that the legs can define a somewhat continuous curve, or that a larger number (than two) of linear segments can comprise each leg. As such the angles AL1 and AL2 are defined for the average or median angle of the curved or segmented sections of the leg that fall generally within the lower segment's elevation and upper segment's elevation, respectively.
In order to provide desired clip performance, the materials used to construct the clip are chosen for their ability to satisfy a variety of design requirements. In an illustrative embodiment, the material is selected so that it provides good resistance to wide temperature variations; avoids permanent heat deformation in temperatures exceeding 130° C.; exhibits high stress with minimum strain; provides sufficient ductility and memory to deflect and rebound, both after listing is attached, and when other forces are applied; exhibits sufficient material strength to withstand pullout of listing; is generally resistant to heat history, so that the high temperatures of processing do not weaken it; and promotes chemical reactivity in association with isocyanate, or similar foam, to produce desired bonding effects between the clip base and the foam. To meet each of these performance benchmarks, the clip is typically constructed from a blended polycarbonate material which beneficially allows a reduced wall thickness (thickness TL) and the removal of reinforcing ribs that are common in other prior art clips. This blended polycarbonate more particularly allows for the desired low-profile height of 10.0 millimeters, or lower. Since listing is often a commercially predetermined shape, the clips central region/interior space between the base and barbs must be roomy enough to allow the listing to fully push through the gap, as described below, and become secured against the bottom faces 2320 of the barbs 2134. Hence, in this embodiment, as described below, the flattened barb bottom faces 2320 are oriented at a specific angle AB between approximately 20 to 35 degrees with an illustrative value of 29 degrees, which approximately matches the angle (see angle AW in
In this embodiment a commercially available blended polycarbonate is employed. Polycarbonate (PC) has shown to exhibit high toughness with high heat deflection generally. When blended with an “impact modifier,” such as PBT (Polyester) or ABS (Acrylonitrile Butadiene Styrene), this combination increases the ductility and improves chemical resistance while still maintaining the desired bonding effect with foam. As such, addition of an impact modifier to the base material (PC in this embodiment) reduces the risk of impact-induced breakage and/or permanent, plastic deformation of clip legs or the base during installation or bead push-in. Some illustrative ratios of PC blend that can be employed according to this invention include: 75% PC with 25% PBT; 95% PC with 5% PBT; and 85% PC 15% ABS. The exact blend of compounds used and the proportions employed is highly variable, and other formulations that achieve the desired set of performance characteristics for the clip can be employed in alternate embodiments.
In selecting such a blended polycarbonate, it has been determined through empirical data and testing that a number of other materials did not provide desired characteristics for the illustrative low-profile design. For example, polyoxymethylene (POM) plastic (used in a number of commercially available clips) exhibits poor bonding to foam, is brittle when impacted, and shows poor cold break performance. Similarly, polypropene exhibits poor cold break performance, low heat deflection temperature, poor bonding to foam, and poor elongation. ABS plastic taken alone also exhibits a low heat deflection temperature and poor strain under load. Polybutylene terephthalate (TBT) plastic similarly exhibits a low heat deflection temperature and shows poor heat history performance after processing. Nylon, while a slightly more promising material, exhibits a lower bonding to foam, is brittle under impact and also tends to exhibit variations in its performance characteristics due to its hydroscopic properties.
During testing the inventive low-profile clip of this invention exhibited the following characteristics:
A further comparative performance analysis of the clip of the illustrative embodiment versus a leading conventional upholstery clip of greater height (produced by OKE of Germany) is shown in the following chart (at near-room temperature):
It should be clear that the illustrative lower-profile clip exhibits superior performance to a commonly used higher-profile clip for similar applications.
While the clip material herein is selected, in part, for its chemical adhesion properties in curing foam, in alternate embodiments, the clip may not be embedded in the foam, but applied to the foam surface (or another type of substrate) using adhesives, tapes or other fasteners (such as rivets or hook-and-loop fastener material). Hence, the material may be modifies to display reduced chemical adhesion in such instances and non-embedded application of clips is otherwise expressly contemplated herein.
With brief reference
Note that the length of the clip base (LB
Note that the base thickness TB can be sized to approximately match (or be greater than) the thickness TL of the legs. Combined with appropriate stress-relieving fillets at the leg roots (interconnections with the base), the overall, substantially uniform thickness of the clip's clamping region (i.e. the legs and intervening base segment) effectively distributes the load from bead-installation flexure and pull-out tension uniformly over the entire clip member structure. This helps to better avoid clip breakage during clip and bead installation and subsequent field use of the installed clip. This is essentially a C-clamp-effect.
In summary, the above-described low-profile clip, in a single assembly, ganged assembly or festooned arrangement, provides superior installation and service life performance in a lower-height geometry. Through the application of predetermined dimensions and use of specific materials such a high performance, low-profile clip can be achieved and mass-manufactured at a reasonable cost.
The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope if this invention. Each of the various embodiments described above may be combined with other described embodiments in order to provide multiple features. In particular the illustrative low-profile clip member can be combined with any of the other implementations and arrangements shown and described herein. Furthermore, while the foregoing describes a number of separate embodiments of the apparatus and method of the present invention, what has been described herein is merely illustrative of the application of the principles of the present invention. For example, while clips can be constructed from a material that readily bonds to liquid foam, in alternate embodiments, all or part of the clip material can be relatively inert to foam and bonded by alternate mechanisms, such as adhesives or mechanical anchoring. In addition, it is expressly contemplated that any of the storage techniques, festooning arrangements and connector structures described above can be applied to clips of any number of ganged clip members (e.g. single, dual-ganged, triple ganged, etc.). Also, while clip members are joined by unitary segments of predetermined length according to illustrative embodiments, it is expressly contemplated that the segment connectors between clip members in a multi-ganged clip arrangement can be completely or partially removable from the clip members in the arrangement. As such, the segments can be variably sized to allow adjustment of the spacing between ganged clip members. Likewise, the clip members can be provide as a multi-piece unit with the clip legs (being possibly more durable) being a separate material with respect to the base (being possibly more-reactive to foam). Alternatively, a unitary clip with a multiplicity of co-molded or co-extruded materials can be formed. Furthermore, while male and female connectors in the depicted embodiments are generally cylindrical so as to facilitate angular rotation between adjoining clips, in alternate embodiments (where angular rotation is not desired) the connectors can each define a conforming, nesting, non-circular cross section (such as an oval, polygon, etc.). In such an embodiment, clips would be urged to maintain a predetermined angular orientation with respect to each other. This may be desirable for storage implementations, such as the box of
Number | Name | Date | Kind |
---|---|---|---|
316062 | Riessner | Apr 1885 | A |
2448900 | Mayo | Sep 1948 | A |
3632164 | Radke | Jan 1972 | A |
3649974 | Baruth et al. | Mar 1972 | A |
3747178 | Harder | Jul 1973 | A |
3794378 | Haslam et al. | Feb 1974 | A |
3807675 | Seckerson et al. | Apr 1974 | A |
3981534 | Wilton | Sep 1976 | A |
3988034 | Fister | Oct 1976 | A |
3995892 | Hellman et al. | Dec 1976 | A |
4114241 | Bisping | Sep 1978 | A |
4306697 | Mathews | Dec 1981 | A |
4470179 | Gollin et al. | Sep 1984 | A |
4663211 | Kon | May 1987 | A |
4673542 | Wigner et al. | Jun 1987 | A |
4861104 | Malak | Aug 1989 | A |
4881997 | Hatch | Nov 1989 | A |
4933224 | Hatch | Jun 1990 | A |
4988282 | Fukui | Jan 1991 | A |
5005242 | Kennedy et al. | Apr 1991 | A |
5013090 | Matsuura | May 1991 | A |
5023125 | Gray | Jun 1991 | A |
5028472 | Gray | Jul 1991 | A |
5110649 | Morse et al. | May 1992 | A |
5180618 | Kessler et al. | Jan 1993 | A |
5236243 | Reyes | Aug 1993 | A |
5259905 | Gilcreast | Nov 1993 | A |
5273597 | Kumagai et al. | Dec 1993 | A |
5286431 | Banfield et al. | Feb 1994 | A |
5326151 | Smith et al. | Jul 1994 | A |
5338092 | Wiltsey et al. | Aug 1994 | A |
5342569 | Murasaki | Aug 1994 | A |
5401075 | Venuto et al. | Mar 1995 | A |
5459907 | Nivet | Oct 1995 | A |
5582463 | Linder et al. | Dec 1996 | A |
5605373 | Wildern et al. | Feb 1997 | A |
5641552 | Tillner | Jun 1997 | A |
5658046 | Rus | Aug 1997 | A |
5718478 | Allison | Feb 1998 | A |
5733001 | Roberts | Mar 1998 | A |
5766723 | Oborny et al. | Jun 1998 | A |
5786061 | Banfield | Jul 1998 | A |
5827546 | Burchi et al. | Oct 1998 | A |
5827547 | Burchi et al. | Oct 1998 | A |
5882073 | Burchi et al. | Mar 1999 | A |
5900303 | Billarant | May 1999 | A |
6009676 | Feldpausch et al. | Jan 2000 | A |
6109569 | Sakaida | Aug 2000 | A |
6173545 | Feldpausch et al. | Jan 2001 | B1 |
6177155 | Kurosaki | Jan 2001 | B1 |
6397638 | Roell | Jun 2002 | B1 |
6406093 | Miotto et al. | Jun 2002 | B1 |
6431585 | Rickabus et al. | Aug 2002 | B1 |
6592181 | Stiller et al. | Jul 2003 | B2 |
6656563 | Leach et al. | Dec 2003 | B1 |
6668429 | Fujisawa et al. | Dec 2003 | B2 |
6838155 | Cappucci et al. | Jan 2005 | B2 |
6969832 | Daughtry, Sr. | Nov 2005 | B1 |
7444792 | Matson | Nov 2008 | B2 |
7487575 | Smith | Feb 2009 | B2 |
20010007166 | Shimamura et al. | Jul 2001 | A1 |
20020101109 | Stiller et al. | Aug 2002 | A1 |
20030001421 | Schmidt | Jan 2003 | A1 |
20030072912 | Itoh et al. | Apr 2003 | A1 |
20030134083 | Wang et al. | Jul 2003 | A1 |
20030162008 | Cappucci et al. | Aug 2003 | A1 |
20030204939 | Fujisawa et al. | Nov 2003 | A1 |
20030213105 | Bednarski | Nov 2003 | A1 |
20030215601 | Pedde | Nov 2003 | A1 |
20030236315 | Xie et al. | Dec 2003 | A1 |
20030236316 | Heumen et al. | Dec 2003 | A1 |
20040061254 | Snooks | Apr 2004 | A1 |
20040064894 | Labish | Apr 2004 | A1 |
20040082674 | Smith et al. | Apr 2004 | A1 |
20040137192 | McVicker | Jul 2004 | A1 |
20040195877 | Demain et al. | Oct 2004 | A1 |
20050006944 | Ali | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
2165930 | Jun 1996 | CA |
2368739 | Jul 2002 | CA |
2420373 AA | Aug 2003 | CA |
2427371 | Nov 2003 | CA |
4446450 | Apr 1996 | DE |
19530397 | Feb 1997 | DE |
19734408 | Feb 1999 | DE |
29821697 | Mar 1999 | DE |
29822649 | May 1999 | DE |
29917372 | Feb 2000 | DE |
19949423 | Jan 2001 | DE |
19959235 | Jun 2001 | DE |
0421258 | Sep 1990 | EP |
0532820 | Mar 1993 | EP |
0433100 | Apr 1994 | EP |
0439969 | Jul 1994 | EP |
0537333 | Sep 1995 | EP |
070800 | Apr 1996 | EP |
0727294 | Aug 1996 | EP |
0667257 | Jul 1998 | EP |
0720900 | Mar 1999 | EP |
0960782 | Dec 1999 | EP |
0990554 | May 2000 | EP |
1000855 | May 2000 | EP |
1116450 | Jul 2001 | EP |
0900030 | Jul 2002 | EP |
1243462 | Sep 2002 | EP |
0990546 | Mar 2003 | EP |
1300229 | Apr 2003 | EP |
0960783 | Jun 2003 | EP |
1358826 | Nov 2003 | EP |
0960782 | Jan 2004 | EP |
1000856 | Jan 2004 | EP |
1220628 | May 2004 | EP |
1560234 | Jan 1980 | GB |
2238708 | Jun 1991 | GB |
8603164 | Jun 1986 | WO |
9219119 | Nov 1992 | WO |
9501741 | Jan 1995 | WO |
9720690 | Jun 1997 | WO |
9805232 | Feb 1998 | WO |
9820766 | May 1998 | WO |
0100386 | Jan 2001 | WO |
0124665 | Apr 2001 | WO |
0189338 | Nov 2001 | WO |
0205686 | Jan 2002 | WO |
03031223 | Apr 2003 | WO |
03058005 | Jul 2003 | WO |
03059111 | Jul 2003 | WO |
03070509 | Aug 2003 | WO |
03072390 | Sep 2003 | WO |
2004028789 | Apr 2004 | WO |
2004058496 | Jul 2004 | WO |
WO2007008662 | Jan 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090064471 A1 | Mar 2009 | US |