Low sidelobe reflector antenna with shield

Information

  • Patent Grant
  • 9019164
  • Patent Number
    9,019,164
  • Date Filed
    Monday, July 22, 2013
    11 years ago
  • Date Issued
    Tuesday, April 28, 2015
    9 years ago
Abstract
A front feed reflector antenna with a dish reflector has a wave guide is coupled to a proximal end of the dish reflector, projecting into the dish reflector along a longitudinal axis. A dielectric block may be coupled to a distal end of the waveguide and a sub-reflector coupled to a distal end of the dielectric block. A shield is coupled to the periphery of the dish reflector. A subtended angle between the longitudinal axis and a line between the focal point and a distal periphery of the shield is 50 degrees or less.
Description
BACKGROUND

1. Field of the Invention


This invention relates to a microwave dual reflector antenna. More particularly, the invention provides a low cost, self-supported front feed reflector antenna with a low sidelobe signal radiation pattern characteristic configurable for the reflector antenna to satisfy rigorous radiation pattern envelope standards, such as the European Telecommunications Standards Institute (ETSI) Class 4 radiation pattern envelope.


2. Description of Related Art


Front feed dual reflector antennas direct a signal incident on the main reflector onto a sub-reflector mounted adjacent to the focal region of the main reflector, which in turn directs the signal into a waveguide transmission line typically via a feed horn or aperture to the first stage of a receiver. When the dual reflector antenna is used to transmit a signal, the signals travel from the last stage of the transmitter system, via the waveguide, to the feed aperture, sub-reflector, and main reflector to free space.


The electrical performance of a reflector antenna is typically characterized by its gain, radiation pattern envelope, cross-polarization and return loss performance—efficient gain, radiation pattern envelope and cross-polarization characteristics are essential for efficient microwave link planning and coordination, whilst a good return loss is necessary for efficient radio operation.


Reflector antennas with a narrow radiation pattern envelope enable higher density mounting of separate reflector antennas upon a common support structure, such as a radio tower, without generating RF interference between the separate point-to-point communications links. Narrow radiation pattern envelope communications links also provide the advantage of enabling radio frequency spectrum allocations to be repeatedly re-used at the same location, increasing the number of links available for a given number of channels.


Industry accepted standard measures of an antenna's radiation pattern envelope (RPE) are provided for example by ETSI. ETSI provides four RPE classifications designated Class 1 through Class 4, of which the Class 4 specification is the most rigorous. The ETSI Class 4 RPE specification requires significant improvement over the ETSI Class 3 RPE specification. As shown in FIGS. 1a and 1b, the ETSI Class 4 RPE requires approximately 10-12 dB improvements in sidelobe levels over ETSI Class 3 RPE requirements, resulting in a 35-40% increase in the number of links that can be assigned without additional frequency spectrum usage.


Previously, reflector antennas satisfying the ETSI Class 4 specification have been Gregorian dual reflector offset type reflector antennas, for example as shown in FIG. 1c. The dual offset configuration positions the sub-reflector 15 entirely outside of the signal path from the main reflector 50 to free space, which requires extensive additional structure to align and/or fully enclose the large optical system. Further, because of the non-symmetric nature of the dual offset configuration, an increased level of manufacturing and/or assembly precision is required to avoid introducing cross-polar discrimination interference. These additional structure and/or path alignment tuning requirements significantly increase the overall size and complexity of the resulting antenna assembly, thereby increasing the manufacturing, installation and ongoing maintenance costs.


Deep dish reflectors are reflector dishes wherein the ratio of the reflector focal length (F) to reflector diameter (D) is made less than or equal to 0.25 (as opposed to an F/D, for example, of 0.35 typically found in more conventional “flat” dish designs). An example of a dielectric cone feed sub-reflector configured for use with a deep dish reflector is disclosed in commonly owned U.S. Pat. No. 6,919,855, titled “Tuned Perturbation Cone Feed for Reflector Antenna” issued Jul. 19, 2005 to Hills (U.S. Pat. No. 6,919,855), hereby incorporated by reference in its entirety. U.S. Pat. No. 6,919,855 utilizes a dielectric block cone feed with a sub-reflector surface and a leading cone surface having a plurality of downward angled non-periodic perturbations concentric about a longitudinal axis of the dielectric block. The cone feed and sub-reflector diameters are minimized where possible, to prevent blockage of the signal path from the reflector dish to free space. Although a significant improvement over prior designs, such configurations have signal patterns in which the sub-reflector edge and distal edge of the feed boom radiate a portion of the signal broadly across the reflector dish surface, including areas proximate the reflector dish periphery and/or a shadow area of the sub-reflector where secondary reflections with the feed boom and/or sub-reflector may be generated, degrading electrical performance. Further, the plurality of angled features and/or steps in the dielectric block requires complex manufacturing procedures which increase the overall manufacturing cost.


A deep dish type reflector dish extends the length (along the boresight axis) of the resulting reflector antenna so that the distal end of the reflector dish tends to function as a cylindrical shield. Therefore, although common in the non-deep dish reflector antennas, conventional deep dish reflector antenna configurations such as U.S. Pat. No. 6,919,855 typically do not utilize a separate forward projecting cylindrical shield.


Therefore it is an object of the invention to provide a simplified reflector antenna apparatus which overcomes limitations in the prior art, and in so doing present a solution that enables a self supported sub-reflector front feed reflector antenna to meet the most stringent radiation pattern envelope electrical performance over the entire operating band used for a typical microwave communication link.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, where like reference numbers in the drawing figures refer to the same feature or element and may not be described in detail for every drawing figure in which they appear and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.



FIG. 1
a is a schematic chart demonstrating differences between the requirements of the ETSI Class 3 and ETSI Class 4 Co-Polar Radiation Pattern Envelopes.



FIG. 1
b is a schematic chart demonstrating differences between the requirements of the ETSI Class 3 and ETSI Class 4 Cross-Polar Radiation Pattern Envelopes.



FIG. 1
c is a schematic signal path diagram of a typical prior art Gregorian dual reflector offset type reflector antenna.



FIG. 2
a is an schematic cut-away side view of an exemplary sub-reflector assembly.



FIG. 2
b is an exploded schematic cut-away side view of the sub-reflector assembly of FIG. 2a, demonstrated with a separate metal disc type sub-reflector.



FIG. 3 is a schematic cut-away side view of the sub-reflector assembly of FIG. 2b, mounted within a 0.167 F/D deep dish reflector.



FIG. 4 is a schematic cut-away side view of a prior art dielectric cone sub-reflector assembly.



FIG. 5 is an E & H plane primary radiation amplitude pattern modeled comparison chart for the sub-reflector assemblies of FIG. 2a and FIG. 4 operating at 22.4 Ghz.



FIG. 6 is an E plane radiation pattern range data comparison chart for the sub-reflector assembly of FIG. 2a mounted within a 0.167 F/D dish reflector according to FIG. 10, compared to ETSI Class 4 RPE and U.S. Pat. No. 6,919,855.



FIG. 7 is an H plane radiation pattern range data comparison chart for the sub-reflector assembly of FIG. 2a mounted within a 0.167 F/D dish reflector according to FIG. 10, compared to ETSI Class 4 RPE and U.S. Pat. No. 6,919,855.



FIG. 8 is an E (top half) & H (bottom half) plane primary energy field distribution model for the sub-reflector assembly of FIG. 4.



FIG. 9 is an E (top half) & H (bottom half) plane primary energy field distribution model for the sub-reflector assembly of FIG. 2a.



FIG. 10 is a schematic isometric view of an exemplary reflector antenna with a cylindrical shield.



FIG. 11 is a schematic exploded cross-section view of the reflector antenna of FIG. 10.



FIG. 12 is a schematic cross-section view of the reflector antenna of FIG. 10.



FIG. 13 is a schematic cross-section view of an exemplary reflector antenna with a cylindrical shield with an outward taper.



FIG. 14 is a schematic half cross-section view of an exemplary reflector antenna with a 0.0.163 F/D dish reflector and shield, demonstrating a 50 degree subtended angle.



FIG. 15 is an E and H plane radiation pattern, modeled at 6.525 GHz, data chart for the reflector antenna of FIG. 14, compared to ETSI Class 4 RPE. Note that non-compliant results shown at +−180 degree region of radiation patterns are due to modeling software computational limitation and should be ignored.



FIG. 16 is a schematic half cross-section view of an exemplary reflector antenna with a 0.0.25 F/D dish reflector and shield, demonstrating a 50 degree subtended angle.



FIG. 17 is an E and H plane radiation pattern, modeled at 6.525 GHz, data chart for the reflector antenna of FIG. 16, compared to ETSI Class 4 RPE. Note that non-compliant results shown at +−180 degree region of radiation patterns are due to modeling software computational limitation and should be ignored.



FIG. 18 is a schematic half cross-section view of an exemplary reflector antenna with a 0.0.298 F/D dish reflector and shield, demonstrating a 50 degree subtended angle.



FIG. 19 is an E and H plane radiation pattern, modeled at 6.525 GHz, data chart for the reflector antenna of FIG. 18, compared to ETSI Class 4 RPE. Note that non-compliant results shown at +−180 degree region of radiation patterns are due to modeling software computational limitation and should be ignored.



FIG. 20 is a schematic half cross-section view of an exemplary reflector antenna with a 0.0.163 F/D dish reflector and shield, demonstrating a 40 degree subtended angle.



FIG. 21 is an E and H plane radiation pattern, modeled at 6.525 GHz, data chart for the reflector antenna of FIG. 20, compared to ETSI Class 4 RPE. Note that non-compliant results shown at +−180 degree region of radiation patterns are due to modeling software computational limitation and should be ignored.



FIG. 22 is a schematic isometric view of an exemplary reflector antenna with a cylindrical shield with a 5 degree inward taper.



FIG. 23 is a schematic exploded cross-section view of the reflector antenna of FIG. 22.



FIG. 24 is a schematic cross-section view of the reflector antenna of FIG. 22.



FIG. 25 is a close-up view of area A of FIG. 24.



FIG. 26 is a schematic cross-section view of an exemplary reflector antenna with a cylindrical shield with a 10 degree inward taper.



FIG. 27 is a close-up view of area B of FIG. 26.



FIG. 28 is a calculated data chart of antenna efficiencies with respect to frequency and taper angle applied to the cylindrical shield.



FIG. 29 is an H plane radiation pattern range data comparison chart for the sub-reflector assembly of FIG. 2a mounted within a 0.167 F/D dish reflector with a cylindrical shield according to FIG. 10, compared to the same antenna assembly with a cylindrical shield with a 5° degree inward taper and the ETSI Class 4 RPE.





DETAILED DESCRIPTION

The inventors have recognized that improvements in primary radiation pattern control obtained from dielectric cone sub-reflector assemblies dimensioned to concentrate signal energy upon a mid-wall area of reflector dish, paired with improved shielding at the reflector dish periphery, can enable a cost effective self-supported sub-reflector front feed type reflector antenna to meet extremely narrow radiation pattern envelope electrical performance specifications, such as the ETSI Class 4 RPE.


As shown in FIGS. 2a, 2b and 3, a cone radiator sub-reflector assembly 1 is configured to couple with the end of a feed boom waveguide 3 at a waveguide transition portion 5 of a unitary dielectric block 10 which supports a sub-reflector 15 at the distal end 20. The sub-reflector assembly 1 utilizes an enlarged sub-reflector diameter for reduction of sub-reflector spill-over. The sub-reflector 15 may be dimensioned, for example, with a diameter that is 2.5 wavelengths or more of a desired operating frequency, such as the mid-band frequency of a desired microwave frequency band. The exemplary embodiment is dimensioned with a 39.34 mm outer diameter and a minimum dielectric radiator portion diameter of 26.08 mm, which at a desired operating frequency in the 22.4 Ghz microwave band corresponds to 2.94 and 1.95 wavelengths, respectively.


A dielectric radiator portion 25 situated between the waveguide transition portion 5 and a sub-reflector support portion 30 of the dielectric block 10 is also increased in size. The dielectric radiator portion 25 may be dimensioned, for example, with a minimum diameter of at least ⅗ of the sub-reflector diameter. The enlarged dielectric radiator portion 25 is operative to pull signal energy outward from the end of the waveguide 3, thus minimizing the diffraction at this area observed in conventional dielectric cone sub-reflector configurations, for example as shown in FIG. 4. The conventional dielectric cone has an outer diameter of 28 mm and a minimum diameter in a “radiator region” of 11.2 mm, which at a desired operating frequency in the 22.4 Ghz microwave band corresponds to corresponding to 2.09 and 0.84 wavelengths, respectively.


A plurality of corrugations are provided along the outer diameter of the dielectric radiator portion as radially inward grooves 35. In the present embodiment, the plurality of grooves is two grooves 35 (see FIGS. 2a and 2b). A distal groove 40 of the dielectric radiator portion 25 may be provided with an angled distal sidewall 45 that initiates the sub-reflector support portion 30. The distal sidewall 45 may be generally parallel to a longitudinally adjacent portion of the distal end 20; that is, the distal sidewall 45 may form a conical surface parallel to the longitudinally adjacent conical surface of the distal end 20 supporting the sub-reflector 15, so that a dielectric thickness along this surface is generally constant with respect to the sub-reflector 45.


The waveguide transition portion 5 of the sub-reflector assembly 1 may be adapted to match a desired circular waveguide internal diameter so that the sub-reflector assembly 1 may be fitted into and retained by the waveguide 3 that supports the sub-reflector assembly 1 within the dish reflector 50 of the reflector antenna proximate a focal point 52 of the dish reflector 50, for example as shown in FIG. 3. The waveguide transition portion 5 may insert into the waveguide 3 until the end of the waveguide abuts a shoulder 55 of the waveguide transition portion 5.


The shoulder 55 may be dimensioned to space the dielectric radiator portion 25 away from the waveguide end and/or to further position the periphery of the distal end 20 (the farthest longitudinal distance of the sub-reflector signal surface from the waveguide end) at least 0.75 wavelengths of the desired operating frequency. The exemplary embodiment is dimensioned with a 14.48 mm longitudinal length, which at a desired operating frequency in the 22.4 Ghz microwave band corresponds to 1.08 wavelengths. For comparison, the conventional dielectric cone of FIG. 3 is dimensioned with 8.83 mm longitudinal length or 0.66 wavelengths at the same desired operating frequency.


One or more step(s) 60 at the proximal end 65 of the waveguide transition portion 5 and/or one or more groove(s) may be used for impedance matching purposes between the waveguide 3 and the dielectric material of the dielectric block 10.


The sub-reflector 15 is demonstrated with a proximal conical surface 70 which transitions to a distal conical surface 75, the distal conical surface 75 provided with a lower angle with respect to a longitudinal axis of the sub-reflector assembly 1 than the proximal conical surface 70.


As best shown in FIG. 2a, the sub-reflector 15 may be formed by applying a metallic deposition, film, sheet or other RF reflective coating to the distal end of the dielectric block 10. Alternatively, as shown in FIGS. 2b and 3, the sub-reflector 15 may be formed separately, for example as a metal disk 80 which seats upon the distal end of the dielectric block 10.


When applied with a 0.167 F/D dish reflector 50 and shield 90, for example as shown in FIG. 10, the sub-reflector assembly 1 can provide surprising improvements in the signal pattern, particularly in the region between 20 and 60 degrees. For example, as shown in FIGS. 6 and 7, radiation in both the E & H planes is significantly reduced in the 20 to 60 degree region.



FIG. 8 demonstrates a time slice radiation energy plot simulation of a conventional sub-reflector assembly, showing the broad angular spread of the radiation pattern towards the dish reflector surface and in particular the diffraction effect of the waveguide end drawing the signal energy back along the boresight which necessitates the limiting of the sub-reflector diameter to prevent significant signal blockage and/or introduction of electrical performance degrading secondary reflections/interference.


In contrast, FIG. 9 shows a radiation energy plot simulation of the exemplary controlled illumination cone radiator sub-reflector assembly 1 demonstrating the controlled illumination of a 0.167 F/D ratio dish reflector 50 by the sub-reflector assembly 1 as the radiation pattern is directed primarily towards a mid-section area of the dish reflector 50 spaced away both from the sub-reflector shadow area and the periphery of the dish reflector 50. One skilled in the art will appreciate that, by applying a deep dish type dish reflector 50, the projection of the majority of the radiation pattern at an increased outward angle, rather than downward towards the area shadowed by the sub-reflector assembly 1, allows the radiation pattern to impact the mid-section of the dish reflector 50 without requiring the dish reflector 50 to be unacceptably large in diameter.


Where each of the shoulders 55, steps 60 and grooves 35 formed along the outer diameter of the unitary dielectric block are provided radially inward, manufacture of the dielectric block may be simplified, reducing overall manufacturing costs. Dimensioning the periphery of the distal surface as normal to the longitudinal axis of the assembly provides a ready manufacturing reference surface 85, further simplifying the dielectric block 10 manufacture process, for example by machining and/or injection molding.


By applying additional shielding and/or radiation absorbing materials to the periphery of the dish reflector 50, further correction of the radiation pattern with respect to the boresight and/or sub-reflector spill-over regions may be obtained in a trade-off with final antenna efficiency. Range measurements have demonstrated a 6-14% improved antenna efficiency for a cylindrical shielded ETSI Class 4 compliant Reflector Antenna over the U.S. Pat. No. 6,919,855 ETSI Class 3 type reflector antenna configuration, depending upon operating frequency.


As shown in FIGS. 10-12, shielding may be applied, for example, as a generally cylindrical shield 90 coupled to the periphery of the dish reflector 50. RF absorbing material 95 may be coupled to an inner diameter of the shield 90. The length of the shield 90, along the longitudinal axis of the reflector antenna, may be selected with respect to the F/D of the dish reflector 50 and the radiation pattern in a trade-off with the total length of the resulting reflector antenna. For smaller F/D reflectors, shorter longitudinal length may be required due to feed position deeper within the dish reflector 50. For example, the subtended angles, with respect to a longitudinal axis of the reflector antenna, between the dish reflector focal point 52 and the periphery of the dish reflector 50 for a 2 foot and a 4 foot diameter 0.167 F/D dish reflector 50 may be in the range 40° to 50°. The shield length may be chosen dependent on the level of unwanted spillover energy from primary radiation patterns resulting from the sub-reflector assembly configuration selected. Keeping this criterion, for the 2 ft and 4 ft examples, shield length may be, selected for example, to be 1 to 3 times the focal length of the dish reflector 50. The shield 90 may alternatively be applied with an outward taper, for example as shown in FIG. 13.


As shown for example in FIGS. 14-19, the F/D ratio of the reflector dish 50 and the corresponding shield length may be varied to obtain a subtended angle, between the longitudinal axis and a line between the focal point and a distal periphery 54 of the shield 90 of 50 degrees or less, enabling a range of different F/D dish reflector 50 to provide a reflector antenna solution which satisfies a strict RPE specification, such as ETSI 4, without unacceptably increasing the overall dimensions of the resulting reflector antenna.


Tuning of the sub-reflector assembly 1 and/or dish reflector 50 surfaces may enable the required length of the shield 90 and/or overall length of the reflector antenna assembly to be minimized, without exceeding the desired RPE specification. Thereby the overall size and wind load characteristic of the resulting reflector antenna may be minimized, resulting, for example, in a reduction of the subtended angle to 40 degrees or less, for example as shown in FIGS. 20 and 21, thus enabling improved electrical performance for a given reflector antenna assembly.


Radiation patterns of the dish reflector and shield combinations demonstrated in FIGS. 15, 17, 19 and 21 are computer models based upon an operating frequency band of 6.525 GHz. Further modeling indicates similar performance at alternative microwave frequencies, until the selected scale of the assembly begins to approach the wavelength of the operating frequency and/or operating frequency rises to the point where the corresponding reduced scale of the resulting reflector antenna contributes to cost effective manufacturing tolerances becoming a determinative factor of electrical performance.


As shown in FIGS. 22-27, in a radiation pattern trade-off between areas of concern where the radiation pattern approaches the desired RPE and areas where the radiation pattern is well below the required RPE, the radiation pattern may be further tuned by applying a radially inward taper so that the shield 90 becomes increasingly conical, for example with an angle greater than zero and up to 10 degrees with respect to a longitudinal axis of the reflector antenna (see FIGS. 26 and 27).


The maximum angle of the inward taper of the shield 90 may be selected at the point where the reduced distal end diameter of the shield 90 begins to block the signal, thereby unacceptably reducing the overall gain of the antenna. For example, comparing various shield geometries of a 2 ft diameter, 18 GHz antenna (straight cylindrical shield, 5 degree taper in and 10 degree taper in), calculated efficiencies (%) are shown in FIG. 28. On average there is a 7% efficiency drop for a 2 ft diameter 18 GHz antenna with a 10° shield inward taper, compared to a straight shielded 2 ft 18 GHz antenna. A shield inward taper of approximately 5° may provide a balance of antenna performance in terms of radiation pattern improvement and antenna efficiency, as demonstrated by FIG. 29, where signal pattern improvement in the region of 30-50 degrees is obtained in the Horizontal plane when the operating frequency is 18.7 Ghz, without unacceptably impacting other angles of concern.


From the foregoing, it will be apparent that the present invention may bring to the art a reflector antenna with improved electrical performance and/or significant manufacturing cost efficiencies. Because the front feed self-supported sub-reflector assembly reflector antenna has an axisymmetric antenna structure, the cost and complexity of the dual offset reflector antenna structure may be entirely avoided. The reflector antenna according to the invention may be strong, lightweight and may be repeatedly cost efficiently manufactured with a very high level of precision.












Table of Parts
















1
sub-reflector assembly


3
waveguide


5
waveguide transition portion


10
dielectric block


15
sub-reflector


20
distal end


25
dielectric radiator portion


30
sub-reflector support portion


35
groove


40
distal groove


45
distal sidewall


50
dish reflector


52
focal point


54
distal periphery


55
shoulder


60
step


65
proximal end


70
proximal conical surface


75
distal conical surface


80
disk


85
reference surface


90
shield


95
RF absorbing material


97
radome









Where in the foregoing description reference has been made to materials, ratios, integers or components having known equivalents then such equivalents are herein incorporated as if individually set forth.


While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.

Claims
  • 1. A front feed reflector antenna, comprising: a dish reflector with a focal point;a wave guide coupled to a proximal end of the dish reflector, projecting into the dish reflector along a longitudinal axis;a dielectric block coupled to a distal end of the waveguide;a sub-reflector coupled to a distal end of the dielectric block proximate the focal point; anda generally cylindrical shield coupled to a periphery of the dish reflector;wherein a subtended angle between the longitudinal axis and a line between the focal point and a distal periphery of the shield is 50 degrees or less.
  • 2. The antenna of claim 1, wherein the dish reflector has a reflector focal length to reflector diameter ratio of 0.163 or less.
  • 3. The antenna of claim 1, wherein the dish reflector has a reflector focal length to reflector diameter ratio of 0.25 or less.
  • 4. The antenna of claim 1, wherein the dish reflector has a reflector focal length to reflector diameter ratio of 0.298 or less.
  • 5. The antenna of claim 1, wherein the subtended angle is 40 degrees or less.
  • 6. The antenna of claim 1, wherein a diameter of the sub-reflector is dimensioned to be 2.5 wavelengths or more of a desired operating frequency.
  • 7. The antenna of claim 1, wherein the dielectric block is a unitary dielectric block provided with a waveguide transition portion and a dielectric radiator portion; the dielectric block coupled to the waveguide at the waveguide transition portion;the dielectric radiator portion situated between the waveguide transition portion and the sub-reflector; an outer diameter of the dielectric radiator portion provided with a plurality of radial inward grooves; a minimum diameter of the dielectric radiator portion greater than ⅗ of the sub-reflector diameter.
  • 8. The antenna of claim 7, wherein the plurality of grooves is two grooves.
  • 9. The antenna of claim 7, wherein a bottom width of the plurality of grooves decreases towards the distal end.
  • 10. The antenna of claim 7, further including a sub-reflector support portion between the dielectric radiator portion and the sub-reflector; the sub-reflector support portion extending from a distal groove of the dielectric radiator portion as an angled distal sidewall of the distal groove.
  • 11. The antenna of claim 10, wherein the angled distal sidewall is generally parallel to a longitudinally adjacent portion of the distal end.
  • 12. The antenna of claim 1, wherein the distal end of the dielectric block is provided with a proximal conical surface which transitions to a distal conical surface; the distal conical surface provided with a lower angle with respect to the longitudinal axis than the proximal conical surface.
  • 13. The antenna of claim 1, wherein the shield is tapered inward.
  • 14. The antenna of claim 13, wherein the shield is tapered inward at an angle greater than zero and up to 10 degrees with respect to the longitudinal axis.
  • 15. The antenna of claim 1, wherein a length of the shield is 1 to 3 times a reflector focal length to reflector diameter ratio of the dish reflector.
  • 16. The antenna of claim 1, wherein the waveguide transition portion is dimensioned for insertion into the end of the waveguide until the end of the waveguide abuts a shoulder of the waveguide transition portion.
  • 17. A method for manufacturing a front feed reflector antenna, comprising the steps of: coupling a wave guide to a proximal end of a dish reflector;coupling a dielectric block to a distal end of the waveguide, a sub-reflector coupled to a distal end of the dielectric block; andcoupling a generally cylindrical shield coupled to the periphery of the dish reflector;wherein a subtended angle, along the longitudinal axis, between the focal point and a distal periphery of the shield is 50 degrees or less .
  • 18. The method of claim 17, wherein a diameter of the sub-reflector with a diameter is dimensioned to be 2.5 wavelengths or more of a desired operating frequency.
  • 19. A front feed reflector antenna, comprising: a dish reflector with a focal point;a generally cylindrical shield coupled to a periphery of the dish reflector;wherein a subtended angle between the longitudinal axis and a line between the focal point and a distal periphery of the shield is 50 degrees or less.
  • 20. The reflector antenna of claim 19, wherein the reflector antenna has a radiation pattern envelope less than a European Telecommunications Standards Institute Class 4 radiation pattern envelope.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of commonly owned co-pending U.S. Utility patent application Ser. No. 13/229,829, titled “Low Sidelobe Reflector Antenna”, filed Sep. 12, 2011 by Stephen Simms, Ronald J. Brandau, Junaid Syed and Douglas Cole, currently pending and hereby incorporated by reference in its entirety.

US Referenced Citations (33)
Number Name Date Kind
2605416 Foster Jul 1952 A
3733609 Bartlett May 1973 A
4626863 Knop et al. Dec 1986 A
4673945 Syrigos Jun 1987 A
4673947 Newham Jun 1987 A
4963878 Kildal Oct 1990 A
5166698 Ashbaugh et al. Nov 1992 A
5907310 Seewig et al. May 1999 A
5959590 Sanford et al. Sep 1999 A
5973652 Sanford et al. Oct 1999 A
6020859 Kildal Feb 2000 A
6107973 Knop et al. Aug 2000 A
6137449 Kildal Oct 2000 A
6429826 Karlsson et al. Aug 2002 B2
6456253 Rummeli et al. Sep 2002 B1
6522305 Sharman Feb 2003 B2
6697027 Mahon Feb 2004 B2
6724349 Baird et al. Apr 2004 B1
6862000 Desargant et al. Mar 2005 B2
6919855 Hills Jul 2005 B2
6985120 Lewry et al. Jan 2006 B2
6995727 Tuau et al. Feb 2006 B2
7138958 Syed et al. Nov 2006 B2
7280081 Mahr Oct 2007 B2
7586454 Morin et al. Sep 2009 B2
7907097 Syed et al. Mar 2011 B2
8102324 Tuau et al. Jan 2012 B2
20090184886 Tuau et al. Jul 2009 A1
20100315307 Syed et al. Dec 2010 A1
20110140983 Hills et al. Jun 2011 A1
20110291914 Lewry et al. Dec 2011 A1
20130057444 Brandau et al. Mar 2013 A1
20130057445 Simms et al. Mar 2013 A1
Non-Patent Literature Citations (2)
Entry
International Search Report, related application No. PCT/US12/41884, Jan. 9, 2013, Korea Intellectual Property Office, Daejeon Metropolitan City, Republic of Korea.
Sung Chul Kang, International Search Report for application PCT/US2014/037756, Sep. 17, 2014, Korean Intellectual Property Office, Daejeon Metropolitan City, Republic of Korea.
Related Publications (1)
Number Date Country
20130300621 A1 Nov 2013 US
Continuation in Parts (1)
Number Date Country
Parent 13229829 Sep 2011 US
Child 13947215 US