Low-speed pulsating showerhead

Information

  • Patent Grant
  • 8794543
  • Patent Number
    8,794,543
  • Date Filed
    Thursday, January 28, 2010
    14 years ago
  • Date Issued
    Tuesday, August 5, 2014
    10 years ago
Abstract
A showerhead may include a housing, a turbine, and a shutter. The housing may include a fluid inlet, at least one fluid outlet, and a chamber in fluid communication with the inlet and one or more outlets. The turbine and shutter may be placed in the cavity. The shutter may include at least one opening. The shutter may selectively cover and uncover fluid outlets, thus selectively fluidly connecting the fluid outlets with the chamber. Water flowing through the housing causes the turbine to spin. As the turbine spins, the shutter rotates at a slower speed than the turbine to produce a periodic interruption of water flow through the outlets by covering and uncovering the outlets as the shutter rotates within the housing.
Description
BACKGROUND

1. Technical Field


The technology disclosed herein relates generally to showerheads, and more specifically to pulsating showerheads.


2. Background Art


Showers provide an alternative to bathing in a bathtub. Generally, showerheads are used to direct water from the home water supply onto a user for personal hygiene purposes.


In the past, bathing was the overwhelmingly popular choice for personal cleansing. However, in recent years showers have become increasingly popular for several reasons. First, showers generally take less time than baths. Second, showers generally use significantly less water than baths. Third, shower stalls and bathtubs with showerheads are typically easier to maintain. Fourth, showers tend to cause less soap scum build-up. Fifth, by showering, a bather does not sit in dirty water—the dirty water is constantly rinsed away.


With the increase in popularity of showers has come an increase in showerhead designs and showerhead manufacturers. Many showerheads emit pulsating streams of water in a so-called “massage” mode. Other showerheads are referred to as “drenching” showerheads, since they have relatively large faceplates and emit water in a steady, soft spray pattern.


The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.


SUMMARY

Various embodiments of a showerhead may include a housing, a turbine, and a shutter. The housing may define a chamber in fluid communication with a fluid inlet and at least one fluid outlet. The turbine may be received within the chamber. The shutter may be received within the chamber and operatively associated with the turbine. Rotation of the turbine may cause rotation of the shutter. A rotation rate of the shutter may be less than a rotation rate of the turbine. As the shutter rotates, the shutter may fluidly connect and disconnect the fluid inlet and the at least one fluid outlet.


In some embodiments, a showerhead may include a housing defining a chamber in fluid communication with a fluid inlet and at least one fluid outlet. The housing may further include a first engagement feature. The showerhead may further include a turbine received within the chamber, a shutter received within the chamber and operatively associated with the turbine. The shutter may include a second engagement feature. The first engagement feature may be disposed radially inward with respect to the at least one fluid outlet. Rotation of the turbine may cause rotation of the shutter. Engagement of the first engagement feature with the second engagement feature may cause a rotation rate of the shutter to be less than a rotation rate of the turbine and, as the shutter rotates, the shutter may fluidly connect and disconnect the fluid inlet and the at least one fluid outlet.


In various embodiments, a showerhead may include a housing defining a chamber in fluid communication with a fluid inlet and at least one fluid outlet. The housing may include a first engagement feature disposed radially inward with respect to the at least one fluid outlet. The showerhead may further include a cycloidal drive. The cycloidal drive may include a turbine received within the chamber, a shutter received within the chamber and operatively associated with the turbine, and the first engagement feature. The turbine may include an eccentric cam. The shutter may include a second engagement feature and an opening for receiving the eccentric cam. Rotation of the turbine may cause rotation of the shutter and engagement of the first engagement feature with the second engagement feature may cause a rotation rate of the shutter to be less than a rotation rate of the turbine.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention is provided in the following written description of various embodiments of the invention, illustrated in the accompanying drawings, and defined in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a rear isometric view of a first embodiment of a showerhead.



FIG. 2 depicts a front isometric view of the showerhead shown in FIG. 1.



FIG. 3 depicts a cross-section view of the showerhead shown in FIG. 1, viewed along line 3-3 in FIG. 2.



FIG. 4 depicts an exploded rear isometric view of the showerhead shown in FIG. 1.



FIG. 5 depicts an exploded front isometric view of the showerhead shown in FIG. 1.



FIG. 6 depicts another cross-section view of the showerhead shown in FIG. 1, viewed along line 6-6 in FIG. 3.



FIG. 7 depicts yet another cross-section view of the showerhead shown in FIG. 1, viewed along line 7-7 in FIG. 3.



FIG. 8 depicts still yet another cross-section view of the showerhead shown in FIG. 1, showing a view similar to the view shown in FIG. 7.



FIG. 9 depicts a cross-section view of the showerhead shown in FIG. 1 similar to the view shown in FIG. 8, showing the position of the shutter openings relative to the showerhead outlets after the turbine has moved one complete revolution from the position shown in FIG. 8.



FIG. 10 depicts a cross-section view of the showerhead shown in FIG. 1 similar to the view shown in FIG. 8, showing the position of the shutter openings relative to the showerhead outlets after the turbine has moved two complete revolutions from the position shown in FIG. 8.



FIG. 11 depicts a cross-section view of the showerhead shown in FIG. 1 similar to the view shown in FIG. 8, showing the position of the shutter openings relative to the showerhead outlets after the turbine has moved three complete revolutions from the position shown in FIG. 8.



FIG. 12 depicts yet a further cross-section view of the showerhead shown in FIG. 1, showing a view similar to the view shown in FIG. 7 and showing the cam in a first position.



FIG. 13 depicts a cross-section view of the showerhead shown in FIG. 1 similar to the view shown in FIG. 12, showing the cam in a second position and the relationship of the perimeter of the shutter to the housing when the cam is in the second position.



FIG. 14 depicts a cross-section view of the showerhead shown in FIG. 1 similar to the view shown in FIG. 12, showing the cam in a third position and the relationship of the perimeter of the shutter to the housing when the cam is in the third position.



FIG. 15 depicts a cross-section view of the showerhead shown in FIG. 1 similar to the view shown in FIG. 12, showing the cam in a fourth position and the relationship of the perimeter of the shutter to the housing when the cam is in the fourth position.



FIG. 16 depicts a cross-section view of an alternate embodiment, similar to the view shown in the embodiment of FIG. 7, depicting a precessing shutter with more engagement features on the shutter than on the housing.



FIG. 17 depicts a rear isometric view of a second embodiment of a showerhead.



FIG. 18 depicts a front isometric view of the showerhead shown in FIG. 17.



FIG. 19 depicts a cross-section view of the showerhead shown in FIG. 17, viewed along line 19-19 in FIG. 17.



FIG. 20 depicts an exploded top isometric view of the showerhead shown in FIG. 17.



FIG. 21 depicts an exploded bottom isometric view of the showerhead shown in FIG. 17.



FIG. 22 depicts another cross-section view of the showerhead shown in FIG. 16, viewed along line 22-22 in FIG. 19.



FIG. 23 depicts a cross-section view of the showerhead shown in FIG. 17 similar to the view shown in FIG. 22, showing the position of the shutter opening relative to the housing after rotation of the shutter within the housing.



FIG. 24 depicts a top plan view of the lower housing for the showerhead of FIG. 20.



FIG. 25 depicts a top plan view of the shutter for the showerhead of FIG. 17.



FIG. 26 depicts a bottom plan view of the turbine for the showerhead shown in FIG. 17.



FIG. 27 depicts a top plan view of another embodiment of a lower housing for the showerhead shown in FIG. 17.



FIG. 28 depicts a cross-section view of an alternate embodiment of the showerhead of FIG. 17, similar to the view shown in FIG. 19, showing an alternate shutter positioned within the lower housing of FIG. 27.



FIG. 29 depicts a top isometric view of a lower housing portion and a shutter in accordance with an alternative embodiment of a low-speed pulsating showerhead.



FIG. 30 depicts a top isometric view of the lower housing portion shown in FIG. 29.



FIG. 31 depicts a top isometric view of the shutter shown in FIG. 29.



FIG. 32 depicts a bottom isometric view of the shutter shown in FIG. 29.





DETAILED DESCRIPTION

Implementations of showerheads for generating a relatively low speed pulsating spray are described herein. A showerhead may include a jet disk, a turbine, a shutter, and a housing. Water flowing through the showerhead causes the turbine to spin. As the turbine spins, it rotates the shutter. The shutter may be configured to rotate at a slower speed than the turbine to produce a periodic interruption of water flow through outlets or nozzles defined in, or attached to, the housing to create a pulsating spray. This pulsating spray may simulate the feel of a hand massage.


The shutter may take the form of a generally circular disk including gear teeth that selectively engage opposing gear teeth in the housing. The turbine may include an offset cam that drives the shutter. The speed reduction achieved is the ratio of the difference between the number of gear teeth on the housing and the number of gear teeth on the shutter to the number of gear teeth on the shutter. Expressed mathematically, this may be written as: (Housing Teeth-Shutter Teeth)/(Shutter Teeth).



FIGS. 1-15 depict various views of a first embodiment of a showerhead 100. With reference to FIGS. 1 and 2, the showerhead 100 may include a housing 102. The housing 102 may be formed from an upper housing portion 104 and a lower housing portion 106. The upper housing portion 104 may include a fluid inlet for receiving fluid from a fluid source. The upper housing portion 104 may further include threads 108 proximate the fluid inlet for threadedly joining the showerhead 100 to a fluid source, e.g., a shower pipe, flexible arm, hose connector, arm assembly, or other device for conveying fluid, such as water, (i.e., a fluid source) to the showerhead 100. Although shown as threadedly joined to the fluid conveying device, the showerhead 100 may be attached to the fluid conveying device using any known connection method or combination of methods, including, but not limited to, press fitting, clamping, welding, and so on. The lower housing portion 106 may include one or more fluid outlets 110 in selective fluid communication with the fluid inlet. The fluid outlets 110 may be generally circular holes or any other suitably shaped hole or opening. A fluid, such as water, may be delivered from a fluid source to a user via the showerhead 100 through at least one of the fluid outlets 110.


The upper housing portion 104, the lower housing portion 106, or both portions may include user engagement features to facilitate joining the portions. For example, the upper and lower portions 104, 106 as shown in FIGS. 1 and 2 may each include recessed surfaces 112, 114 for providing a surface for a user to grip. In other embodiments, the upper housing portion 104, the lower housing portion 106, or both may incorporate other types of user engagement features, or combinations of features, such as raised protrusions, tabs, knurls, roughened surfaces, and so on, that may enhance a user's grip on the upper housing portion 104, the lower housing portion 106, or both portions for joining the portions, moving the showerhead 100 relative to a shower pipe or other device for conveying fluid to the showerhead, and/or selecting a showerhead operating mode.


Turning to FIGS. 3-5, the upper housing portion 104 may include a generally cylindrical housing shaft 116 defining a fluid passage. The fluid passage may be in fluid communication with the fluid inlet. A generally annular housing flange 118 may extend radially outward from a lower portion of the housing shaft 116. A generally circular upper housing sidewall 120 may extend generally downward from the housing flange 118. An inner surface of the upper housing sidewall 120 may include threads for joining the upper housing portion 104 to the lower housing portion 106. A flow restrictor (not shown), as known in the art, may be positioned in the fluid passage to limit fluid flow through the showerhead 100 from a fluidly connected fluid source.


The lower housing portion 106 may include a generally circular lower housing base 122. A generally circular lower housing sidewall 124 may extend upward from the lower housing base 122. An external surface of the lower housing sidewall 124 may include threads configured to engage the upper housing threads.


The upper and lower housing threads may be engaged to join the upper housing portion 104 to the lower housing portion 106. Although the upper housing threads are shown as internal threads and the lower housing threads are shown as external threads, the upper housing threads could be external and the lower housing threads could be internal. Further, the upper and lower housing portions 104, 106 may be joined by any known connection method, including, but not limited to, press fitting, clamping, welding, the aforementioned threading, and so on.


The upper housing portion 104 and the lower housing portion 106 may define a chamber or cavity 126. The chamber or cavity 126 may be defined by the upper housing flange 118, the lower housing sidewall 124, and the lower housing base 122. The chamber or cavity 126 may be generally cylindrical in shape or any other desired shape. The chamber or cavity 126 may be in fluid communication with the upper housing fluid passage and in selective fluid communication with the fluid outlets 110.


Although the shape and configuration of the upper and lower housing portions 104, 106 are described and shown with a certain particularity, the upper and lower housing portions 104, 106 may take the form of any desired shape to define the exterior and the interior of the housing 102. Further, the housing 102 may be formed from more or less than two housing portions. Yet further, although the housing 102 is shown as including one fluid inlet, one fluid passage, and one chamber or cavity, the housing may include or define more than one of any of these elements. For example, the housing 102 may define two fluid inlets, two fluid passages, and/or two chambers or cavities. The foregoing example is merely illustrative and is not intended to imply for the housing 102 any particular number or arrangement of fluid inlets, fluid passages, or chambers or cavities.


With continued reference to FIGS. 3-5, the showerhead 100 may further include a jet disk 130, a turbine 132, a shutter 134, and one or more sealing members 136, 138. The jet disk 130, the turbine 132, and the shutter 134 may be received within the cavity or chamber 126 defined by the housing 102. A fluid source seal member 136 may be positioned within the fluid inlet of the upper housing portion 104, and a housing seal member 138 may be positioned between the upper and lower housing portions 104, 106 proximate the area where these portions are joined.


The jet disk 130 may include a generally circular and planar body or any other suitably shaped body. The jet disk 130 may include one or more jet disk fluid jets or openings 140. Although three jets 140 are shown in FIGS. 4 and 5, the jet disk 130 may include more or less than three jets. Each jet 130 may extend from an upper to a lower surface 142, 144 of the jet disk 130, thus creating a path for fluid to flow from the jet disk's upper surface 142 to its lower surface 144. Further, the jets 140 may be angled relative to the jet disk's upper and lower surfaces 142, 144 to impart a directional flow to fluid passing through them. Such directional flow may cause the turbine 132 to rotate within the showerhead cavity 126. The jets 140 may also be shrouded, which may increase the fluid's flow speed. Alternative embodiments may vary the number of jets 140 employed and/or the shrouding configuration.


The turbine 132 may take the form of a generally hollow open-ended cylinder with blades 146 extending radially inward toward a central hub 148 from a generally circular turbine wall 150. The turbine wall 150, or at least a portion of the turbine wall 150, may be omitted in some embodiments. Further, the number of blades 146 may be more or less than the number depicted in the figures. The turbine 132 may include a first pin-shaped extrusion 152 extending generally upward from its upper side and a second pin-shaped extrusion 154 extending generally downward from its lower side. Each pin-shaped extrusion 152, 154 may be located along a central axis of the turbine 132. The lower pin-shaped extrusion 154 may be received in an opening 156 in the housing 102 and the upper pin-shaped extrusion 152 may be received in an opening 158 in the jet disk 130. The turbine 132 may rotate about its central axis (i.e., about the pin-shaped extrusions 152, 154). Alternatively, the turbine 132 may have an upper opening that receives a pin shaped extrusion extending from a lower side of the jet disk 130 and a lower opening that receives a pin shaped extrusion extending from the housing 102. The turbine 132 may include an eccentric cam 160 on its lower side (i.e., the side facing the shutter 134).


The shutter 134 may take the form of a generally circular and planar body or any other desired shape and may include an opening 162 along its central axis to receive the eccentric cam 160. The shutter 134 may thus spin about the central axis of the eccentric cam 160 as the turbine 132 rotates. The center of the eccentric cam 160 is off-center with respect to the center axis of the turbine 132 and housing 102. Thus, as the turbine 132 spins, the eccentric cam 160 moves the center of the shutter 134 in a generally circular path around the center axis of the turbine 132 and the housing 102. As the center of the shutter 134 moves in this generally circular path, the portion of its perimeter that engages or otherwise contacts the lower housing portion's side wall 124 changes as shown, for example, in FIGS. 7-15.


The shutter body 164 may include one or more fluid openings 166, 168 through its thickness for water to pass from the upper side 170 to the lower side 172 of the shutter 134. The shutter fluid openings 166, 168 may be selectively aligned with at least some of the outlets 110 in the housing 102. When aligned, water or other fluid may flow from the housing chamber or cavity 126 and out of the outlets 110 aligned with the shutter fluid openings 166, 168. The shutter 134 may include an engagement feature 174, which may take the form of gear teeth or the like. The gear teeth may be, although not necessarily, uniformly distributed around the shutter body's periphery.


The housing 102 may include a housing engagement feature 176 to engage the shutter's engagement feature 174. The housing engagement feature 176 may be engaging teeth complementary to the shutter's gear teeth 174. For example, the housing engagement feature 176 may be defined in an upper surface 222 of the lower housing 106 by a circular-shaped recessed area with depressions having a complementary shape to the gear teeth of the engagement feature 174 of shutter 134. These may be, but not necessarily, equally spaced around the interior periphery of the lower housing portion 106. As shown, for example, in FIG. 7, the shutter 134 may include fifteen gear teeth, and the housing 102 may include sixteen housing teeth. Other embodiments may use a different number of gear teeth for the shutter 134 and/or housing 102. At least some of the shutter's gear teeth 174 may engage the housing's gear teeth 176. Further, as the turbine 132 rotates, the gear teeth 174 of the shutter 134 that engage the gear teeth 176 of the housing 102 may change.


Returning to FIGS. 3-5, the fluid source seal member 136 may form a fluid seal between the showerhead 100 and a fluid source joined to the showerhead 100. More particularly, the fluid source seal member 136 may substantially limit or otherwise prevent fluid leakage from the showerhead 100 along the threaded joint that joins that fluid source to the showerhead 100. The housing seal member 138 may form a fluid seal between the upper and lower housing portions 104, 106 to substantially limit or otherwise prevent fluid leakage from the showerhead 100 along the threaded joint that joins the upper housing portion 104 to the lower housing portion 106. The fluid source and housing seal members 136, 138 may take the form of O-rings or any other suitable element that provides a fluid seal between two or more members or components and may be composed of an elastomeric material, such as rubber, or any other known fluid sealant material.


Operation of the showerhead 100 will now be described with reference to FIGS. 3, 6 and 7. Water or other fluid may flow through the fluid inlet from the fluid source to the jet disk 130. As water or other fluid passes through the jets 140, it impacts one or more blades 146 of the turbine 132, which is situated within the housing 102 between the shutter 134 and the jet disk 130. Water impacting the turbine blades 146 imparts rotational motion to the turbine 132. As viewed from the side of the turbine 132 facing the shutter 134 as shown, for example, in FIG. 6, the turbine 132 may rotate in a clockwise fashion. Alternative embodiments may cause the turbine 132 to rotate in a counterclockwise fashion. After impacting the turbine blades 146, the water hits the upper side 170 of the shutter 134.


As the turbine 132 rotates from water impacting its blades 146, the turbine 132 causes the center of the shutter 134 to move in a generally circular motion via the aforementioned connection between the shutter 134 and the turbine's eccentric cam 160. This meshes at least some of the external teeth of the shutter 134 with some of the internal teeth of the housing 102 resulting in rotational movement of the shutter 134 relative to the turbine 132. Additionally, the teeth of the shutter 134 and housing 102 disengage at a side of the shutter 134 approximately opposite the point of engagement as shown, for example, in FIG. 7 and FIGS. 12-15.


Since the shutter 134 has one less tooth than the housing 102 and tooth disengagement between the shutter 134 and the housing 102 is made possible by motion of the center of the shutter 134 in a generally circular path around the central axis of the turbine 132, each complete revolution of the turbine 132 results in a one tooth displacement of the shutter 134 in relation to the housing 102. This displacement is in the opposite direction of the rotation of the turbine 132. For example, if the turbine 132 is rotating in a clockwise direction, the one tooth displacement of the shutter 134 relative to the housing 102 will be in a counterclockwise direction and vice versa. This selective engagement of the shutter teeth with the housing teeth functions as a speed reduction mechanism because the shutter 134 rotates 1/15th as quickly as it would absent this engagement. Thus, the combination of the turbine 132, the cam 160, the shutter 134 and the housing 102 operate together as a cycloidal drive to achieve a rotational speed reduction from the turbine 132 to the shutter 134.


The speed reduction achieved (i.e., how fast the shutter 134 rotates relative to how fast the turbine 132 rotates) is determined by the ratio of the difference between number of engagement features 176 of the housing 102 and the number of engagement features 174 on the shutter 134 to the number of engagement features 174 on the shutter 134. For the showerhead depicted in FIGS. 1-15, a speed reduction of 1/15th occurs since the housing 102 has sixteen gear teeth and the shutter 134 has fifteen gear teeth. That is, the shutter 134 rotates at 1/15th the rotational speed of the turbine 132.


In other embodiments, the shutter may have 30 gear teeth and the housing may have 31 gear teeth. This causes the shutter to turn in the opposite direction of the turbine by 1/30th of the rotational rate of the turbine. In other words, the shutter rotates approximately 1/30th about its central axis each time the turbine completes one revolution, and the shutter rotates in the opposite direction of the turbine. Accordingly, the shutter completes a complete revolution in the opposite direction of the turbine each time the turbine completes 30 revolutions. In yet other embodiments of a showerhead 100′, for example, in FIG. 16, the shutter 134′ may have more engagement teeth than the housing 102′, which causes the shutter 134′ to rotate in the same direction as the turbine 132′, albeit at a slower rate. For example, the embodiment of FIG. 16 uses a shutter 134′ with 30 engagement features 174′ (i.e., gear teeth) and a housing 102′ with 28 engagement features 176 (i.e., housing teeth). This causes the shutter 134′ to precess, i.e., turn in the same direction as the turbine 132′, at a rate of 1/14th the speed of the turbine 132′. Other embodiments may employ a shutter and a housing with more or fewer teeth to achieve a desired speed reduction and direction of rotation of the shutter relative to the rotational speed and direction of rotation of the turbine.


Referring to FIGS. 8-12, as the shutter 134 rotates inside the housing 102 within the recessed area defined by the housing engagement feature 176, one or more shutter fluid openings 166, 168 in the shutter 134 pass over rows of outlets 110 arranged in the recessed area defined by housing engagement feature 176. In this manner, water may temporarily flow through the unobstructed outlets 110 located under the shutter fluid openings 166, 168. Thus, as the shutter 134 rotates, water flow through the outlets 110 is periodically interrupted as the solid portion of the shutter 134 temporarily obstructs water flow through outlets 110 located under the solid portion of the shutter 134 as depicted, for example, in FIGS. 8-12. This creates a pulsating flow of water from the showerhead 100. The period of the pulsating flow is determined, in part, by the rotational speed of the shutter 134 as further explained below.



FIG. 9 generally depicts the shutter 134 rotated clockwise within the housing 102 from the relative position occupied in FIG. 8 after the turbine 132 has completed one complete revolution in a counterclockwise direction. FIG. 10 generally depicts the shutter 134 rotated clockwise within the housing 102 from the relative position occupied in FIG. 8 after the turbine 132 has completed two complete revolutions in a counter-clockwise direction. FIG. 11 generally depicts the shutter 134 rotated clockwise within the housing 102 from the relative position occupied in FIG. 8 after the turbine 132 has completed three complete revolutions in a counter-clockwise direction.


With reference to FIGS. 8-12, the shutter 134 may have inner and outer fluid openings 166, 168 that each extend about half way around the shutter 134. The inner and outer fluid openings 166, 168 may generally be formed on opposing halves of the shutter 134. The housing 102 also may include an inner and outer circular row of outlets 110. The inner fluid opening 168 of the shutter may overlap at least part of the inner circular row of outlets 110, while the outer fluid opening 166 may overlap at least part of the outer circular row of outlets 110. When the shutter fluid openings 166, 168 are positioned over certain outlets 110, water flows through these unobstructed outlets 110 to exit the showerhead 100. When an outlet 110 is not aligned with at least one of the shutter fluid openings 166, 168, water flow is blocked through that outlet 110. Thus, as the shutter 134 rotates, water flow through the outlets 110 may be interrupted in a sequence. This may, for example, produce a relatively low-speed, periodic interruption of water flow through each row of outlets 110.


As previously discussed, for the embodiment depicted in FIGS. 1-15, there are 15 gear teeth on the shutter 134 and 16 gear teeth in the housing 102 causing the shutter 134 to rotate in a direction opposite the turbine 132 at a rate 1/15th that of the turbine 132. The period of the pulsating flow of water through an outlet 110 is a direct multiple of the speed reduction times the turbine speed. Thus, if water flow through the showerhead 100 causes the turbine 132 to spin at 60 revolutions per second, the shutter 134 will rotate at a rate of 4 revolutions per second. This results in a period of the pulsating flow through an outlet 110 of about 0.25 seconds, which may simulate the feel of a hand massage. As yet another example, if the turbine 132 rotates at 50 revolutions per seconds and the speed reduction is 1/10th, the shutter 134 will rotate at a rate of five revolutions per second. This results in a period of the pulsating flow through an outlet 110 of about 0.20 seconds. The foregoing examples are merely illustrative and are not intended to imply or require a particular speed reduction, turbine speed, or pulse time.


The aforementioned pulse time represents the period of time for one complete cycle of flow through an outlet 110. In other words, the time it takes for water to start flowing through an outlet 110, stop flowing through the outlet 110, and then start flowing again through the outlet 110. The ratio of the amount of time that water flows and does not flow through an outlet during a single cycle is a function of the length of the shutter fluid opening. As the length of the shutter fluid opening increases, the ratio of the time water flows through the associated outlet 110 to the time it does not flow through the outlet 110 increases. For example, if a shutter fluid opening has a length that extends approximately one-half of the circumference of the shutter 134 as shown, for example, in FIGS. 7-15, the ratio of the time water flows through an outlet 110 to not flowing through the outlet 110 will be approximately 1:1. As another example, if a shutter fluid opening has a length that extends approximately one-quarter of the circumference of the shutter 134, the ratio of the time water flows through an outlet 110 to not flowing through the outlet 110 will be approximately 1:3. The foregoing examples are merely illustrative and are not intended to imply any particular length or ratio of flow time during a single cycle for a showerhead.



FIGS. 16-25 depict various views of a second embodiment of a showerhead 200. The second showerhead 200 is similar in structure and operation to the first showerhead 100 and like numbers for the second showerhead 200 may be used for similar or like elements of the first showerhead 100. Like the first showerhead 100, the second showerhead 200 may include a turbine 132, a jet disk 130, a shutter 134, and a housing 102. In this particular embodiment, the shutter 134 may include one fluid opening 202 that extends about two-thirds the way around the shutter 134, as shown, for example, in FIGS. 19-20. The showerhead 200 may also include one or more seal members 136, 138, such as a fluid inlet seal member 136 and housing seal member 138 as shown, for example, in FIGS. 18-20. The fluid inlet seal member 136 and the housing seal member 138 may be similar to the corresponding seal members 136, 138 described for the first showerhead 100.


Like the first embodiment, the housing 102 for the second showerhead 200 may include upper and lower housing portions 104, 106 threadedly joined as shown, for example, in FIG. 18, or joined by any other known connection method or combination thereof. Also, like the housing 102 for the first showerhead 100, the housing 102 for the second showerhead 200, although shown as having a particular shape in the figures, may be formed into any desired shape and may be formed from any desired number of portions or components. The housing 102 may include one row of outlets or nozzles 110 as shown in FIG. 20, which may be fluidly connected to the housing chamber or cavity 126 via fluid passages or conduits 204 defined in a base 122 of the lower housing portion 106, as shown, for example, in FIGS. 18 and 19. The base 122 may be formed as a separate layer below or formed from a recessed area of the upper surface 222 of the lower housing portion 106. A recessed area may be defined by the housing engagement feature 176 having a circular-shaped recessed area with depressions having a complementary shape to the engagement feature of shutter 134. Each fluid passage 204, in turn, may include a fluid passage opening 206, shown in FIG. 23, defined in the upper surface 222 of the lower housing portion 106, e.g., in the recessed area formed by the housing engagement feature 176, for fluidly joining the fluid passages 204 to the housing chamber or cavity 126. As with the previous embodiment, the turbine 132, shown in FIG. 25, may take the form of a generally hollow open-ended cylinder with blades extending radially inward toward a central hub from a generally circular turbine wall. For a given sized turbine 132 and/or chamber 126, the fluid passages 204 allow for the use of a larger showerhead 200 to create a larger diameter spray pattern from the showerhead 200.


Like the shutter 134 for the first showerhead 100, the shutter 134 for the second showerhead 200, shown in FIG. 24, may include a generally circular and planar (or any other shaped) body including at least one shutter fluid opening 202. Also, like the shutter 134 for the first showerhead 100, the shutter 134 for the second showerhead 200 may include a cam opening 162 along its central axis for receiving an eccentric cam 160 formed on the turbine 132. The shutter 134 may thus spin or rotate about the central axis of the eccentric cam 160 as the turbine 132 rotates in a manner similar to the shutter 134 for the first showerhead 100. As the turbine 132 spins, the motion of the eccentric cam 160 causes the shutter 134 to rotate about the center of the eccentric cam 160 such that the portions of the shutters periphery that contacts the housing 102 changes as described in more detail above for the first showerhead 100.


The shutter 134 and housing 102 may each include one or more gear teeth, as described above. For example, and as illustrated in FIGS. 21 and 22, the shutter 134 may have 15 gear teeth and the housing may have 16 gear teeth that engage the shutter teeth. Accordingly, the shutter 134 rotates inside the housing 102 in an opposite direction with respect to the turbine 132 at a rate 1/15th the speed of the turbine 132. FIG. 22 generally depicts the shutter 134 rotated clockwise within the housing 102 from its position in FIG. 21.


As depicted in FIGS. 21 and 22, as the shutter 134 rotates over the upper surface 222, e.g., within the recessed area defined by the housing engagement feature 176, the flow of water through the fluid passage openings 206, and thus the outlets 110 arranged in the base 122 and in the recessed area in fluid communication with respective fluid passage opening 206, is interrupted as the solid portion of the shutter 134 passes over a fluid passage openings 206. When the shutter fluid opening 202 is over a fluid passage opening 206, water flows through the associated fluid passage 204 and exits the showerhead 200 through the outlet 110 associated with the fluid passage 204. When a fluid passage opening 206 is not aligned with the shutter fluid opening 202, water flow ceases through the outlet 110 in fluid communication with the fluid passage opening 206. Thus, as the shutter 134 rotates, water flow through the outlets 110 may be interrupted in a sequence. This may, for example, produce a relatively low-speed, periodic interruption of water flow through each outlet 110. Other embodiments may employ more or fewer rows of outlets 110 in the housing 102 and may employ more or fewer shutter fluid openings 202 to create a variety of low speed pulsating water flow patterns. For example, multiple shutter fluid openings 202 may be radially aligned with one another to produce a spray pattern. As another example, the outlets 110 may be grouped within one or more sectors on the housing base 122 and/or spaced non-uniformly within one or more rows.


Water flow through the second showerhead 200, at least to the bottom side of the shutter 134, generally proceeds as previously described above for the first showerhead 100. Also as previously described above for the first showerhead 100, selective engagement of the shutter engagement feature 174 with the housing engagement feature 176, which is defined by a circular-shaped recessed area with depressions having a complementary shape to the shutter engagement feature 174 in an upper surface 222 of the lower housing 106 causes the shutter 134 to rotate at a slower speed than the turbine 132. As the shutter 134 rotates inside the chamber 126 of the housing 102, one or more shutter fluid openings 202 may pass over one or more rows of fluid passage openings 206 in the lower housing 106. This permits water to temporarily flow through the unobstructed fluid passage openings 206. Thus, as the shutter 134 rotates, water flow through the outlets or nozzles 110 is periodically interrupted as the solid portion of the shutter 134 temporarily obstructs the water flow through those outlets 110 in fluid communication with fluid passage openings 206 located under the solid portion of the shutter 134. This creates a pulsating flow of water from the showerhead 200.


Various embodiments of the second showerhead 200 may use the same or differing numbers of fluid passage openings 206 to outlets or nozzles 110. For example, each outlet 110 may be in fluid communication with a single fluid passage opening 206, or an outlet 110 may be in fluid communication with two or more fluid passage openings 206, or vice versa.


Other embodiments of the showerhead, including variations of the first and second showerheads 100, 200, may use other types of engageable features on the shutter 134 and the housing 102 to cause the shutter 134 to rotate at a different rate than the turbine 132. For example, the shutter 134 may have external, involute teeth and the housing 102 may have matching internal, involute housing teeth. As another example, the shutter 134 may have sawtooth features that mate to sawtooth cuts in the housing 102 as depicted in FIGS. 26 and 27. In yet another example, pins extending radially from the periphery of the shutter 134 may mate with slots in the housing 102. As yet another example, slots in the shutter 134 may mate with pins extending radially inward from the housing 102. As still yet another example, circular cuts in the periphery of the shutter 134 may engage pins in the housing 102. The foregoing examples are merely illustrative and are not intended to limit the engageable features for the shutter 134 and/or the housing 102 to any particular feature, or to limit other mechanisms for causing the shutter 134 to rotate at different rate than the turbine 132.


Further, the engagement of the shutter 134 to the housing 102 is generally not limited to the use of engagement features 174, 176 to implement the speed reduction mechanism or to otherwise change the rotational speed of the shutter 134 relative to the turbine 132. In some embodiments, the shutter 134 may be made to lag the turbine 132 through frictional engagement between the shutter 134 and housing 102. In such embodiments, the speed reduction may be determined by the ratio of the difference in the diameters of the housing 102 and the shutter 134, divided by the diameter of the shutter 134 (presuming minimal to no slippage between the shutter 134 and the housing 102).



FIGS. 28-31 depict various views of an alternative embodiment of a lower housing 106 and a shutter 134 for use with either or both of the showerheads 100, 200. For purposes of simplification, elements of the showerhead other than the lower housing 106 and the shutter 134 are not depicted in FIGS. 28-31. It is to be appreciated that the omitted elements may be configured substantially identically to the same components of showerheads of previous embodiments.


Referring to FIG. 29, in the present embodiment the one or more fluid passage openings 206 and an annular recess 226 may be defined in the upper surface 222 of the lower housing portion 106. The annular recess 226 may be defined by an outer sidewall 224 and an inner sidewall 225, the inner sidewall 225 defining a periphery of a pin receiving member 227. The pin receiving member 227 may define the opening 156 for receiving the lower pin-shaped extrusion 154. The annular recess 226 may be sized and shaped to accommodate a complementary portion of the shutter 134.


In the present embodiment, the engagement features 176 of the lower housing portion 106 may define the annular recess 226 and be positioned radially inward with respect to the fluid passage openings 206. For example, the engagement features 176 may be provided on the outer sidewall 224. The positioning of the engagement features 176 of the present embodiment relative to the fluid passage openings 206 is in contrast to that of previous embodiments in which the engagement features 176 are positioned radially outward relative to the fluid passages 206 resulting in the fluid passages 206 being arranged within the recessed area defined by the engagement features. Thus, in this embodiment, the fluid passage openings are defined in the upper surface 222 of the lower housing 106, but are not within the annular recess 226.


Configuring the engagement features 176 in the manner of the present embodiment, for example, provides a more compact showerhead as well as a more efficient use space within the cavity 126 formed by the upper and lower housing portions 104, 106. As with previous embodiments, the engagement features 176 may be formed as engaging teeth for engaging complementary gear teeth of the shutter 134. As also with previous embodiments, the lower housing portion 106 may further include suitable engagement features to facilitate joining of the lower housing portion 106 to the upper housing portion 104 such as, for example, threads configured to engage complementary threads of the upper housing portion 104.


With particular reference to FIGS. 30-31, in accordance with the present embodiment, the shutter 134 may take the form of a multi-planar body including an upper shutter portion 236 and a lower shutter portion 238. The upper and lower shutter portions 236, 238 may be integrally formed or may be made of two separate components that are secured to one another by a suitable fastening mechanism. As with previous embodiments, the shutter 134 may include an opening 162 along its central axis to receive the eccentric cam 160. The shutter 134 may thus spin about the central axis of the eccentric cam 160 as the turbine 132 rotates. As discussed with respect to previous embodiments, the center of the eccentric cam 160 may be off-center with respect to the center axis of the turbine 132 and the lower housing 106. Thus, as the turbine 132 spins, the eccentric cam 160 moves the center of the shutter 134 in a generally eccentric circular path around the center axis of the turbine 132 and the lower housing 106. As the center of the shutter 134 moves in this generally eccentric circular path, the portion of the perimeter of the lower shutter portion 238 that engages or otherwise contacts the sidewall 224 of the annular recess 226 changes.


The upper shutter portion 236 may take the form of a generally planar body provided axially above the lower shutter portion 238 and define one or more fluid obstructing members 240. Generally, the fluid obstructing members 240 may be configured such that when shutter 134 is appropriately seated in the annular recess 226, the fluid obstructing members 240 extend over the upper surface 222 such that they substantially limit or otherwise prevent fluid flow into one or more of the fluid passage openings 206, while fluid to the remaining fluid passage openings 206 is permitted. As shown, a single fluid obstructing member 240 may be formed as a radially extended portion, which extends beyond the periphery of the lower shutter portion 238. The fluid obstructing member 240 may extend circumferentially about the upper shutter portion 236 for approximately one-third of the upper shutter portion 236. Alternatively, any number of fluid obstructing members 240 extending circumferentially for any desired portion of the shutter 134 may be employed. In further alternatives, the fluid obstructing members 240 may be shaped in any manner suitable for selectively restricting flow into one or more of the fluid passage openings 206. In further alternatives, the fluid obstructing members 240 may include one or more openings through their thickness for allowing fluid to pass therethrough.


The lower shutter portion 238 may be sized and shaped to be rotatably accommodated in the recess 226 of the lower housing portion 106. For example, as shown in FIG. 31, the lower shutter portion 238 may be formed as an annular and planar body having engagement features 174 provided on a periphery surface thereof. The engagement features 174 may, for example, be formed as gear teeth that are complementary to the engagement features 176 of the lower housing portion 106. As with previous embodiments, the number of engagement features 176 of the lower housing 106 may be more than the number of engagement features 174 of the shutter 134. The lower shutter portion 238 may further include an inner sidewall 241 that defines an annular recess 243. The annular recess 243 may be sized and shaped to be received by the pin receiving member 227 such that the shutter 134 is free to eccentrically rotate relative to the lower housing portion 106. In this regard, the annular recess 243 may have a diameter that is larger than an outer diameter of the pin receiving member 227 to accommodate eccentric movement of the shutter 134. In one embodiment, the lower shutter portion 238 may be vertically dimensioned such that when seated in the recess 226 of the lower housing 106, a top surface 239 of the lower shutter portion 238 and a bottom surface 246 of the of the upper shutter portion 236 lie in a plane substantially corresponding to the upper surface 222 of the lower housing portion 106.


In operation of the present embodiment, the flow of water through the fluid passage openings 206 may be interrupted as the obstructing member 240 passes over the fluid passage openings 206. In contrast with previous embodiments, flow of water to the fluid passage openings 206 is not achieved through defined openings in the shutter 234, but rather is achieved because the obstructing member 240 of the upper shutter portion 236 does not extend completely around the periphery of the lower shutter potion 238. When the obstructing member 240 is not over a fluid passage opening 206, water flows through the associated fluid passage 204 and exits the showerhead through the outlet 110 associated with the fluid passage 204. When a fluid passage opening 206 is aligned with the obstructing member 240, water flow ceases through the outlet 110 in fluid communication with the fluid passage opening 206. Thus, as the shutter 134 rotates, water flow through the outlets 110 may be interrupted in a sequence. This may, for example, produce a relatively low-speed, periodic interruption of water flow through each outlet 110.


As previously described above with respect to showerheads 100, 200, selective engagement of the shutter engagement features 174 with the housing engagement features 176 causes the shutter 134 to rotate at a slower speed than the turbine 132. As the shutter 134 rotates inside the lower housing 106, the obstructing member 240 may pass over one or more fluid passage openings 206 in the lower housing 106. This may permit water to temporarily flow through the unobstructed fluid passage openings 206. Thus, as the shutter 134 rotates, water flow through the outlets or nozzles 110 is periodically interrupted as the obstructing member 240 of the shutter 134 temporarily obstructs the water flow through those outlets 110 in fluid communication with fluid passage openings 206 located under obstructing member 240. This may, for example, create a pulsating flow of water from the showerhead of the present embodiment.


All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the examples of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined and the like) are to be construed broadly and may include intermediate members between the connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.


In some instances, components are described by reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the present invention is not limited to components which terminate immediately beyond their point of connection with other parts. Thus the term “end” should be broadly interpreted, in a manner that includes areas adjacent rearward, forward of or otherwise near the terminus of a particular element, link, component, part, member or the like. In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation but those skilled in the art will recognize the steps and operation may be rearranged, replaced or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.

Claims
  • 1. A showerhead comprising a housing defining a chamber in fluid communication with a fluid inlet and at least one fluid outlet, the housing further defining an annular recess and having a first engagement feature formed in an interior surface of the housing;a turbine received within the chamber; anda shutter at least partially received within the annular recess of the housing, operatively associated with the turbine, and having a second engagement feature, whereinrotation of the turbine causes rotation of the shutter;engagement of the first engagement feature with the second engagement feature causes a rotation rate of the shutter that is less than a rotation rate of the turbine; andas the shutter rotates, the shutter fluidly connects and disconnects the fluid inlet and the at least one fluid outlet.
  • 2. The showerhead of claim 1, wherein the first engagement feature comprises a plurality of gear teeth.
  • 3. The showerhead of claim 1, wherein the second engagement feature comprises a plurality of gear teeth.
  • 4. The showerhead of claim 1, wherein the first engagement feature comprises a first number of gear teeth, and the second engagement feature comprises a second number of gear teeth.
  • 5. The showerhead of claim 4, wherein the first number is greater than the second number.
  • 6. The showerhead of claim 1, wherein the shutter comprises a substantially non-planar body including an upper shutter portion and a lower shutter portion, and wherein the upper shutter portion comprises one or more fluid obstructing members.
  • 7. The showerhead of claim 6, wherein the fluid obstructing members comprise radially extended members which extend arcuately about the upper shutter portion.
  • 8. The showerhead of claim 6, wherein the lower shutter portion comprises an annular member and the second engagement feature is defined in a periphery of the annular member.
  • 9. The showerhead of claim 8, wherein the annular member is received within the annular recess of the housing.
  • 10. The showerhead of claim 1, wherein the at least one fluid outlet comprises a plurality of fluid outlets, andthe plurality of fluid outlets are disposed radially outward with respect to the first engagement feature.
  • 11. The showerhead of claim 1, wherein the turbine and the shutter rotate in opposite directions.
  • 12. The showerhead of claim 1, wherein the turbine and the shutter rotate in the same direction.
  • 13. The showerhead of claim 1, wherein the rotation rate of the shutter is no greater than approximately 1/15th of the rotation rate of the turbine.
  • 14. The showerhead of claim 1, wherein the turbine includes an eccentric cam; andthe shutter includes an opening for receiving the eccentric cam.
  • 15. The showerhead of claim 1, wherein a center of the shutter moves in a substantially eccentric path around a center of the turbine.
  • 16. The showerhead of claim 1 further comprising a jet disk operatively associated with the turbine, the jet disk defining at least one passage extending therethrough, wherein the at least one passage is positioned with respect to the turbine such that a flow of fluid through the at least one passage effects rotation of the turbine.
  • 17. The showerhead of claim 1, wherein the shutter comprises an annular member seated in the annular recess of the housing and the second engagement feature includes an integer number of second features distributed around a periphery of the annular member;the first engagement feature of the housing comprises an integer number of first features incorporated within a sidewall defining the annular recess;the number of first features is different than the number of second features; androtation of the shutter selectively engages the first features with the second features.
  • 18. The showerhead of claim 17, wherein the number of second features is less than the number of first features.
  • 19. The showerhead of claim 1, wherein a portion of the shutter received within the annular recess of the housing is encompassed by the first engagement feature.
  • 20. The showerhead of claim 19, wherein the second engagement feature extends from the portion of the shutter received within the annular recess of the housing.
  • 21. The showerhead of claim 1, wherein the first engagement feature defines the annular recess within the housing.
  • 22. The showerhead of claim 1, wherein the first engagement feature is disposed radially inward with respect to the at least one fluid outlet.
  • 23. The showerhead of claim 1, wherein the interior surface forming the first engagement feature is a sidewall defining the annular recess.
  • 24. A showerhead, comprising a housing defining a chamber in fluid communication with a fluid inlet and at least one fluid outlet, the housing defining a first engagement feature disposed radially inward with respect to the at least one fluid outlet;a turbine received within the chamber;a shutter received within the chamber and operatively associated with the turbine, the shutter including a second engagement feature; whereinrotation of the turbine causes rotation of the shutter;engagement of the first engagement feature with the second engagement feature causes a rotation rate of the shutter to be less than a rotation rate of the turbine; andas the shutter rotates, the shutter fluidly connects and disconnects the fluid inlet and the at least one fluid outlet.
  • 25. The showerhead of claim 24, wherein the turbine includes a cam; andthe shutter includes an opening for receiving the cam; whereinas the turbine rotates, the cam rotates to drive rotation of the shutter.
  • 26. A showerhead, comprising a housing defining a chamber in fluid communication with a fluid inlet and at least one fluid outlet, the housing including a first engagement feature disposed radially inward with respect to the at least one fluid outlet; anda cycloidal drive comprising a turbine received within the chamber, the turbine including an eccentric cam; anda shutter received within the chamber and operatively associated with the turbine, the shutter including a second engagement feature and an opening for receiving the eccentric cam, whereinrotation of the turbine causes rotation of the shutter; andengagement of the first engagement feature with the second engagement feature causes a rotation rate of the shutter to be less than a rotation rate of the turbine.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 11/964,670 filed 26 Dec. 2007 entitled “Low speed pulsating showerhead”, which claims the benefit under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/882,441 filed on 28 Dec. 2006 entitled “Low speed pulsating showerhead,” each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (919)
Number Name Date Kind
203094 Wakeman Apr 1878 A
204333 Josias May 1878 A
309349 Hart Dec 1884 A
428023 Schoff May 1890 A
432712 Taylor Jul 1890 A
445250 Lawless Jan 1891 A
453109 Dreisorner May 1891 A
486986 Schinke Nov 1892 A
566384 Engelhart Aug 1896 A
566410 Schinke Aug 1896 A
570405 Jerguson et al. Oct 1896 A
694888 Pfluger Mar 1902 A
800802 Franquist Oct 1905 A
832523 Andersson Oct 1906 A
835678 Hammond Nov 1906 A
845540 Ferguson Feb 1907 A
854094 Klein May 1907 A
926929 Dusseau Jul 1909 A
1001842 Greenfield Aug 1911 A
1003037 Crowe Sep 1911 A
1018143 Vissering Feb 1912 A
1046573 Ellis Dec 1912 A
1130520 Kenney Mar 1915 A
1203466 Benson Oct 1916 A
1217254 Winslow Feb 1917 A
1218895 Porter Mar 1917 A
1255577 Berry Feb 1918 A
1260181 Garnero Mar 1918 A
1276117 Riebe Aug 1918 A
1284099 Harris Nov 1918 A
1327428 Gregory Jan 1920 A
1451800 Agner Apr 1923 A
1459582 Dubee Jun 1923 A
1469528 Owens Oct 1923 A
1500921 Bramson et al. Jul 1924 A
1560789 Johnson et al. Nov 1925 A
1597477 Panhorst Aug 1926 A
1633531 Keller Jun 1927 A
1692394 Sundh Nov 1928 A
1695263 Jacques Dec 1928 A
1724147 Russell Aug 1929 A
1724161 Wuesthoff Aug 1929 A
1736160 Jonsson Nov 1929 A
1754127 Srulowitz Apr 1930 A
1758115 Kelly May 1930 A
1778658 Baker Oct 1930 A
1821274 Plummer Sep 1931 A
1849517 Fraser Mar 1932 A
1890156 Konig Dec 1932 A
1906575 Goeriz May 1933 A
1934553 Mueller et al. Nov 1933 A
1946207 Haire Feb 1934 A
2011446 Judell Aug 1935 A
2024930 Judell Dec 1935 A
2033467 Groeniger Mar 1936 A
2044445 Price et al. Jun 1936 A
2085854 Hathaway et al. Jul 1937 A
2096912 Morris Oct 1937 A
2117152 Crosti May 1938 A
D113439 Reinecke Feb 1939 S
2196783 Shook Apr 1940 A
2197667 Shook Apr 1940 A
2216149 Weiss Oct 1940 A
D126433 Enthof Apr 1941 S
2251192 Krumsiek et al. Jul 1941 A
2268263 Newell et al. Dec 1941 A
2285831 Pennypacker Jun 1942 A
2342757 Roser Feb 1944 A
2402741 Draviner Jun 1946 A
D147258 Becker Aug 1947 S
D152584 Becker Feb 1949 S
2467954 Becker Apr 1949 A
2546348 Schuman Mar 1951 A
2567642 Penshaw Sep 1951 A
2581129 Muldoon Jan 1952 A
D166073 Dunkelberger Mar 1952 S
2648762 Dunkelberger Aug 1953 A
2664271 Arutunoff Dec 1953 A
2671693 Hyser et al. Mar 1954 A
2676806 Bachman Apr 1954 A
2679575 Haberstump May 1954 A
2680358 Zublin Jun 1954 A
2726120 Bletcher et al. Dec 1955 A
2759765 Pawley Aug 1956 A
2776168 Schweda Jan 1957 A
2792847 Spencer May 1957 A
2873999 Webb Feb 1959 A
2930505 Meyer Mar 1960 A
2931672 Merritt et al. Apr 1960 A
2935265 Richter May 1960 A
2949242 Blumberg et al. Aug 1960 A
2957587 Tobin Oct 1960 A
2966311 Davis Dec 1960 A
D190295 Becker May 1961 S
2992437 Nelson et al. Jul 1961 A
3007648 Fraser Nov 1961 A
D192935 Becker May 1962 S
3032357 Shames et al. May 1962 A
3034809 Greenberg May 1962 A
3037799 Mulac Jun 1962 A
3081339 Green et al. Mar 1963 A
3092333 Gaiotto Jun 1963 A
3098508 Gerdes Jul 1963 A
3103723 Becker Sep 1963 A
3104815 Schultz Sep 1963 A
3104827 Aghnides Sep 1963 A
3111277 Grimsley Nov 1963 A
3112073 Larson et al. Nov 1963 A
3143857 Eaton Aug 1964 A
3196463 Farneth Jul 1965 A
3231200 Heald Jan 1966 A
3236545 Parkes et al. Feb 1966 A
3239152 Bachli et al. Mar 1966 A
3266059 Stelle Aug 1966 A
3272437 Coson Sep 1966 A
3273359 Fregeolle Sep 1966 A
3306634 Groves et al. Feb 1967 A
3323148 Burnon Jun 1967 A
3329967 Martinez et al. Jul 1967 A
3341132 Parkison Sep 1967 A
3342419 Weese Sep 1967 A
3344994 Fife Oct 1967 A
3363842 Burns Jan 1968 A
3383051 Fiorentino May 1968 A
3389925 Gottschald Jun 1968 A
3393311 Dahl Jul 1968 A
3393312 Dahl Jul 1968 A
3404410 Sumida Oct 1968 A
3492029 French et al. Jan 1970 A
3516611 Piggott Jun 1970 A
3546961 Marton Dec 1970 A
3550863 McDermott Dec 1970 A
3552436 Stewart Jan 1971 A
3565116 Gabin Feb 1971 A
3566917 White Mar 1971 A
3580513 Martin May 1971 A
3584822 Oram Jun 1971 A
3596835 Smith et al. Aug 1971 A
3612577 Pope Oct 1971 A
3637143 Shames et al. Jan 1972 A
3641333 Gendron Feb 1972 A
3647144 Parkison et al. Mar 1972 A
3663044 Contreras et al. May 1972 A
3669470 Deurloo Jun 1972 A
3672648 Price Jun 1972 A
3682392 Kint Aug 1972 A
3685745 Peschcke-koedt Aug 1972 A
D224834 Laudell Sep 1972 S
3711029 Bartlett Jan 1973 A
3722798 Bletcher et al. Mar 1973 A
3722799 Rauh Mar 1973 A
3731084 Trevorrow May 1973 A
3754779 Peress Aug 1973 A
D228622 Juhlin Oct 1973 S
3762648 Deines et al. Oct 1973 A
3768735 Ward Oct 1973 A
3786995 Manoogian et al. Jan 1974 A
3801019 Trenary et al. Apr 1974 A
3810580 Rauh May 1974 A
3826454 Zieger Jul 1974 A
3840734 Oram Oct 1974 A
3845291 Portyrata Oct 1974 A
3860271 Rodgers Jan 1975 A
3861719 Hand Jan 1975 A
3865310 Elkins et al. Feb 1975 A
3869151 Fletcher et al. Mar 1975 A
3896845 Parker Jul 1975 A
3902671 Symmons Sep 1975 A
3910277 Zimmer Oct 1975 A
D237708 Grohe Nov 1975 S
3929164 Richter Dec 1975 A
3929287 Givler et al. Dec 1975 A
3958756 Trenary et al. May 1976 A
D240322 Staub Jun 1976 S
3963179 Tomaro Jun 1976 A
3967783 Halsted et al. Jul 1976 A
3979096 Zieger Sep 1976 A
3997116 Moen Dec 1976 A
3998390 Peterson et al. Dec 1976 A
3999714 Lang Dec 1976 A
4005880 Anderson et al. Feb 1977 A
4006920 Sadler et al. Feb 1977 A
4023782 Eifer May 1977 A
4042984 Butler Aug 1977 A
4045054 Arnold Aug 1977 A
D245858 Grube Sep 1977 S
D245860 Grube Sep 1977 S
4068801 Leutheuser Jan 1978 A
4081135 Tomaro Mar 1978 A
4084271 Ginsberg Apr 1978 A
4091998 Peterson May 1978 A
D249356 Nagy Sep 1978 S
4117979 Lagarelli et al. Oct 1978 A
4129257 Eggert Dec 1978 A
4130120 Kohler, Jr. Dec 1978 A
4131233 Koenig Dec 1978 A
4133486 Fanella Jan 1979 A
4135549 Baker Jan 1979 A
D251045 Grube Feb 1979 S
4141502 Grohe Feb 1979 A
4151955 Stouffer May 1979 A
4151957 Gecewicz et al. May 1979 A
4162801 Kresky et al. Jul 1979 A
4165837 Rundzaitis Aug 1979 A
4167196 Morris Sep 1979 A
4174822 Larsson Nov 1979 A
4185781 O'Brien Jan 1980 A
4190207 Fienhold et al. Feb 1980 A
4191332 De Langis et al. Mar 1980 A
4203550 On May 1980 A
4209132 Kwan Jun 1980 A
D255626 Grube Jul 1980 S
4219160 Allred, Jr. Aug 1980 A
4221338 Shames et al. Sep 1980 A
4239409 Osrow Dec 1980 A
4243253 Rogers, Jr. Jan 1981 A
4244526 Arth Jan 1981 A
D258677 Larsson Mar 1981 S
4254914 Shames et al. Mar 1981 A
4258414 Sokol Mar 1981 A
4272022 Evans Jun 1981 A
4274400 Baus Jun 1981 A
4282612 King Aug 1981 A
D261300 Klose Oct 1981 S
D261417 Klose Oct 1981 S
4303201 Elkins et al. Dec 1981 A
4319608 Raikov et al. Mar 1982 A
4330089 Finkbeiner May 1982 A
D266212 Haug et al. Sep 1982 S
4350298 Tada Sep 1982 A
4353508 Butterfield et al. Oct 1982 A
4358056 Greenhut et al. Nov 1982 A
D267582 Mackay et al. Jan 1983 S
D268359 Klose Mar 1983 S
D268442 Darmon Mar 1983 S
D268611 Klose Apr 1983 S
4383554 Merriman May 1983 A
4396797 Sakuragi et al. Aug 1983 A
4398669 Fienhold Aug 1983 A
4425965 Bayh, III et al. Jan 1984 A
4432392 Paley Feb 1984 A
D274457 Haug Jun 1984 S
4461052 Mostul Jul 1984 A
4465308 Martini Aug 1984 A
4467964 Kaeser Aug 1984 A
4495550 Visciano Jan 1985 A
4527745 Butterfield et al. Jul 1985 A
4540202 Amphoux et al. Sep 1985 A
4545081 Nestor et al. Oct 1985 A
4553775 Halling Nov 1985 A
D281820 Oba et al. Dec 1985 S
4561593 Cammack et al. Dec 1985 A
4564889 Bolson Jan 1986 A
4571003 Roling et al. Feb 1986 A
4572232 Gruber Feb 1986 A
D283645 Tanaka Apr 1986 S
4587991 Chorkey May 1986 A
4588130 Trenary et al. May 1986 A
4598866 Cammack et al. Jul 1986 A
4614303 Moseley, Jr. et al. Sep 1986 A
4616298 Bolson Oct 1986 A
4618100 White et al. Oct 1986 A
4629124 Gruber Dec 1986 A
4629125 Liu Dec 1986 A
4643463 Halling et al. Feb 1987 A
4645244 Curtis Feb 1987 A
RE32386 Hunter Mar 1987 E
4650120 Kress Mar 1987 A
4650470 Epstein Mar 1987 A
4652025 Conroy, Sr. Mar 1987 A
4654900 McGhee Apr 1987 A
4657185 Rundzaitis Apr 1987 A
4669666 Finkbeiner Jun 1987 A
4669757 Bartholomew Jun 1987 A
4674687 Smith et al. Jun 1987 A
4683917 Bartholomew Aug 1987 A
4703893 Gruber Nov 1987 A
4717180 Roman Jan 1988 A
4719654 Blessing Jan 1988 A
4733337 Bieberstein Mar 1988 A
D295437 Fabian Apr 1988 S
4739801 Kimura et al. Apr 1988 A
4749126 Kessener et al. Jun 1988 A
D296582 Haug et al. Jul 1988 S
4754928 Rogers et al. Jul 1988 A
D297160 Robbins Aug 1988 S
4764047 Johnston et al. Aug 1988 A
4778104 Fisher Oct 1988 A
4787591 Villacorta Nov 1988 A
4790294 Allred, III et al. Dec 1988 A
4801091 Sandvik Jan 1989 A
4809369 Bowden Mar 1989 A
4839599 Fischer Jun 1989 A
4841590 Terry et al. Jun 1989 A
4842059 Tomek Jun 1989 A
D302325 Charet et al. Jul 1989 S
4850616 Pava Jul 1989 A
4854499 Neuman Aug 1989 A
4856822 Parker Aug 1989 A
4865362 Holden Sep 1989 A
D303830 Ramsey et al. Oct 1989 S
4871196 Kingsford Oct 1989 A
4896658 Yonekubo et al. Jan 1990 A
D306351 Charet et al. Feb 1990 S
4901927 Valdivia Feb 1990 A
4903178 Englot et al. Feb 1990 A
4903897 Hayes Feb 1990 A
4903922 Harris, III Feb 1990 A
4907137 Schladitz et al. Mar 1990 A
4907744 Jousson Mar 1990 A
4909435 Kidouchi et al. Mar 1990 A
4914759 Goff Apr 1990 A
4946202 Perricone Aug 1990 A
4951329 Shaw Aug 1990 A
4953585 Rollini et al. Sep 1990 A
4964573 Lipski Oct 1990 A
4972048 Martin Nov 1990 A
D313267 Lenci et al. Dec 1990 S
4976460 Newcombe et al. Dec 1990 A
D314246 Bache Jan 1991 S
D315191 Mikol Mar 1991 S
4998673 Pilolla Mar 1991 A
5004158 Halem et al. Apr 1991 A
D317348 Geneve et al. Jun 1991 S
5020570 Cotter Jun 1991 A
5022103 Faist Jun 1991 A
5032015 Christianson Jul 1991 A
5033528 Volcani Jul 1991 A
5033897 Chen Jul 1991 A
D319294 Kohler, Jr. et al. Aug 1991 S
D320064 Presman Sep 1991 S
5046764 Kimura et al. Sep 1991 A
D321062 Bonbright Oct 1991 S
5058804 Yonekubo et al. Oct 1991 A
D322119 Haug et al. Dec 1991 S
D322681 Yuen Dec 1991 S
5070552 Gentry et al. Dec 1991 A
D323545 Ward Jan 1992 S
5082019 Tetrault Jan 1992 A
5086878 Swift Feb 1992 A
5090624 Rogers Feb 1992 A
5100055 Rokitenetz et al. Mar 1992 A
D325769 Haug et al. Apr 1992 S
D325770 Haug et al. Apr 1992 S
5103384 Drohan Apr 1992 A
D326311 Lenci et al. May 1992 S
D327115 Rogers Jun 1992 S
5121511 Sakamoto et al. Jun 1992 A
D327729 Rogers Jul 1992 S
5127580 Fu-I Jul 1992 A
5134251 Martin Jul 1992 A
D328944 Robbins Aug 1992 S
5141016 Nowicki Aug 1992 A
D329504 Yuen Sep 1992 S
5143300 Cutler Sep 1992 A
5145114 Monch Sep 1992 A
5148556 Bottoms et al. Sep 1992 A
D330068 Haug et al. Oct 1992 S
D330408 Thacker Oct 1992 S
D330409 Raffo Oct 1992 S
5153976 Benchaar et al. Oct 1992 A
5154355 Gonzalez Oct 1992 A
5154483 Zeller Oct 1992 A
5161567 Humpert Nov 1992 A
5163752 Copeland et al. Nov 1992 A
5171429 Yasuo Dec 1992 A
5172860 Yuch Dec 1992 A
5172862 Heimann et al. Dec 1992 A
5172866 Ward Dec 1992 A
D332303 Klose Jan 1993 S
D332994 Huen Feb 1993 S
D333339 Klose Feb 1993 S
5197767 Kimura et al. Mar 1993 A
D334794 Klose Apr 1993 S
D335171 Lenci et al. Apr 1993 S
5201468 Freier et al. Apr 1993 A
5206963 Wiens May 1993 A
5207499 Vajda et al. May 1993 A
5213267 Heimann et al. May 1993 A
5220697 Birchfield Jun 1993 A
D337839 Zeller Jul 1993 S
5228625 Grassberger Jul 1993 A
5230106 Henkin et al. Jul 1993 A
D338542 Yuen Aug 1993 S
5232162 Chih Aug 1993 A
D339492 Klose Sep 1993 S
D339627 Klose Sep 1993 S
D339848 Gottwald Sep 1993 S
5246169 Heimann et al. Sep 1993 A
5246301 Hirasawa Sep 1993 A
D340376 Klose Oct 1993 S
5253670 Perrott Oct 1993 A
5253807 Newbegin Oct 1993 A
5254809 Martin Oct 1993 A
D341007 Haug et al. Nov 1993 S
D341191 Klose Nov 1993 S
D341220 Eagan Nov 1993 S
5263646 McCauley Nov 1993 A
5265833 Heimann et al. Nov 1993 A
5268826 Greene Dec 1993 A
5276596 Krenzel Jan 1994 A
5277391 Haug et al. Jan 1994 A
5286071 Storage Feb 1994 A
5288110 Allread Feb 1994 A
5294054 Benedict et al. Mar 1994 A
5297735 Heimann et al. Mar 1994 A
5297739 Allen Mar 1994 A
D345811 Van Deursen et al. Apr 1994 S
D346426 Warshawsky Apr 1994 S
D346428 Warshawsky Apr 1994 S
D346430 Warshawsky Apr 1994 S
D347262 Black et al. May 1994 S
D347265 Gottwald May 1994 S
5316216 Cammack et al. May 1994 A
D348720 Haug et al. Jul 1994 S
5329650 Zaccai et al. Jul 1994 A
D349947 Hing-Wah Aug 1994 S
5333787 Smith et al. Aug 1994 A
5333789 Garneys Aug 1994 A
5340064 Heimann et al. Aug 1994 A
5340165 Sheppard Aug 1994 A
D350808 Warshawsky Sep 1994 S
5344080 Matsui Sep 1994 A
5349987 Shieh Sep 1994 A
5356076 Bishop Oct 1994 A
5356077 Shames Oct 1994 A
D352092 Warshawsky Nov 1994 S
D352347 Dannenberg Nov 1994 S
D352766 Hill et al. Nov 1994 S
5368235 Drozdoff et al. Nov 1994 A
5369556 Zeller Nov 1994 A
5370427 Hoelle et al. Dec 1994 A
5385500 Schmidt Jan 1995 A
D355242 Warshawsky Feb 1995 S
D355703 Duell Feb 1995 S
D356626 Wang Mar 1995 S
5397064 Heitzman Mar 1995 A
5398872 Joubran Mar 1995 A
5398977 Berger et al. Mar 1995 A
5402812 Moineau et al. Apr 1995 A
5405089 Heimann et al. Apr 1995 A
5414879 Hiraishi et al. May 1995 A
5423348 Jezek et al. Jun 1995 A
5433384 Chan et al. Jul 1995 A
D361399 Carbone et al. Aug 1995 S
D361623 Huen Aug 1995 S
5441075 Clare Aug 1995 A
5449206 Lockwood Sep 1995 A
D363360 Santarsiero Oct 1995 S
5454809 Janssen Oct 1995 A
5468057 Megerle et al. Nov 1995 A
D364935 deBlois Dec 1995 S
D365625 Bova Dec 1995 S
D365646 deBlois Dec 1995 S
5476225 Chan Dec 1995 A
D366309 Huang Jan 1996 S
D366707 Kaiser Jan 1996 S
D366708 Santarsiero Jan 1996 S
D366709 Szymanski Jan 1996 S
D366710 Szymanski Jan 1996 S
5481765 Wang Jan 1996 A
D366948 Carbone Feb 1996 S
D367315 Andrus Feb 1996 S
D367333 Swyst Feb 1996 S
D367696 Andrus Mar 1996 S
D367934 Carbone Mar 1996 S
D368146 Carbone Mar 1996 S
D368317 Swyst Mar 1996 S
5499767 Morand Mar 1996 A
D368539 Carbone et al. Apr 1996 S
D368540 Santarsiero Apr 1996 S
D368541 Kaiser et al. Apr 1996 S
D368542 deBlois et al. Apr 1996 S
D369204 Andrus Apr 1996 S
D369205 Andrus Apr 1996 S
5507436 Ruttenberg Apr 1996 A
D369873 deBlois et al. May 1996 S
D369874 Santarsiero May 1996 S
D369875 Carbone May 1996 S
D370052 Chan et al. May 1996 S
D370250 Fawcett et al. May 1996 S
D370277 Kaiser May 1996 S
D370278 Nolan May 1996 S
D370279 deBlois May 1996 S
D370280 Kaiser May 1996 S
D370281 Johnstone et al. May 1996 S
5517392 Rousso et al. May 1996 A
5521803 Eckert et al. May 1996 A
D370542 Santarsiero Jun 1996 S
D370735 deBlois Jun 1996 S
D370987 Santarsiero Jun 1996 S
D370988 Santarsiero Jun 1996 S
D371448 Santarsiero Jul 1996 S
D371618 Nolan Jul 1996 S
D371619 Szymanski Jul 1996 S
D371856 Carbone Jul 1996 S
D372318 Szymanski Jul 1996 S
D372319 Carbone Jul 1996 S
5531625 Zhong Jul 1996 A
5539624 Dougherty Jul 1996 A
D372548 Carbone Aug 1996 S
D372998 Carbone Aug 1996 S
D373210 Santarsiero Aug 1996 S
D373434 Nolan Sep 1996 S
D373435 Nolan Sep 1996 S
D373645 Johnstone et al. Sep 1996 S
D373646 Szymanski et al. Sep 1996 S
D373647 Kaiser Sep 1996 S
D373648 Kaiser Sep 1996 S
D373649 Carbone Sep 1996 S
D373651 Szymanski Sep 1996 S
D373652 Kaiser Sep 1996 S
5551637 Lo Sep 1996 A
5552973 Hsu Sep 1996 A
5558278 Gallorini Sep 1996 A
D374271 Fleischmann Oct 1996 S
D374297 Kaiser Oct 1996 S
D374298 Swyst Oct 1996 S
D374299 Carbone Oct 1996 S
D374493 Szymanski Oct 1996 S
D374494 Santarsiero Oct 1996 S
D374732 Kaiser Oct 1996 S
D374733 Santasiero Oct 1996 S
5560548 Mueller et al. Oct 1996 A
5567115 Carbone Oct 1996 A
D375541 Michaluk Nov 1996 S
5577664 Heitzman Nov 1996 A
D376217 Kaiser Dec 1996 S
D376860 Santarsiero Dec 1996 S
D376861 Johnstone et al. Dec 1996 S
D376862 Carbone Dec 1996 S
5605173 Arnaud Feb 1997 A
D378401 Neufeld et al. Mar 1997 S
5613638 Blessing Mar 1997 A
5613639 Storm et al. Mar 1997 A
5615837 Roman Apr 1997 A
5624074 Parisi Apr 1997 A
5624498 Lee et al. Apr 1997 A
D379212 Chan May 1997 S
D379404 Spelts May 1997 S
5632049 Chen May 1997 A
D381405 Waidele et al. Jul 1997 S
D381737 Chan Jul 1997 S
D382936 Shfaram Aug 1997 S
5653260 Huber Aug 1997 A
5667146 Pimentel et al. Sep 1997 A
D385332 Andrus Oct 1997 S
D385333 Caroen et al. Oct 1997 S
D385334 Caroen et al. Oct 1997 S
D385616 Dow et al. Oct 1997 S
D385947 Dow et al. Nov 1997 S
D387230 von Buelow et al. Dec 1997 S
5697557 Blessing et al. Dec 1997 A
5699964 Bergmann et al. Dec 1997 A
5702057 Huber Dec 1997 A
D389558 Andrus Jan 1998 S
5704080 Kuhne Jan 1998 A
5707011 Bosio Jan 1998 A
5718380 Schorn et al. Feb 1998 A
D392369 Chan Mar 1998 S
5730361 Thonnes Mar 1998 A
5730362 Cordes Mar 1998 A
5730363 Kress Mar 1998 A
5742961 Casperson et al. Apr 1998 A
D394490 Andrus et al. May 1998 S
5746375 Guo May 1998 A
5749552 Fan May 1998 A
5749602 Delaney et al. May 1998 A
D394899 Caroen et al. Jun 1998 S
D395074 Neibrook Jun 1998 S
D395075 Kolada Jun 1998 S
D395142 Neibrook Jun 1998 S
5764760 Grandbert et al. Jun 1998 A
5765760 Kuo Jun 1998 A
5769802 Wang Jun 1998 A
5772120 Huber Jun 1998 A
5778939 Hok-Yin Jul 1998 A
5788157 Kress Aug 1998 A
D398370 Purdy Sep 1998 S
5806771 Loschelder et al. Sep 1998 A
5819791 Chronister et al. Oct 1998 A
5820574 Henkin et al. Oct 1998 A
5823431 Pierce Oct 1998 A
5823442 Guo Oct 1998 A
5826803 Cooper Oct 1998 A
5833138 Crane et al. Nov 1998 A
5839666 Heimann et al. Nov 1998 A
D402350 Andrus Dec 1998 S
D403754 Gottwald Jan 1999 S
D404116 Bosio Jan 1999 S
5855348 Fornara Jan 1999 A
5860599 Lin Jan 1999 A
5862543 Reynoso et al. Jan 1999 A
5862985 Neibrook et al. Jan 1999 A
D405502 Tse Feb 1999 S
5865375 Hsu Feb 1999 A
5865378 Hollinshead et al. Feb 1999 A
5873647 Kurtz et al. Feb 1999 A
D408893 Tse Apr 1999 S
D409276 Ratzlaff May 1999 S
D410276 Ben-Tsur May 1999 S
5918809 Simmons Jul 1999 A
5918811 Denham et al. Jul 1999 A
D413157 Ratzlaff Aug 1999 S
5937905 Santos Aug 1999 A
5938123 Heitzman Aug 1999 A
5941462 Sandor Aug 1999 A
5947388 Woodruff Sep 1999 A
D415247 Haverstraw et al. Oct 1999 S
5961046 Joubran Oct 1999 A
5967417 Mantel Oct 1999 A
5979776 Williams Nov 1999 A
5992762 Wang Nov 1999 A
D418200 Ben-Tsur Dec 1999 S
5997047 Pimentel et al. Dec 1999 A
6003165 Loyd Dec 1999 A
D418902 Haverstraw et al. Jan 2000 S
D418903 Haverstraw et al. Jan 2000 S
D418904 Milrud Jan 2000 S
D421099 Mullenmeister Feb 2000 S
6021960 Kehat Feb 2000 A
D422053 Brenner et al. Mar 2000 S
6042027 Sandvik Mar 2000 A
6042155 Lockwood Mar 2000 A
D422336 Haverstraw et al. Apr 2000 S
D422337 Chan Apr 2000 S
D423083 Haug et al. Apr 2000 S
D423110 Cipkowski Apr 2000 S
D424160 Haug et al. May 2000 S
D424161 Haug et al. May 2000 S
D424162 Haug et al. May 2000 S
D424163 Haug et al. May 2000 S
D426290 Haug et al. Jun 2000 S
D427661 Haverstraw et al. Jul 2000 S
D428110 Haug et al. Jul 2000 S
D428125 Chan Jul 2000 S
6085780 Morris Jul 2000 A
D430267 Milrud et al. Aug 2000 S
6095801 Spiewak Aug 2000 A
D430643 Tse Sep 2000 S
6113002 Finkbeiner Sep 2000 A
6123272 Havican et al. Sep 2000 A
6123308 Faisst Sep 2000 A
D432624 Chan Oct 2000 S
D432625 Chan Oct 2000 S
D433096 Tse Oct 2000 S
D433097 Tse Oct 2000 S
6126091 Heitzman Oct 2000 A
6126290 Veigel Oct 2000 A
D434109 Ko Nov 2000 S
6164569 Hollinshead et al. Dec 2000 A
6164570 Smeltzer Dec 2000 A
D435889 Ben-Tsur et al. Jan 2001 S
D439305 Slothower Mar 2001 S
6199580 Morris Mar 2001 B1
6202679 Titus Mar 2001 B1
D440276 Slothower Apr 2001 S
D440277 Slothower Apr 2001 S
D440278 Slothower Apr 2001 S
D441059 Fleischmann Apr 2001 S
6209799 Finkbeiner Apr 2001 B1
D443025 Kollmann et al. May 2001 S
D443026 Kollmann et al. May 2001 S
D443027 Kollmann et al. May 2001 S
D443029 Kollmann et al. May 2001 S
6223998 Heitzman May 2001 B1
6230984 Jager May 2001 B1
6230988 Chao et al. May 2001 B1
6230989 Haverstraw et al. May 2001 B1
D443335 Andrus Jun 2001 S
D443336 Kollmann et al. Jun 2001 S
D443347 Gottwald Jun 2001 S
6241166 Overington et al. Jun 2001 B1
6250572 Chen Jun 2001 B1
D444865 Gottwald Jul 2001 S
D445871 Fan Jul 2001 S
6254014 Clearman et al. Jul 2001 B1
6270278 Mauro Aug 2001 B1
6276004 Bertrand et al. Aug 2001 B1
6283447 Fleet Sep 2001 B1
6286764 Garvey et al. Sep 2001 B1
D449673 Kollmann et al. Oct 2001 S
D450370 Wales et al. Nov 2001 S
D450805 Lindholm et al. Nov 2001 S
D450806 Lindholm et al. Nov 2001 S
D450807 Lindholm et al. Nov 2001 S
D451169 Lindholm et al. Nov 2001 S
D451170 Lindholm et al. Nov 2001 S
D451171 Lindholm et al. Nov 2001 S
D451172 Lindholm et al. Nov 2001 S
6321777 Wu Nov 2001 B1
6322006 Guo Nov 2001 B1
D451583 Lindholm et al. Dec 2001 S
D451980 Lindholm et al. Dec 2001 S
D452553 Lindholm et al. Dec 2001 S
D452725 Lindholm et al. Jan 2002 S
D452897 Gillette et al. Jan 2002 S
6336764 Liu Jan 2002 B1
6338170 De Simone Jan 2002 B1
D453369 Lobermeier Feb 2002 S
D453370 Lindholm et al. Feb 2002 S
D453551 Lindholm et al. Feb 2002 S
6349735 Gul Feb 2002 B2
D454617 Curbbun et al. Mar 2002 S
D454938 Lord Mar 2002 S
6375342 Koren et al. Apr 2002 B1
D457937 Lindholm et al. May 2002 S
6382531 Tracy May 2002 B1
D458348 Mullenmeister Jun 2002 S
6412711 Fan Jul 2002 B1
D461224 Lobermeier Aug 2002 S
D461878 Green et al. Aug 2002 S
6450425 Chen Sep 2002 B1
6454186 Haverstraw et al. Sep 2002 B2
6463658 Larsson Oct 2002 B1
6464265 Mikol Oct 2002 B1
D465552 Tse Nov 2002 S
D465553 Singtoroj Nov 2002 S
6484952 Koren Nov 2002 B2
D468800 Tse Jan 2003 S
D469165 Lim Jan 2003 S
6502796 Wales Jan 2003 B1
6508415 Wang Jan 2003 B2
6511001 Huang Jan 2003 B1
D470219 Schweitzer Feb 2003 S
6516070 Macey Feb 2003 B2
D471253 Tse Mar 2003 S
D471953 Colligan et al. Mar 2003 S
6533194 Marsh et al. Mar 2003 B2
6537455 Farley Mar 2003 B2
D472958 Ouyoung Apr 2003 S
6550697 Lai Apr 2003 B2
6585174 Huang Jul 2003 B1
6595439 Chen Jul 2003 B1
6607148 Marsh et al. Aug 2003 B1
6611971 Antoniello et al. Sep 2003 B1
6637676 Zieger et al. Oct 2003 B2
6641057 Thomas et al. Nov 2003 B2
D483837 Fan Dec 2003 S
6659117 Gilmore Dec 2003 B2
6659372 Marsh et al. Dec 2003 B2
D485887 Luettgen et al. Jan 2004 S
D486888 Lobermeier Feb 2004 S
6691338 Zieger Feb 2004 B2
6691933 Bosio Feb 2004 B1
D487301 Haug et al. Mar 2004 S
D487498 Blomstrom Mar 2004 S
6701953 Agosta Mar 2004 B2
6715699 Greenberg et al. Apr 2004 B1
6719218 Cool et al. Apr 2004 B2
D489798 Hunt May 2004 S
D490498 Golichowski May 2004 S
6736336 Wong May 2004 B2
6739523 Haverstraw et al. May 2004 B2
6739527 Chung May 2004 B1
D492004 Haug et al. Jun 2004 S
D492007 Kollmann et al. Jun 2004 S
6742725 Fan Jun 2004 B1
D493208 Lin Jul 2004 S
D493864 Haug et al. Aug 2004 S
D494655 Lin Aug 2004 S
D494661 Zieger et al. Aug 2004 S
D495027 Mazzola Aug 2004 S
6776357 Naito Aug 2004 B1
6789751 Fan Sep 2004 B1
D496987 Glunk Oct 2004 S
D497974 Haug et al. Nov 2004 S
D498514 Haug et al. Nov 2004 S
D500121 Blomstrom Dec 2004 S
D500549 Blomstrom Jan 2005 S
D501242 Blomstrom Jan 2005 S
D502760 Zieger et al. Mar 2005 S
D502761 Zieger et al. Mar 2005 S
D503211 Lin Mar 2005 S
6863227 Wollenberg et al. Mar 2005 B2
6869030 Blessing et al. Mar 2005 B2
D503774 Zieger Apr 2005 S
D503775 Zieger Apr 2005 S
D503966 Zieger Apr 2005 S
6899292 Titinet May 2005 B2
D506243 Wu Jun 2005 S
D507037 Wu Jul 2005 S
6935581 Titinet Aug 2005 B2
D509280 Bailey et al. Sep 2005 S
D509563 Bailey et al. Sep 2005 S
D510123 Tsai Sep 2005 S
D511809 Haug et al. Nov 2005 S
D512119 Haug et al. Nov 2005 S
6981661 Chen Jan 2006 B1
D516169 Wu Feb 2006 S
7000854 Malek et al. Feb 2006 B2
7004409 Okubo Feb 2006 B2
7004410 Li Feb 2006 B2
D520109 Wu May 2006 S
7040554 Drennow May 2006 B2
7048210 Clark May 2006 B2
7055767 Ko Jun 2006 B1
7070125 Williams et al. Jul 2006 B2
7077342 Lee Jul 2006 B2
D527440 Macan Aug 2006 S
7093780 Chung Aug 2006 B1
7097122 Farley Aug 2006 B1
D528631 Gillette et al. Sep 2006 S
7100845 Hsieh Sep 2006 B1
7111795 Thong Sep 2006 B2
7111798 Thomas et al. Sep 2006 B2
D530389 Genslak et al. Oct 2006 S
D530392 Tse Oct 2006 S
D531259 Hsieh Oct 2006 S
7114666 Luettgen et al. Oct 2006 B2
D533253 Luettgen et al. Dec 2006 S
D534239 Dingler et al. Dec 2006 S
D535354 Wu Jan 2007 S
D536060 Sadler Jan 2007 S
7156325 Chen Jan 2007 B1
D538391 Mazzola Mar 2007 S
D540424 Kirar Apr 2007 S
D540425 Endo et al. Apr 2007 S
D540426 Cropelli Apr 2007 S
D540427 Bouroullec et al. Apr 2007 S
D542391 Gilbert May 2007 S
D542393 Haug et al. May 2007 S
7229031 Schmidt Jun 2007 B2
7243863 Glunk Jul 2007 B2
7246760 Marty et al. Jul 2007 B2
D552713 Rexach Oct 2007 S
7278591 Clearman et al. Oct 2007 B2
D556295 Genord et al. Nov 2007 S
7299510 Tsai Nov 2007 B2
D557763 Schonherr et al. Dec 2007 S
D557764 Schonherr et al. Dec 2007 S
D557765 Schonherr et al. Dec 2007 S
D558301 Hoernig Dec 2007 S
7303151 Wu Dec 2007 B2
D559357 Wang et al. Jan 2008 S
D559945 Patterson et al. Jan 2008 S
D560269 Tse Jan 2008 S
D562937 Schonherr et al. Feb 2008 S
D562938 Blessing Feb 2008 S
D562941 Pan Feb 2008 S
7331536 Zhen et al. Feb 2008 B1
7347388 Chung Mar 2008 B2
D565699 Berberet Apr 2008 S
D565702 Daunter et al. Apr 2008 S
D565703 Lammel et al. Apr 2008 S
D566228 Neagoe Apr 2008 S
D566229 Rexach Apr 2008 S
D567328 Spangler et al. Apr 2008 S
7360723 Lev Apr 2008 B2
7364097 Okuma Apr 2008 B2
7374112 Bulan et al. May 2008 B1
7384007 Ho Jun 2008 B2
D577099 Leber Sep 2008 S
D577793 Leber Sep 2008 S
D580012 Quinn et al. Nov 2008 S
D580513 Quinn et al. Nov 2008 S
D581013 Citterio Nov 2008 S
D581014 Quinn et al. Nov 2008 S
7503345 Paterson et al. Mar 2009 B2
D590048 Leber et al. Apr 2009 S
7520448 Luettgen et al. Apr 2009 B2
D592276 Schoenherr et al. May 2009 S
D592278 Leber May 2009 S
7537175 Miura et al. May 2009 B2
D600777 Whitaker et al. Sep 2009 S
D603935 Leber Nov 2009 S
D605731 Leber Dec 2009 S
D606623 Whitaker et al. Dec 2009 S
D608412 Barnard et al. Jan 2010 S
D608413 Barnard et al. Jan 2010 S
D616061 Whitaker et al. May 2010 S
D621904 Yoo et al. Aug 2010 S
D621905 Yoo et al. Aug 2010 S
7832662 Gallo Nov 2010 B2
D628676 Lee Dec 2010 S
D629867 Rexach et al. Dec 2010 S
8366024 Leber Feb 2013 B2
20020109023 Thomas et al. Aug 2002 A1
20030062426 Gregory et al. Apr 2003 A1
20030121993 Haverstraw et al. Jul 2003 A1
20040074993 Thomas et al. Apr 2004 A1
20040118949 Marks Jun 2004 A1
20040217209 Bui Nov 2004 A1
20040244105 Tsai Dec 2004 A1
20050001072 Bolus et al. Jan 2005 A1
20050283904 Macan et al. Dec 2005 A1
20050284967 Korb Dec 2005 A1
20060016908 Chung Jan 2006 A1
20060016913 Lo Jan 2006 A1
20060043214 Macan et al. Mar 2006 A1
20060060678 Mazzola Mar 2006 A1
20060102747 Ho May 2006 A1
20060157590 Clearman et al. Jul 2006 A1
20060163391 Schorn Jul 2006 A1
20060219822 Miller et al. Oct 2006 A1
20060283986 Chung Dec 2006 A1
20070040054 Farzan Feb 2007 A1
20070200013 Hsiao Aug 2007 A1
20070246577 Leber Oct 2007 A1
20070252021 Cristina Nov 2007 A1
20070272770 Leber et al. Nov 2007 A1
20080073449 Haynes et al. Mar 2008 A1
20080083844 Leber et al. Apr 2008 A1
20080111004 Huffman May 2008 A1
20080121293 Leber et al. May 2008 A1
20080156897 Leber Jul 2008 A1
20080156902 Luettgen et al. Jul 2008 A1
20080156903 Leber Jul 2008 A1
20080223957 Schorn Sep 2008 A1
20080272203 Leber Nov 2008 A1
20080272591 Leber Nov 2008 A1
20090200404 Cristina Aug 2009 A1
20090218420 Mazzola Sep 2009 A1
20090307836 Blattner et al. Dec 2009 A1
20100065665 Whitaker Mar 2010 A1
20100320290 Luettgen et al. Dec 2010 A1
20110000982 Luettgen et al. Jan 2011 A1
20110000983 Chang Jan 2011 A1
20110011953 Macan et al. Jan 2011 A1
Foreign Referenced Citations (67)
Number Date Country
659510 Mar 1963 CA
234284 Mar 1963 CH
352813 May 1922 DE
848627 Sep 1952 DE
854100 Oct 1952 DE
2360534 Jun 1974 DE
2806093 Aug 1979 DE
3107808 Sep 1982 DE
3246327 Jun 1984 DE
3440901 Jul 1985 DE
3706320 Mar 1988 DE
8804236 Jun 1988 DE
4034695 May 1991 DE
19608085 Sep 1996 DE
102006032017 Jan 2008 DE
0167063 Jun 1985 EP
0478999 Apr 1992 EP
0514753 Nov 1992 EP
0435030 Jul 1993 EP
0683354 Nov 1995 EP
0687851 Dec 1995 EP
0695907 Feb 1996 EP
0700729 Mar 1996 EP
0719588 Jul 1996 EP
0721082 Jul 1996 EP
0733747 Sep 1996 EP
0808661 Nov 1997 EP
0726811 Jan 1998 EP
2164642 Oct 2010 EP
2260945 Dec 2010 EP
538538 Jun 1922 FR
873808 Jul 1942 FR
1039750 Oct 1953 FR
1098836 Aug 1955 FR
2596492 Oct 1987 FR
2695452 Mar 1994 FR
3314 Jan 1914 GB
10086 Jan 1894 GB
129812 Jul 1919 GB
204600 Oct 1923 GB
634483 Mar 1950 GB
971866 Oct 1964 GB
1111126 Apr 1968 GB
2066074 Jan 1980 GB
2066704 Jul 1981 GB
2068778 Aug 1981 GB
2121319 Dec 1983 GB
2155984 Oct 1985 GB
2156932 Oct 1985 GB
2199771 Jul 1988 GB
2298595 Nov 1996 GB
2337471 Nov 1999 GB
327400 Jul 1935 IT
350359 Jul 1937 IT
563459 May 1957 IT
S63-181459 Nov 1988 JP
H2-78660 Jun 1990 JP
4062238 Feb 1992 JP
4146708 May 1992 JP
8902957 Jun 1991 NL
WO9312894 Jul 1993 WO
WO9325839 Dec 1993 WO
WO9600617 Jan 1996 WO
WO9830336 Jul 1998 WO
WO9959726 Nov 1999 WO
WO0010720 Mar 2000 WO
WO2010004593 Jan 2010 WO
Non-Patent Literature Citations (3)
Entry
Color Copy, Labeled 1A, Gemlo, available at least as early as Dec. 2, 1998.
Color Copy, Labeled 1B, Gemlo, available at least as early as Dec. 2, 1998.
Author Unknown, “Flipside: The Bolder Look of Kohler,” 1 page, at least as early as Jun. 2011.
Related Publications (1)
Number Date Country
20100127096 A1 May 2010 US
Provisional Applications (1)
Number Date Country
60882441 Dec 2006 US
Continuation in Parts (1)
Number Date Country
Parent 11964670 Dec 2007 US
Child 12695612 US