Low spin golf ball comprising a mantle having a hollow interior

Information

  • Patent Grant
  • 6120393
  • Patent Number
    6,120,393
  • Date Filed
    Thursday, February 11, 1999
    25 years ago
  • Date Issued
    Tuesday, September 19, 2000
    24 years ago
Abstract
The present invention is directed to a golf ball comprising a soft core and a hard cover such that the golf ball, when struck such as in play, exhibits a reduced spin rate. The cover may include a single cover layer or multiple cover layers. In a particularly preferred aspect, the golf ball comprises a mantle or inner layer that defines a hollow interior. The hollow mantle along with one or more resilient outer core layers constitutes the soft core. The golf ball of the present invention may also utilize an enlarged diameter which serves to further reduce spin rate. The resulting golf ball exhibits properties of reduced spin without sacrificing durability, playability and resilience.
Description

FIELD OF THE INVENTION
The present invention relates to golf balls and, more particularly, to improved golf balls having low spin rates. The improvement in the golf balls results, at least in part, from a combination of i) a soft core having a low-resilient mantle; and, ii) a hard cover made from blends of one or more specific hard, high stiffness ionomers. The soft core includes a low-resilient mantle such as that formed of conventional metallic materials that defines a hollow interior. The mantle is covered by an outer resilient layer to produce an overall soft core (i.e. Riehle compression of 75 or more). In an additional embodiment of the invention, the spin rate is further reduced by decreasing the weight of the soft core while maintaining core size, or substantially so, and by increasing the thickness of the cover. The cover may be of a single layer or a multilayer construction. The combination of a soft core comprising a non-resilient, hollow mantle and an outer, resilient core layer, and a hard cover leads to an improved golf ball having a lower than anticipated spin rate while maintaining the resilience and durability characteristics necessary for repetitive play.
BACKGROUND OF THE INVENTION
Spin rate is an important golf ball characteristic for both the skilled and unskilled golfer. High spin rates allow for the more skilled golfer, such as PGA professionals and low handicap players, to maximize control of the golf ball. This is particularly beneficial to the more skilled golfer when hitting an approach shot to a green. The ability to intentionally produce "back spin", thereby stopping the ball quickly on the green, and/or "side spin" to draw or fade the ball, substantially improves the golfer's control over the ball. Thus, the more skilled golfer generally prefers a golf ball exhibiting high spin rate properties.
However, a high spin golf ball is not desirous by all golfers, particularly high handicap players who cannot intentionally control the spin of the ball. In this regard, less skilled golfers, have, among others, two substantial obstacles to improving their game: slicing and hooking. When a club head meets a ball, an unintentional side spin is often imparted which sends the ball off its intended course. The side spin reduces one's control over the ball as well as the distance the ball will travel. As a result, unwanted strokes are added to the game.
Consequently, while the more skilled golfer desires a high spin golf ball, a more efficient ball for the less skilled player is a golf ball that exhibits low spin properties. The low spin ball reduces slicing and hooking and enhances roll distance for the amateur golfer.
The present inventors have addressed the need for developing a golf ball having a reduced spin rate after club impact, while at the same time maintaining durability, playability and resiliency characteristics needed for repeated use. The reduced spin rate golf ball of the present invention meets the rules and regulations established by the United States Golf Association (U.S.G.A.).
Along these lines, the U.S.G.A. has set forth five (5) specific regulations to which a golf ball must conform. The U.S.G.A. rules require that a ball be no smaller than 1.680 inches in diameter. However, notwithstanding this restriction, there is no specific limitation as to the maximum permissible diameter of a golf ball. As a result, a golf ball can be as large as desired so long as it is larger than 1.680 inches in diameter and so long as the other four (4) specific regulations are met.
The U.S.G.A. rules also require that balls weigh no more than 1.620 ounces, and that their initial velocity may not exceed 250 feet per second with a maximum tolerance of 2%, or up to 255 ft./sec. Further, the U.S.G.A. rules state that a ball may not travel a distance greater than 280 yards with a test tolerance of 6% when hit by the U.S.G.A. outdoor driving machine under specific conditions.
It has been determined by the present inventors that the combination of a core comprising a hollow, non-resilient mantle, such as a hollow sphere formed of conventional metallic materials, covered by a soft, resilient outer core layer to produce an overall soft core (i.e. overall Riehle compression of about 75 to 160) and a hard cover (i.e. Shore D hardness of 65 or more) significantly reduces the overall spin rate of the resulting two piece golf ball. The inventors have also learned that an increase in cover thickness, and/or an increase in the overall diameter of the resulting molded golf ball, further reduces spin rate.
Top-grade golf balls sold in the United States may be generally classified as one of two types: two-piece or three-piece balls. The two-piece ball, exemplified by the balls sold by Spalding Sports Worldwide, Inc., under the trademark TOP-FLITE, consists of a solid polymeric core and a separately formed outer cover. The so-called three-piece balls, exemplified by the balls sold under the trademark TITLEIST by the Acushnet Company, consist of a liquid (e.g., TITLEIST TOUR 384) or solid (e.g., TITLEIST DT) center, elastomeric thread windings about the center, and a cover.
Spalding's two-piece golf balls are produced by molding a natural (balata) or synthetic (i.e. thermoplastic resin such as an ionomer resin) polymeric cover composition around a preformed polybutadiene (rubber) core. During the molding process, the desired dimple pattern is molded into the cover material. In order to reduce the number of coating steps involved in the finishing of the golf balls, a color pigment or dye and, in many instances, an optical brightener, are added directly to the generally "off white" colored polymeric cover composition prior to molding. By incorporating the pigment and/or optical brightener in the cover composition molded onto the golf ball core, this process eliminates the need for a supplemental pigmented painting step in order to produce a white or colored (notably orange, pink and yellow) golf ball.
With respect to multi-layered golf balls, Spalding is the leading manufacturer of two-piece golf balls in the world. Spalding manufactures over sixty (60) different types of two-piece balls which vary distinctly in such properties as playability (i.e. spin rate, compression, feel, etc.), travel distance (initial velocity, C.O.R., etc.), durability (impact, cut and weather resistance) and appearance (i.e. whiteness, reflectance, yellowness, etc.) depending upon the ball's core, cover and coating materials, as well as the ball's surface configuration (i.e. dimple pattern). Consequently, Spalding's two-piece golf balls offer both the amateur and professional golfer a variety of performance characteristics to suit an individual's game.
In regard to the specific components of a golf ball, although the nature of the cover can, in certain instances, make a significant contribution to the overall feel, spin (control), coefficient of restitution (C.O.R.) and initial velocity of a ball (see, for example, U.S. Pat. No. 3,819,768 to Molitor), the initial velocity of two-piece and three-piece balls is determined mainly by the coefficient of restitution of the core. The coefficient of restitution of the core of wound (i.e. three-piece) balls can be controlled within limits by regulating the winding tension and the thread and center composition. With respect to two-piece balls, the coefficient of restitution of the core is a function of the properties of the elastomer composition from which it is made.
The cover component of a golf ball is particularly influential in affecting the compression (feel), spin rates (control), distance (C.O.R.), and durability (i.e. impact resistance, etc.) of the resulting ball. Various cover compositions have been developed by Spalding and others in order to optimize the desired properties of the resulting golf balls.
Over the last twenty (20) years, improvements in cover and core material formulations and changes in dimple patterns have more or less continually improved golf ball distance. Top-grade golf balls, however, must meet several other important design criteria. To successfully compete in today's golf ball market, a golf ball should be resistant to cutting and must be finished well; it should hold a line in putting and should have good click and feel. In addition, the ball should exhibit spin and control properties dictated by the skill and experience of the end user. The present invention is directed to improved top-grade golf balls having reduced spin rates. The improved golf balls offer the less skilled golfer better control over his or her shots and allow for greater distance.
Prior artisans have also described golf balls having one or more interior layers formed from a metal, and which feature a hollow center. Davis disclosed a golf ball comprising a spherical steel shell having a hollow air-filled center in U.S. Pat. No. 697,816. Kempshall received numerous patents directed to golf balls having metal inner layers and hollow interiors, such as U.S. Pat. Nos. 704,748; 704,838; 713,772; and 739,753. In U.S. Pat. Nos. 1,182,604 and 1,182,605, Wadsworth described golf balls utilizing concentric spherical shells formed from tempered steel. U.S. Pat. No. 1,568,514 to Lewis describes several embodiments for a golf ball, one of which utilizes multiple steel shells disposed within the ball, and which provide a hollow center for the ball.
Although satisfactory in at least some respects, all of the foregoing ball constructions are deficient, particularly when considered in view of the stringent demands of the current golf industry. As will be appreciated, the golf balls disclosed by Davis and Kempshall, all patented in 1902 or 1903, would be entirely unacceptable for the golf industry at present. Similarly, the ball configurations described by Wadsworth and Lewis in the above-noted patents, issued in 1916 and 1926 respectively, would not meet the demands of today's golf industry.
In an alternative embodiment of the present invention, the spin rate of the ball is further reduced by increasing the thickness of the cover and/or decreasing the weight and softness of the core. By increasing the cover thickness and/or the overall diameter of the resulting molded golf ball, enhanced reduction in spin rate is observed.
With respect to the increased size of the ball, over the years golf ball manufacturers have generally produced golf balls at or around the minimum size and maximum weight specifications set forth by the U.S.G.A. There have, however, been exceptions, particularly in connection with the manufacture of golf balls for teaching aids. For example, oversized, overweight (and thus unauthorized) golf balls have been on sale for use as golf teaching aids (see U.S. Pat. No. 3,201,384 to Barber). Oversized golf balls are also disclosed in New Zealand Patent No. 192,618 dated Jan. 1, 1980, issued to a predecessor of the present assignee. This patent teaches an oversize golf ball having a diameter between 1.700 and 1.730 inches and an oversized core of resilient material (i.e. about 1.585 to 1.595 inches in diameter) so as to increase the coefficient of restitution. Additionally, the patent discloses that the ball should include a cover having a thickness less than the cover thickness of conventional balls (i.e. a cover thickness of about 0.050 inches as opposed to 0.090 inches for conventional two-piece balls). In addition, it is also noted that golf balls made by Spalding in 1915 were of a diameter ranging from 1.630 inches to 1.710 inches. As the diameter of the ball increased, the weight of the ball also increased. These balls were comprised of covers made up of balata/gutta percha and cores made from solid rubber or liquid sacs and wound with elastic thread.
Golf balls known as the LYNX JUMBO were also commercially available by Lynx in October, 1979. These balls had a diameter of 1.76 to 1.80 inches. The LYNX JUMBO golf balls met with little or no commercial success. These balls consisted of a wound core and a cover comprised of natural or synthetic balata.
However, notwithstanding the enhanced diameters of these golf balls, none of these balls produced the enhanced spin reduction characteristics and overall playability, distance and durability properties of the present invention and/or fall within the regulations set forth by the U.S.G.A. An object of the present invention is to produce a U.S.G.A. regulation golf ball having improved low spin properties while maintaining the resilience and durability characteristics necessary for repetitive play.
These and other objects and features of the invention will be apparent from the following summary and description of the invention and from the claims.
SUMMARY OF THE INVENTION
The present invention is directed to improved golf balls having a low rate of spin upon club impact. The golf balls comprise a relatively soft, multi-piece core and a hard cover. The core comprises a hard, non-resilient, hollow mantle and a soft, resilient outer core layer. The hard cover may be sized to be larger than conventional diameters. The low spin rate enables the ball to travel a greater distance. In addition, the low spin rate provides the less skilled golfer with more control. This is because the low spin rate decreases undesirable side spin which leads to slicing and hooking. The combination of a hard cover and a soft core provides for a ball having a lower than anticipated spin rate while maintaining high resilience and good durability.
More particularly, the present invention provides a golf ball comprising a core having a non-resilient mantle which provides a hollow interior region and a soft, resilient outer core layer. Overall, the core is relatively soft, exhibiting a Riehle compression of at least about 75. The golf ball further comprises a cover disposed about the core, and which comprises either or both of a high acid ionomer or a certain alpha olefin neutralized, at least partially, with a metal cation.
In another aspect, the present invention provides a golf ball comprising a core that includes i) a non-resilient mantle which defines a hollow interior; and, ii) a soft outer core layer. The overall core is relatively soft, exhibiting a Riehle compression of at least about 75. The golf ball further comprises a relatively hard cover disposed about the core, the cover exhibiting a Shore D hardness of at least about 65. Preferably, the cover comprises a high acid ionomer.
In yet another aspect, the present invention provides a golf ball comprising a hollow core, a cover disposed about the core, and a hollow spherical substrate positioned either between the core and cover, or within the interior of the hollow core. The core includes a mantle formed of conventional metallic materials such as steels and non-ferrous alloys that defines the hollow interior. The core exhibits a Riehle compression of between 75 to 115. The cover is relatively hard, having a Shore D hardness of at least about 65 and comprises a high acid ionomer.
In all of the noted aspects, the golf balls of the present invention may utilize a single layer cover or a multilayer cover.
Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. It should, however, be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a partial cross-sectional view of a first preferred embodiment golf ball in accordance with the present invention, comprising one or more non-resilient mantle layers, one or more resilient outer core layers; and one or more polymeric outer cover layers.
FIG. 2 is a partial cross-sectional view of a second preferred embodiment golf ball in accordance with the present invention, the golf ball comprising a polymeric outer cover, one or more non-resilient outer core layers, one or more metal mantle layers, and one or more inner mantle layers.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention relates to the development of a golf ball having a low spin rate as a result of combining a relatively soft core and a hard cover. Such a lower spin rate after club impact contributes to straighter shots when the ball is mis-hit, greater efficiency in flight, and a lesser degree of energy loss on impact with the ground, adding increased roll or distance.
In a further embodiment, by increasing the diameter of the overall ball of the present invention beyond the U.S.G.A. minimum of 1.680 inches, the spin rate is still further decreased. In this embodiment of the invention, the ball, even though of larger diameter, uses substantially the same size core as a standard golf ball, the difference in size is provided by the additional thickness in the cover of the ball. This larger, low spin ball produces even greater control and flight efficiency than the standard size ball embodiment of the present invention.
The present invention also relates to golf balls comprising one or more non-resilient mantle layers, and particularly, golf balls comprising such mantles and that feature a hollow interior. The present invention also relates to methods for making such golf balls.
FIG. 1 illustrates a preferred embodiment golf ball 100 in accordance with the present invention. It will be understood that the referenced drawings are not necessarily to scale. The preferred embodiment golf ball 100 comprises an outermost polymeric outer cover 10, one or more non-resilient outer core layers 20, and an innermost non-resilient hollow sphere 30. The golf ball 100 provides a plurality of dimples 104 defined along an outer surface 102 of the golf ball 100.
FIG. 2 illustrates a second preferred embodiment golf ball 200 in accordance with the present invention. The golf ball 200 comprises an outermost polymeric outer cover 10, one or more non-resilient outer core layers 20, one or more metal mantle layers 30, and one or more inner mantle layers 40. The second preferred embodiment golf ball 200 provides a plurality of dimples 204 defined along the outer surface 202 of the ball.
In all the foregoing noted preferred embodiments, i.e. golf balls 100 and 200, the golf balls do not utilize a solid core or solid core component. Instead, all preferred embodiment golf balls feature a hollow interior or hollow core. As described in greater detail below, the interior of the present invention golf balls may include one or more gases, preferably at a pressure greater than 1 atmosphere. In addition, all preferred embodiment golf balls comprise one or more metal mantle layers. Details of the materials, configuration, and construction of each component in the preferred embodiment golf balls are set forth below.
Various physical properties are referred to herein. These are measured as follows.
As is apparent from the above discussions, two principal properties involved in golf ball performance are resilience and PGA compression. The resilience or coefficient of restitution (COR) of a golf ball is the constant "e," which is the ratio of the relative velocity of an elastic sphere after direct impact to that before impact. As a result, the COR ("e") can vary from 0 to 1, with 1 being equivalent to a perfectly or completely elastic collision and 0 being equivalent to a perfectly or completely inelastic collision.
COR, along with additional factors such as club head speed, club head mass, ball weight, ball size and density, spin rate, angle of trajectory and surface configuration (i.e., dimple pattern and area of dimple coverage) as well as environmental conditions (e.g. temperature, moisture, atmospheric pressure, wind, etc.) generally determine the distance a ball will travel when hit. Along this line, the distance a golf ball will travel under controlled environmental conditions is a function of the speed and mass of the club and size, density and resilience (COR) of the ball and other factors. The initial velocity of the club, the mass of the club and the angle of the ball's departure are essentially provided by the golfer upon striking. Since club head, club head mass, the angle of trajectory and environmental conditions are not determinants controllable by golf ball producers and the ball size and weight are set by the U.S.G.A., these are not factors of concern among golf ball manufacturers. The factors or determinants of interest with respect to improved distance are generally the coefficient of restitution (COR) and the surface configuration (dimple pattern, ratio of land area to dimple area, etc.) of the ball.
The COR of solid core balls is a function of the composition of the core and of the cover. The core and/or cover may be comprised of one or more layers such as in multi-layered balls. In balls containing a wound core (i.e., balls comprising a liquid or solid center, elastic windings, and a cover), the coefficient of restitution is a function of not only the composition of the center and cover, but also the composition and tension of the elastomeric windings. As in the solid core balls, the center and cover of a wound core ball may also consist of one or more layers. The COR of the golf balls of the present invention is a function of the composition and physical properties of the core and cover layer materials such as flex modulus, hardness and particularly, their resilience, i.e. ability to quickly recover from a high impact deformation.
The coefficient of restitution is the ratio of the outgoing velocity to the incoming velocity. In the examples of this application, the coefficient of restitution of a golf ball was measured by propelling a ball horizontally at a speed of 125.+-.5 feet per second (fps) and corrected to 125 fps against a generally vertical, hard, flat steel plate and measuring the ball's incoming and outgoing velocity electronically. Speeds were measured with a pair of Oehler Mark 55 ballistic screens available from Oehler Research, Inc., P.O. Box 9135, Austin, Tex. 78766, which provide a timing pulse when an object passes through them. The screens were separated by 36" and are located 25.25" and 61.25" from the rebound wall. The ball speed was measured by timing the pulses from screen 1 to screen 2 on the way into the rebound wall (as the average speed of the ball over 36"), and then the exit speed was timed from screen 2 to screen 1 over the same distance. The rebound wall was tilted 2 degrees from a vertical plane to allow the ball to rebound slightly downward in order to miss the edge of the cannon that fired it. The rebound wall is solid steel 2.0 inches thick.
As indicated above, the incoming speed should be 125.+-.5 fps but corrected to 125 fps. The correlation between COR and forward or incoming speed has been studied and a correction has been made over the .+-.5 fps range so that the COR is reported as if the ball had an incoming speed of exactly 125.0 fps.
The coefficient of restitution must be carefully controlled in all commercial golf balls if the ball is to be within the specifications regulated by the United States Golf Association (U.S.G.A.). As mentioned to some degree above, the U.S.G.A standards indicate that a "regulation" ball cannot have an initial velocity exceeding 255 feet per second in an atmosphere of 75.degree. F. when tested on a U.S.G.A. machine. Since the coefficient of restitution of a ball is related to the ball's initial velocity, it is highly desirable to produce a ball having sufficiently high coefficient of restitution to closely approach the U.S.G.A. limit on initial velocity, while having an ample degree of softness (i.e., hardness) to produce enhanced playability (i.e., spin, etc.).
PGA compression is another important property involved in the performance of a golf ball. The compression of the ball can affect the playability of the ball on striking and the sound of "click" produced. Similarly, compression can affect the "feel" of the ball (i.e., hard or soft responsive feel), particularly in chipping and putting.
Moreover, while compression itself has little bearing on the distance performance of a ball, compression can affect the playability of the ball on striking. The degree of compression of a ball against the club face on the softness of the cover strongly influences the resultant spin rate. Typically, a softer cover will produce a higher spin rate than a harder cover. Additionally, a harder core will produce a higher spin rate than a softer core. This is because at impact a hard core serves to compress the cover of the ball against the face of the club to a much greater degree than a soft core thereby resulting in more "grab" of the ball on the clubface and subsequent higher spin rates. In effect the cover is squeezed between the relatively incompressible core and clubhead. When a softer core is used, the cover is under much less compressive stress than when a harder core is used and therefore does not contact the clubface as intimately. This results in lower spin rates. The term "compression" utilized in the golf ball trade generally defines the overall deflection that a golf ball undergoes when subjected to a compressive load. For example, PGA compression indicates the amount of change in golf ball's shape upon striking.
In the past, PGA compression related to a scale of from 0 to 200 given to a golf ball. The lower the PGA compression value, the softer the feel of the ball upon striking. In practice, tournament quality balls have compression ratings around 70-110, preferably around 80 to 100.
In determining PGA compression using the 0-200 scale, a standard force is applied to the external surface of the ball. A ball which exhibits no deflection (0.0 inches in deflection) is rated 200 and a ball which deflects 2/10th of an inch (0.2 inches) is rated 0. Every change of 0.001 of an inch in deflection represents a 1 point drop in compression. Consequently, a ball which deflects 0.1 inches (100.times.0.001 inches) has a PGA compression value of 100 (i.e, 200-100) and a ball which deflects 0.110 inches (110.times.0.001) inches) has a PGA compression of 90 (i.e., 200-110).
In order to assist in the determination of compression, several devices have been employed by the industry. For example, PGA compression is determined by an apparatus fashioned in the form of a small press with an upper and lower anvil. The upper anvil is at rest against a 200-pound die spring, and the lower anvil is movable through 0.300 inches by means of a crank mechanism. In its open position the gap between the anvils is 1.780 inches allowing a clearance of 0.100 inches for insertion of the ball. As the lower anvil is raised by the crank, it compresses the ball against the upper anvil, such compression occurring during the last 0.200 inches of stroke on the lower anvil, the ball then loading the upper anvil which in turn loads the spring. The equilibrium point of the upper anvil is measured by a dial micrometer if the anvil is deflected by the ball more than 0.100 inches (less deflection is simply regarded as zero compression) and the reading on the micrometer dial is referred to as the compression of the ball. In practice, tournament quality ball shave compression ratings around 80 to 100 which means that the upper anvil was deflected a total of 0.120 to 0.100 inches.
An example to determine PGA compression can be shown by utilizing a golf ball compression tester produced by Atti Engineering Corporation of Newark, N.J. The value obtained by this tester relates to an arbitrary value expressed by a number which may range from 0 to 100, although a value of 200 can be measured as indicated by two revolutions of the dial indicator on the apparatus. The value obtained defines the deflection that a golf ball undergoes when subjected to compressive loading. The Atti test apparatus consists of a lower movable platform and an upper movable spring-loaded anvil. The dial indicator is mounted such that it measures the upward movement of the springloaded anvil. The golf ball to be tested is placed in the lower platform, which is then raised a fixed distance. The upper portion of the golf ball comes in contact with and exerts a pressure on the springloaded anvil. Depending upon the distance of the golf ball to be compressed, the upper anvil is forced upward against the spring.
Alternative devices have also been employed to determine compression. For example, Applicant also utilizes a modified Riehle Compression Machine originally produced by Riehle Bros. Testing Machine Company, Phil., Pa. to evaluate compression of the various components (i.e., cores, mantle cover balls, finished balls, etc.) of the golf balls. The Riehle compression device determines deformation in thousandths of an inch under a fixed initialized load of 200 pounds. Using such a device, a Riehle compression of 61 corresponds to a deflection under load of 0.061 inches.
Additionally, an approximate relationship between Riehle compression and PGA compression exists for balls of the same size. It has been determined by Applicant that Riehle compression corresponds to PGA compression by the general formula PGA compression=160-Riehle compression. Consequently, 80 Riehle compression corresponds to 80 PGA compression, 70 Riehle compression corresponds to 90 PGA compression, and 60 Riehle compression corresponds to 100 PGA compression. For reporting purposes, Applicant's compression values are usually measured as Riehle compression and converted to PGA compression.
Furthermore, additional compression devices may also be utilized to monitor golf ball compression so long as the correlation to PGA compression is known. These devices have been designed, such as a Whitney Tester, to correlate or correspond to PGA compression through a set relationship or formula.
As used herein, "Shore D hardness" of a cover is measured generally in accordance with ASTM D-2240, except the measurements are made on the curved surface of a molded cover, rather than on a plaque. Furthermore, the Shoe D hardness of the cover is measured while the cover remains over the core. When a hardness measurement is made on a dimpled cover, Shore D hardness is measured at a land area of the dimpled cover.
In describing the components of the subject golf ball herein, the term "spherical" is used in conjunction with the shell (center). It is understood by those skilled in the art that when referring to golf balls and their components, the term "spherical" includes surfaces and shapes which may have minor insubstantial deviations from the perfect ideal geometric spherical shape. In addition the inclusion of dimples on the exterior surface of the shell, to effect its aerodynamic properties, does not detract from its "spherical" shape for the purposes therein or in the art. Further the internal surface of the shell as well as the core may likewise incorporate intentionally designed patterns and still be considered "spherical" within the scope of this invention.
The rotational moment of inertia of a golf ball is the resistance to change in spin of the ball and is conventionally measured using an "Inertia Dynamics Moment of Inertia Measuring Instrument."
The Core
The overall core of the present invention golf balls is relatively soft. The core comprises a non-resilient mantle that defines an interior hollow region and an outer, resilient core layer. The mantle may comprise one or more discrete layers or shells. The outer, resilient core layer may also consist of one or more different layers of the same or different materials. These aspects are described in greater detail below.
It is significant that the core, i.e. the mantle defining a hollow interior and one or more other layers, be relatively soft. Generally, it has been found that such cores preferably exhibit an overall Riehle compression of about 75 to about 160. Additionally, such cores exhibit a relatively low overall PGA compression of from about 0 to about 85, and preferably about 10 to about 70. In a preferred embodiment, golf balls of the present invention comprise one or more mantle layers formed from conventional metallic materials such as steels, nonferrous alloys, etc. A wide array of metals can be used in the mantle layers or shells as described herein. Table 1, set forth below, lists suitable metals for use in these preferred embodiment golf balls.
TABLE 1______________________________________Metals for Use in Mantle Layer(s) Young's Bulk Shear Poisson's modulus, modulus, modulus, ratio,Metal E, 10.sup.6 psi K, 10.sup.6 psi G, 10.sup.6 psi v______________________________________Aluminum 10.2 10.9 3.80 0.345Brass, 30 Zn 14.6 16.2 5.41 0.350Chromium 40.5 23.2 16.7 0.210Copper 18.8 20.0 7.01 0.343Iron (soft) 30.7 24.6 11.8 0.293(cast) 22.1 15.9 8.7 0.27Lead 2.34 6.64 0.811 0.44Magnesium 6.48 5.16 2.51 0.291Molybdenum 47.1 37.9 18.2 0.293Nickel (soft) 28.9 25.7 11.0 0.312(hard) 31.8 27.2 12.2 0.306Nickel-silver, 19.2 19.1 4.97 0.33355 Cu-18 Ni-27 ZnNiobium 15.2 24.7 5.44 0.397Silver 12.0 15.0 4.39 0.367Steel, mild 30.7 24.5 11.9 0.291Steel, 0.75 C 30.5 24.5 11.8 0.293Steel, 0.75 C, hardened 29.2 23.9 11.3 0.296Steel, tool 30.7 24.0 11.9 0.287Steel, tool, hardened 29.5 24.0 11.4 0.295Steel, stainless, 31.2 24.1 12.2 0.2832 Ni-18 CrTantalum 26.9 28.5 10.0 0.342Tin 7.24 8.44 2.67 0.357Titanium 17.4 15.7 6.61 0.361Titanium/Nickel alloyTungsten 59.6 45.1 23.3 0.280Vanadium 18.5 22.9 6.77 0.365Zinc 15.2 10.1 6.08 0.249______________________________________
Preferably, the metals used in the one or more mantle layers are steel, titanium, chromium, nickel, or alloys thereof. Generally, it is preferred that the metal selected for use in the mantle be relatively stiff, hard, dense, and have a relatively high modulus of elasticity.
The thickness of the metal mantle layer depends upon several factors including the density of the metals used in that layer, or if a plurality of metal mantle layers are used, the densities of those metals in other layers within the mantle. Typically, the thickness of the mantle ranges from about 0.001 inches to about 0.050 inches. The preferred thickness for the mantle is from about 0.005 inches to about 0.050 inches. The most preferred range is from about 0.005 inches to about 0.010 inches. It is preferred that the thickness of the mantle be uniform and constant at all points across the mantle.
As noted, the thickness of the metal mantle depends upon the density of the metal(s) utilized in the one or more mantle layers. Table 2, set forth below, lists typical densities for the preferred metals for use in the mantle.
TABLE 2______________________________________Metal Density (grams per cubic centimeter)______________________________________Chromium 6.46Nickel 7.90Steel (approximate) 7.70Titanium 4.13______________________________________
There are at least two approaches in forming a metal mantle utilized in the preferred embodiment golf balls. In a first embodiment, two metal half shells are stamped from metal sheet stock. The two half shells are then arc welded together and heat treated to stress relieve. It is preferred to heat treat the resulting assembly since welding will typically anneal and soften the resulting hollow sphere resulting in "oil canning," i.e. deformation of the metal sphere after impact, such as may occur during play. Optionally, a high temperature blowing agent may be added to the inside or interior of the half shells prior to welding. Subsequent heat treatment will decompose the blowing agent and pressurize the hollow metal sphere with the gases produced from decomposition. A pressurized metal sphere will assist in preventing "oil canning" similar to a pressurized tennis ball or basketball. Moreover, the interior pressure will also increase the COR of the golf ball.
In a second embodiment, a metal mantle is formed via electroplating over a thin hollow polymeric sphere, described in greater detail below. There are several preferred techniques by which a metallic mantle layer may be deposited upon a non-metallic substrate. In a first category of techniques, an electrically conductive layer is formed or deposited upon the polymeric or non-metallic sphere. Electroplating may be used to fully deposit a metal layer after a conductive salt solution is applied onto the surface of the non-metallic substrate. Alternatively, or in addition, a thin electrically conducting metallic surface can be formed by flash vacuum metallization of a metal agent, such as aluminum, onto the substrate of interest. Such surfaces are typically about 3.times.10.sup.-6 of an inch thick. Once deposited, electroplating can be utilized to form the metal layer(s) of interest. It is contemplated that vacuum metallization could be employed to fully deposit the desired metal layer(s). Yet another technique for forming an electrically conductive metal base layer is chemical deposition. Copper, nickel, or silver, for example, may be readily deposited upon a non-metallic surface. Yet another technique for imparting electrical conductivity to the surface of a non-metallic substrate is to incorporate an effective amount of electrically conductive particles in the substrate, such as carbon black, prior to molding. Once having formed an electrically conductive surface, electroplating processes can be used to form the desired metal mantle layers.
Alternatively, or in addition, various thermal spray coating techniques can be utilized to form one or more metal mantle layers onto a spherical substrate. Thermal spray is a generic term generally used to refer to processes for depositing metallic and non-metallic coatings, sometimes known as metallizing, that comprise the plasma arc spray, electric arc spray, and flame spray processes. Coatings can be sprayed from rod or wire stock, or from powdered material.
A typical plasma arc spray system utilizes a plasma arc spray gun at which one or more gasses are energized to a highly energized state, i.e. a plasma, and are then discharged typically under high pressures toward the substrate of interest. The power level, pressure, and flow of the arc gasses, and the rate of flow of powder and carrier gas are typically control variables.
The electric arc spray process preferably utilizes metal in wire form. This process differs from the other thermal spray processes in that there is no external heat source, such as from a gas flame or electrically induced plasma. Heating and melting occur when two electrically opposed charged wires, comprising the spray material, are fed together in such a manner that a controlled arc occurs at the intersection. The molten metal is atomized and propelled onto a prepared substrate by a stream of compressed air or gas.
The flame spray process utilizes combustible gas as a heat source to melt the coating material. Flame spray guns are available to spray materials in rod, wire, or powder form. Most flame spray guns can be adapted for use with several combinations of gases. Acetylene, propane, mapp gas, and oxygen-hydrogen are commonly used flame spray gases.
Another process or technique for depositing a metal mantle layer onto a spherical substrate in the preferred embodiment golf balls is chemical vapor deposition (CVD). In the CVD process, a reactant atmosphere is fed into a processing chamber where it decomposes at the surface of the substrate of interest, liberating one material for either absorption by or accumulation on the work piece or substrate. A second material is liberated in gas form and is removed from the processing chamber, along with excess atmosphere gas, as a mixture referred to as off-gas.
The reactant atmosphere that is typically used in CVD includes chlorides, fluorides, bromides and iodides, as well as carbonyls, organometallics, hydrides and hydrocarbons. Hydrogen is often included as a reducing agent. The reactant atmosphere must be reasonably stable until it reaches the substrate, where reaction occurs with reasonably efficient conversion of the reactant. Sometimes it is necessary to heat the reactant to produce the gaseous atmosphere. A few reactions for deposition occur at substrate temperatures below 200 degrees C. Some organometallic compounds deposit at temperatures of 600 degrees C. Most reactions and reaction products require temperatures above 800 degrees C.
Common CVD coatings include nickel, tungsten, chromium, and titanium carbide. CVD nickel is generally separated from a nickel carbonyl, Ni(CO).sub.4, atmosphere. The properties of the deposited nickel are equivalent to those of sulfonate nickel deposited electrolytically. Tungsten is deposited by thermal decomposition of tungsten carbonyl at 300 to 600 degrees C., or may be deposited by hydrogen reduction of tungsten hexachloride at 700 to 900 degrees C. The most convenient and most widely used reaction is the hydrogen reduction of tungsten hexafluoride. If depositing chromium upon an existing metal layer, this may be done by pack cementation, a process similar to pack carbonizing, or by a dynamic, flow-through CVD process. Titanium carbide coatings may be formed by the hydrogen reduction of titanium tetrafluoride in the presence of methane or some other hydrocarbon. The substrate temperatures typically range from 900 to 1010 degrees C., depending on the substrate.
Surface preparation for CVD coatings generally involve degreasing or grit blasting. In addition, a CVD pre-coating treatment may be given. The rate of deposition from CVD reactions generally increases with temperature in a manner specific to each reaction. Deposition at the highest possible rate is preferable, however, there are limitations which require a processing compromise.
Vacuum coating is another category of processes for depositing metals and metal compounds from a source in a high vacuum environment onto a substrate, such as the spherical substrate used in several of the preferred embodiment golf balls. Three principal techniques are used to accomplish such deposition: evaporation, ion plating, and sputtering. In each technique, the transport of vapor is carried out in an evacuated, controlled environment chamber and, typically, at a residual air pressure of 1 to 10.sup.-5 Pascals.
In the evaporation process, vapor is generated by heating a source material to a temperature such that the vapor pressure significantly exceeds the ambient chamber pressure and produces sufficient vapor for practical deposition. To coat the entire surface of a substrate, such as the inner spherical substrate utilized in the preferred embodiment golf balls, it must be rotated and translated over the vapor source. Deposits made on substrates positioned at low angles to the vapor source generally result in fibrous, poorly bonded structures. Deposits resulting from excessive gas scattering are poorly adherent, amorphous, and generally dark in color. The highest quality deposits are made on surfaces nearly normal or perpendicular to the vapor flux. Such deposits faithfully reproduce the substrate surface texture. Highly polished substrates produce lustrous deposits, and the bulk properties of the deposits are maximized for the given deposition conditions.
For most deposition rates, source material should be heated to a temperature so that its vapor pressure is at least 1 Pascal or higher. Deposition rates for evaporating bulk vacuum coatings can be very high. Commercial coating equipment can deposit up to 500,000 angstroms of material thickness per minute using large ingot material sources and high powered electron beam heating techniques.
As indicated, the directionality of evaporating atoms from a vapor source generally requires the substrate to be articulated within the vapor cloud. To obtain a specific film distribution on a substrate, the shape of the object, the arrangement of the vapor source relative to the component surfaces, and the nature of the evaporation source may be controlled.
Concerning evaporation sources, most elemental metals, semi-conductors, compounds, and many alloys can be directly evaporated in vacuum. The simplest sources are resistance wires and metal foils. They are generally constructed of refractory metals, such as tungsten, molybdenum, and tantalum. The filaments serve the dual function of heating and holding the material for evaporation. Some elements serve as sublimation sources such as chromium, palladium, molybdenum, vanadium, iron, and silicon, since they can be evaporated directly from the solid phase. Crucible sources comprise the greatest applications in high volume production for evaporating refractory metals and compounds. The crucible materials are usually refractory metals, oxides, and nitrides, and carbon. Heating can be accomplished by radiation from a second refractory heating element, by a combination of radiation and conduction, and by radial frequency induction heating.
Several techniques are known for achieving evaporation of the evaporation source. Electron beam heating provides a flexible heating method that can concentrate heat on the evaporant. Portions of the evaporant next to the container can be kept at low temperatures, thus minimizing interaction. Two principal electron guns in use are the linear focusing gun, which uses magnetic and electrostatic focusing methods, and the bent-beam magnetically focused gun. Another technique for achieving evaporation is continuous feed high rate evaporation methods. High rate evaporation of alloys to form film thicknesses of 100 to 150 micrometers requires electron beam heating sources in large quantities of evaporant. Electron beams of 45 kilowatts or higher are used to melt evaporants in water cooled copper hearths up to 150 by 400 millimeters in cross section.
Concerning the substrate material of the spherical shell upon which one or more metal layers are formed in the preferred embodiment golf balls, the primary requirement of the material to be coated is that it be stable in vacuum. It must not evolve gas or vapor when exposed to the metal vapor.
Gas evolution may result from release of gas absorbed on the surface, release of gas trapped in the pores of a porous substrate, evolution of a material such as plasticizers used in plastics, or actual vaporization of an ingredient in the substrate material.
In addition to the foregoing methods, sputtering may be used to deposit one or more metal layers onto, for instance, an inner hollow sphere substrate. Sputtering is a process wherein material is ejected from the surface of a solid or liquid because of a momentum exchange associated with bombardment by energetic particles. The bombarding species are generally ions of a heavy inert gas. Argon is most commonly used. The source of ions may be an ion beam or a plasma discharge into which the material can be bombarded is immersed.
In the plasma-discharge sputter coating process, a source of coating material called a target is placed in a vacuum chamber which is evacuated and then back filled with a working gas, such as Argon, to a pressure adequate to sustain the plasma discharge. A negative bias is then applied to the target so that it is bombarded by positive ions from the plasma.
Sputter coating chambers are typically evacuated to pressures ranging from 0.001 to 0.00001 Pascals before back filling with Argon to pressures of 0.1 to 10 Pascals. The intensity of the plasma discharge, and thus the ion flux and sputtering rate that can be achieved, depends on the shape of the cathode electrode, and on the effective use of a magnetic field to confine the plasma electrons. The deposition rate in sputtering depends on the target sputtering rate and the apparatus geometry. It also depends on the working gas pressure, since high pressures limit the passage of sputtered flux to the substrates.
Ion plating may also be used to form one or more metal mantle layers in the golf balls of the present invention. Ion plating is a generic term applied to atomistic film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles (usually gas ions) sufficient to cause changes in the interfacial region or film properties. Such changes may be in the film adhesion to the substrate, film morphology, film density, film stress, or surface coverage by the depositing film material.
Ion plating is typically done in an inert gas discharge system similar to that used in sputtering deposition except that the substrate is the sputtering cathode and the bombarded surface often has a complex geometry. Basically, the ion plating apparatus is comprised of a vacuum chamber and a pumping system, which is typical of any conventional vacuum deposition unit. There is also a film atom vapor source and an inert gas inlet. For a conductive sample, the work piece is the high voltage electrode, which is insulated from the surrounding system. In the more generalized situation, a work piece holder is the high voltage electrode and either conductive or non-conductive materials for plating are attached to it. Once the specimen to be plated is attached to the high voltage electrode or holder and the filament vaporization source is loaded with the coating material, the system is closed and the chamber is pumped down to a pressure in the range of 0.001 to 0.0001 Pascals. When a desirable vacuum has been achieved, the chamber is back filled with Argon to a pressure of approximately 1 to 0.1 Pascals. An electrical potential of -3 to -5 kilovolts is then introduced across the high voltage electrode, that is the specimen or specimen holder, and the ground for the system. Glow discharge occurs between the electrodes which results in the specimen being bombarded by the high energy Argon ions produced in the discharge, which is equivalent to direct current sputtering. The coating source is then energized and the coating material is vaporized into the glow discharge.
Another class of materials, contemplated for use in forming the one or more metal mantle layers is nickel titanium alloys. These alloys are known to have super elastic properties and are approximately 50 percent (atomic) nickel and 50 percent titanium. When stressed, a super elastic nickel titanium alloy can accommodate strain deformations of up to 8 percent. When the stress is later released, the super elastic component returns to its original shape. Other shape memory alloys can also be utilized including alloys of copper zinc aluminum, and copper aluminum nickel. Table 3 set forth below presents various physical, mechanical, and transformation properties of these three preferred shape memory alloys.
TABLE 3______________________________________Properties of Shape Memory Alloys Cu--Zn--Al Cu--Al--Ni Ni--Ti______________________________________PHYSICAL PROPERTIESDensity (g/cm.sup.3) 7.64 7.12 6.5Resistivity (.mu..OMEGA.-cm) 8.5-9.7 11-13 80-100Thermal Conductivity (J/m-s-K) 120 30-43 10Heat Capacity (J/Kg-K) 400 373-574 390MECHANICAL PROPERTIESYoung's Modulus (GPa).beta.-Phase 72 85 83Martensite 70 80 34Yield Strength (MPa).beta.-Phase 350 400 690Martensite 80 130 70-150Ultimate Tensile Strength (Mpa) 600 500-800 900TRANSFORMATIONPROPERTIESHeat of Transformation (J/mole)Martensite 160-440 310-470R-Phase 55Hysteresis (K)Martensite 10-25 15-20 30-40R-Phase 2-5Recoverable Strain (%)One-Way (Martensite) 4 4 8One-Way (R-Phase 0.5-1Two-Way (Martensite) 2 2 3______________________________________
As noted, the hollow interior region of the core may contain gas, at a pressure below atmospheric, atmospheric, or above atmospheric pressure. Preferably, the core contains gas at a pressure greater than atmospheric pressure. The composition of the gas contained within the hollow interior may include a wide array of agents. The gas is preferably nitrogen or some other relatively stable and inert gas. Air may also be utilized. The gas can be introduced or admitted into the interior of the hollow core by conventional techniques known to those skilled in the art. The gas may be introduced as a result of the generation in situ of gaseous reaction products that may be given off from the decomposition of solid or liquid agents in the hollow region. Such decomposition may result from heating.
Polymeric Hollow Sphere
As noted, in another aspect, the present invention also provides a golf ball that optionally comprises a polymeric hollow sphere immediately adjacent and inwardly disposed relative to the metal mantle, such as shown in FIG. 2.. The polymeric hollow sphere can be formed from nearly any relatively strong plastic material. The thickness of the polymeric hollow sphere ranges from about 0.005 inches to about 0.010 inches. The polymeric hollow inner sphere can be formed using two half shells joined together via spin bonding, solvent welding, or other techniques known to those in the plastics processing arts. Alternatively, the hollow polymeric sphere may be formed via blow molding.
A wide array of polymeric materials can be utilized to form the polymeric hollow sphere. Thermoplastic materials are generally preferred for use as materials for the shell. Typically, such materials should exhibit good flowability, moderate stiffness, high abrasion resistance, high tear strength, high resilience, and good mold release, among others.
Synthetic polymeric materials which may be used in accordance with the present invention include homopolymeric and copolymer materials which may include: (1) Vinyl resins formed by the polymerization of vinyl chloride, or by the copolymerization of vinyl chloride with vinyl acetate, acrylic esters or vinylidene chloride; (2) Polyolefins such as polyethylene, polypropylene, polybutylene, and copolymers such as polyethylene methylacrylate, polyethylene ethylacrylate, polyethylene vinyl acetate, polyethylene methacrylic or polyethylene acrylic acid or polypropylene acrylic acid or terpolymers made from these and acrylate esters and their metal ionomers, polypropylene/EPDM grafted with acrylic acid or anhydride modified polyolefins; (3) Polyurethanes, such as are prepared from polyols and diisocyanates or polyisocyanates; (4) Polyamides such as poly(hexamethylene adipamide) and others prepared from diamines and dibasic acids, as well as those from amino acid such as poly(caprolactam), and blends of polyamides with Surlyn.RTM., polyethylene, ethylene copolymers, EDPA, etc; (5) Acrylic resins and blends of these resins with polyvinyl chloride, elastomers, etc.; (6) Thermoplastic rubbers such as the urethanes, olefinic thermoplastic rubbers such as blends of polyolefins with EPDM, block copolymers of styrene and butadiene, or isoprene or ethylene-butylene rubber, polyether block amides; (7) Polyphenylene oxide resins, or blends of polyphenylene oxide with high impact polystyrene; (8) Thermoplastic polyesters, such as PET, PBT, PETG, and elastomers sold under the trademark HYTREL by E. I. DuPont De Nemours & Company of Wilmington, Del.; (9) Blends and alloys including polycarbonate with ABS, PBT, PET, SMA, PE elastomers, etc. and PVC with ABS or EVA or other elastomers; and (10) Blends of thermoplastic rubbers with polyethylene, polypropylene, polyacetal, nylon, polyesters, cellulose esters, etc.
It is also within the purview of this invention to add to the polymeric spherical substrate compositions of this invention materials which do not affect the basic novel characteristics of the composition. Among such materials are antioxidants, antistatic agents, and stabilizers.
The Outer Core Layer
One or more resilient polymeric layers are disposed about the non-resilient, hollow mantle. The outer core layer can be formed from any resilient polymer material such as those discussed above. Of principal importance, the outer core layer must have a sufficient degree of resiliency in order to produce, when combined with the non-resilient hollow mantle, an overall core having a Riehle compression of between 75 to 115.
The Cover
The cover is preferably comprised of a hard, high-stiffness ionomer resin, most preferably a metal cation neutralized high acid ionomer resin containing more than 16% carboxylic acid by weight, or blend thereof.
The cover has a Shore D hardness of about 65 or greater. It will be appreciated that blends of polymers or resin formulations, some of which, individually, may exhibit Shore D hardnesses of less than 65. However, it is the resulting cover that exhibits a Shore D hardness of at least about 65. The cover may comprise a single layer or be of a multiple layer construction.
With respect to the ionomeric cover composition of the invention, ionomeric resins are polymers containing interchain ionic bonding. As a result of their toughness, durability, and flight characteristics, various ionomeric resins sold by E. I. DuPont de Nemours & Company under the trademark "Surlyn.RTM." and more recently, by the Exxon Corporation (see U.S. Pat. No. 4,911,451) under the trademark "Escor.RTM." and the tradename "lotek", have become the materials of choice for the construction of golf ball covers over the traditional "balata" (trans-polyisoprene, natural or synthetic) rubbers.
Ionomeric resins are generally ionic copolymers of an olefin, such as ethylene, and a metal salt of an unsaturated carboxylic acid, such as acrylic acid, methacrylic acid or maleic acid. In some instances, an additional softening comonomer such as an acrylate can also be included to form a terpolymer. The pendent ionic groups in the ionomeric resins interact to form ion-rich aggregates contained in a non-polar polymer matrix. The metal ions, such as sodium, zinc, magnesium, lithium, potassium, calcium, etc. are used to neutralize some portion of the acid groups in the copolymer resulting in a thermoplastic elastomer exhibiting enhanced properties, i.e., improved durability, etc. for golf ball construction over balata.
The ionomeric resins utilized to produce cover compositions can be formulated according to known procedures such as those set forth in U.S. Pat. No. 3,421,766 or British Patent No. 963,380, with neutralization effected according to procedures disclosed in Canadian Patent Nos. 674,595 and 713,631, wherein the ionomer is produced by copolymerizing the olefin and carboxylic acid to produce a copolymer having the acid units randomly distributed along the polymer chain. Broadly, the ionic copolymer generally comprises one or more .alpha.-olefins and from about 9 to about 20 weight percent of .alpha.,.beta.-ethylenically unsaturated mono- or dicarboxylic acid, the basic copolymer neutralized with metal ions to the extent desired.
Preferably, at least about 20% of the carboxylic acid groups of the copolymer are neutralized by the metal ions (such as sodium, potassium, zinc, calcium, magnesium, and the like) and exist in the ionic state. Suitable olefins for use in preparing the ionomeric resins include ethylene, propylene, butene-1, hexene-1 and the like. Unsaturated carboxylic acids include acrylic, methacrylic, ethacrylic, .alpha.-chloroacrylic, crotonic, maleic, fumaric, itaconic acids, and the like. The ionomeric resins utilized in the golf ball industry are generally copolymers of ethylene with acrylic (i.e., Escor.RTM.) and/or methacrylic (i.e., Surlyn.RTM.) acid. In addition, two or more types of ionomeric resins may be blended in to the cover compositions in order to produce the desired properties of the resulting golf balls.
The cover compositions which may be used in making the golf balls of the present invention are set forth in detail but not limited to those in U.S. Pat. No. 5,688,869, incorporated herein by reference. In short, the cover material is comprised of hard, high stiffness ionomer resins, preferably containing relatively high amounts of acid (i.e., greater than 16 weight percent acid, preferably from about 17 to about 25 weight percent acid, and more preferably from about 18.5 to about 21.5 weight percent) and at least partially neutralized with metal ions (such as sodium, zinc, potassium, calcium, magnesium and the like). The high acid resins are blended and melt processed to produce compositions exhibiting enhanced hardness and coefficient of restitution values when compared to low acid ionomers, or blends of low acid ionomer resins containing 16 weight percent acid or less.
The preferred cover compositions are made from specific blends of two or more high acid ionomers with other cover additives which do not exhibit the processing, playability, distance and/or durability limitations demonstrated by the prior art. However, as more particularly indicated below, the cover composition can also be comprised of one or more low acid ionomers so long as the molded covers exhibit a hardness of 65 or more on the Shore D scale.
The cover may comprise any ionomer which either alone or in combination with other ionomers produces a molded cover having a Shore D hardness of at least 65. These include lithium ionomers or blends of ionomers with harder non-ionic polymers such as nylon, polyphenylene oxide and other compatible thermoplastics. As briefly mentioned above, examples of cover compositions which may be used are set forth in detail in U.S. Pat. No. 5,688,869, previously incorporated herein by reference. Of course, the cover compositions are not limited in any way to those compositions set forth.
The high acid ionomers suitable for use in the present invention are ionic copolymers which are the metal, i.e., sodium, zinc, magnesium, etc., salts of the reaction product of an olefin having from about 2 to 8 carbon atoms and an unsaturated monocarboxylic acid having from about 3 to 8 carbon atoms. Preferably, the ionomeric resins are copolymers of ethylene and either acrylic or methacrylic acid. In some circumstances, an additional comonomer such as an acrylate ester (i.e., iso- or n-butylacrylate, etc.) can also be included to produce a softer terpolymer. The carboxylic acid groups of the copolymer are partially neutralized (i.e., approximately 10-90%, and preferably 30-70%) by the metal ions. Each of the high acid ionomer resins included in the cover compositions of the invention contains greater than about 16% by weight of a carboxylic acid, preferably from about 17% to about 25% by weight of a carboxylic acid, more preferably from about 18.5% to about 21.5% by weight of a carboxylic acid.
Although the cover composition preferably includes a high acid ionomeric resin and the scope of the patent embraces all known high acid ionomeric resins falling within the parameters set forth above, only a relatively limited number of these high acid ionomeric resins are currently available. In this regard, the high acid ionomeric resins available from E. I. DuPont de Nemours Company under the trademark "Surlyn.RTM.", and the high acid ionomer resins available from Exxon Corporation under the trademark "Escor.RTM." or tradename "lotek" are examples of available high acid ionomeric resins which may be utilized in the present invention.
The high acid ionomeric resins available from Exxon under the designation "Escor.RTM." and or "lotek", are somewhat similar to the high acid ionomeric resins available under the "Surlyn.RTM." trademark. However, since the Escor.RTM./lotek ionomeric resins are sodium or zinc salts of poly(ethylene acrylic acid) and the "Surlyn.RTM." resins are zinc, sodium, magnesium, etc. salts of poly(ethylene methacrylic acid), distinct differences in properties exist.
Examples of the high acid methacrylic acid based ionomers found suitable for use in accordance with this invention include Surlyn.RTM. AD-8422 (sodium cation), Surlyn.RTM. 8162 (zinc cation), Surlyn.RTM. SEP-503-1 (zinc cation), and Surlyn.RTM. SEP-503-2 (magnesium cation). According to DuPont, all of these ionomers contain from about 18.5 to about 21.5% by weight methacrylic acid.
More particularly, Surlyn.RTM. AD-8422 is currently commercially available from DuPont in a number of different grades (i.e., AD-8422-2, AD-8422-3, AD-8422-5, etc.) based upon differences in melt index. According to DuPont, Surlyn.RTM. AD-8422 offers the following general properties when compared to Surlyn.RTM. 8920 the stiffest, hardest of all on the low acid grades (referred to as "hard" ionomers in U.S. Pate. No. 4,884,814):
TABLE 4______________________________________ LOW ACID HIGH ACID (15 wt % Acid) (>20 wt % Acid) SURLYN .RTM. SURLYN .RTM. SURLYN .RTM. 8920 8422-2 8422-3______________________________________IONOMERCation Na Na NaMelt Index 1.2 2.8 1.0Sodium, Wt % 2.3 1.9 2.4Base Resin MI 60 60 60MP.sup.1, .degree. C. 88 86 85FP, .degree. C. 47 48.5 45COMPRESSIONMOLDING.sup.2Tensile Break, 4350 4190 5330psiYield, psi 2880 3670 3590Elongation, % 315 263 289Flex Mod, 53.2 76.4 88.3K psiShore D 66 67 68hardness______________________________________ .sup.1 DSC second heat, 10.degree. C./min heating rate. .sup.2 Samples compression molded at 150.degree. C. annealed 24 hours at 60.degree. C. 84222, 3 were homogenized at 190.degree. C. before molding.
In comparing Surlyn.RTM. 8920 to Surlyn.RTM. 8422-2 and Surlyn.RTM. 8422-3, it is noted that the high acid Surlyn.RTM. 8422-2 and 8422-3 ionomers have a higher tensile yield, lower elongation, slightly higher Shore D hardness and much higher flexural modulus. Surlyn.RTM. 8920 contains 15 weight percent methacrylic acid and is 59% neutralized with sodium.
In addition, Surlyn.RTM. SEP-503-1 (zinc cation) and Surlyn.RTM. SEP-503-2 (magnesium cation) are high acid zinc and magnesium versions of the Surlyn.RTM. AD 8422 high acid ionomers. When compared to the Surlyn.RTM. AD 8422 high acid ionomers, the Surlyn SEP-503-1 and SEP-503-2 ionomers can be defined as follows:
TABLE 5______________________________________Surlyn .RTM. Ionomer Ion Melt Index Neutralization %______________________________________AD 8422-3 Na 1.0 45SEP 503-1 Zn 0.8 38SEP 503-2 Mg 1.8 43______________________________________
Furthermore, Surlyn.RTM. 8162 is a zinc cation ionomer resin containing approximately 20% by weight (i.e. 18.5-21.5% weight) methacrylic acid copolymer that has been 30-70% neutralized. Surlyn.RTM. 8162 is currently commercially available from DuPont.
Examples of the high acid acrylic acid based ionomers generally suitable for use in the present invention include the Escor.RTM. or lotek high acid ethylene acrylic acid ionomers produced by Exxon. In this regard, Escor.RTM. or lotek 959 is a sodium ion neutralized ethylene-acrylic acid copolymer. According to Exxon, loteks 959 and 960 contain from about 19.0 to about 21.0% by weight acrylic acid with approximately 30 to about 70 percent of the acid groups neutralized with sodium and zinc ions, respectively. The physical properties of these high acid acrylic acid based ionomers are as follows:
TABLE 6______________________________________PROPERTY ESCOR .RTM. (IOTEK) 959 ESCOR .RTM. (IOTEK) 960______________________________________Melt Index, g/10 2.0 1.8minCation Sodium ZincMelting Point, .degree. F. 172 174Vicat Softening 130 131Point, .degree. F.Tensile @ Break, 4600 3500psiElongation @ 325 430Break, %Hardess, Shore D 66 57Flexural 66,000 27,000Modulus, psi______________________________________
Furthermore, as a result of the development by the inventors of a number of new high acid ionomers neutralized to various extents by several different types of metal cations, such as by manganese, lithium, potassium, calcium and nickel cations, several new high acid ionomers and/or high acid ionomer blends besides sodium, zinc and magnesium high acid ionomers or ionomer blends are now available for golf ball cover production. It has been found that these new cation neutralized high acid ionomer blends produce cover compositions exhibiting enhanced hardness and resilience due to synergies which occur during processing. Consequently, the metal cation neutralized high acid ionomer resins recently produced can be blended to produce substantially harder covered golf balls having higher C.O.R.'s than those produced by the low acid ionomer covers presently commercially available.
More particularly, several new metal cation neutralized high acid ionomer resins have been produced by the inventors by neutralizing, to various extents, high acid copolymers of an alpha-olefin and an alpha, beta-unsaturated carboxylic acid with a wide variety of different metal cation salts. This discovery is the subject matter of U.S. application Ser. No. 901,680, incorporated herein by reference. It has been found that numerous new metal cation neutralized high acid ionomer resins can be obtained by reacting a high acid copolymer (i.e. a copolymer containing greater than 16% by weight acid, preferably from about 17 to about 25 weight percent acid, and more preferably about 20 weight percent acid), with a metal cation salt capable of ionizing or neutralizing the copolymer to the extent desired (i.e. from about 10% to 90%).
As previously noted, the base copolymer is made up of greater than 16% by weight of an alpha, beta-unsaturated carboxylic acid and an alpha-olefin. Optionally, a softening comonomer can be included in the copolymer. Generally, the alpha-olefin has from 2 to 10 carbon atoms and is preferably ethylene, and the unsaturated carboxylic acid is a carboxylic acid having from about 3 to 8 carbons. Examples of such acids include acrylic acid, methacrylic acid, ethacrylic acid, chloroacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid, with acrylic acid being preferred.
The softening comonomer that can be optionally included in the invention may be selected from the group consisting of vinyl esters of aliphatic carboxylic acids wherein the acids have 2 to 10 carbon atoms, vinyl ethers wherein the alkyl groups contains 1 to 10 carbon atoms, and alkyl acrylates or methacrylates wherein the alkyl group contains 1 to 10 carbon atoms. Suitable softening comonomers include vinyl acetate, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, or the like.
Consequently, examples of a number of copolymers suitable for use to produce the high acid ionomers included in the present invention include, but are not limited to, high acid embodiments of an ethylene/acrylic acid copolymer, an ethylene/methacrylic acid copolymer, an ethylene/itaconic acid copolymer, an ethylene/maleic acid copolymer, an ethylene/methacrylic acid/vinyl acetate copolymer, an ethylene/acrylic acid/vinyl alcohol copolymer, etc. The base copolymer broadly contains greater than 16% by weight unsaturated carboxylic acid, from about 30 to about 83% by weight ethylene and from 0 to about 40% by weight of a softening comonomer. Preferably, the copolymer contains about 20% by weight unsaturated carboxylic acid and about 80% by weight ethylene. Most preferably, the copolymer contains about 20% acrylic acid with the remainder being ethylene.
Along these lines, examples of the preferred high acid base copolymers which fulfill the criteria set forth above, are a series of ethylene-acrylic copolymers which are commercially available from The Dow Chemical Company, Midland, Mich., under the "Primacor" designation. These high acid base copolymers exhibit the typical properties set forth below in Table 7.
TABLE 7__________________________________________________________________________Typical Properties of PrimacorEthylene-Acrylic Acid Copolymers MELT TENSILE FLEXURAL VICAT DENSITY, INDEX, YD. ST MODULUS SOFT PT SHORE DGRADE PERCENT glcc g/10 min (psi) (psi) (.degree. C.) HARDNESSASTM ACID D-792 D-1238 D-638 D-790 D-1525 D-2240__________________________________________________________________________5980 20.0 0.958 300.0 -- 4800 43 505990 20.0 0.955 1300.0 650 2600 40 425990 20.0 0.955 1300.0 650 3200 40 425981 20.0 0.960 300.0 900 3200 46 485981 20.0 0.960 300.0 900 3200 46 485983 20.0 0.958 500.0 850 3100 44 455991 20.0 0.953 2600.0 635 2600 38 40__________________________________________________________________________ .sup.1 The Melt Index values are obtained according to ASTM D1238, at 190.degree. C.
Due to the high molecular weight of the Primacor 5981 grade of the ethylene-acrylic acid copolymer, this copolymer is the more preferred grade utilized in the invention.
The metal cation salts utilized in the invention are those salts which provide the metal cations capable of neutralizing, to various extents, the carboxylic acid groups of the high acid copolymer. These include acetate, oxide or hydroxide salts of lithium, calcium, zinc, sodium, potassium, nickel, magnesium, and manganese.
Examples of such lithium ion sources are lithium hydroxide monohydrate, lithium hydroxide, lithium oxide and lithium acetate. Sources for the calcium ion include calcium hydroxide, calcium acetate and calcium oxide. Suitable zinc ion sources are zinc acetate dihydrate and zinc acetate, a blend of zinc oxide and acetic acid. Examples of sodium ion sources are sodium hydroxide and sodium acetate. Sources for the potassium ion include potassium hydroxide and potassium acetate. Suitable nickel ion sources are nickel acetate, nickel oxide and nickel hydroxide. Sources of magnesium include magnesium oxide, magnesium hydroxide, magnesium acetate. Sources of manganese include manganese acetate and manganese oxide.
The new metal cation neutralized high acid ionomer resins are produced by reacting the high acid base copolymer with various amounts of the metal cation salts above the crystalline melting point of the copolymer, such as at a temperature from about 200.degree. F. to about 500.degree. F., and preferably from about 250.degree. F. to about 350.degree. F. under high shear conditions at a pressure of from about 10 psi to 10,000 psi. Other well known blending techniques may also be used. The amount of metal cation salt utilized to produce the new metal cation neutralized high acid based ionomer resins is the quantity which provides a sufficient amount of the metal cations to neutralize the desired percentage of the carboxylic acid groups in the high acid copolymer. The extent of neutralization is generally from about 10% to about 90%.
As indicated below in Table 8, more specifically in Example 1 in U.S. application Ser. No. 901,680, a number of new types of metal cation neutralized high acid ionomers can be obtained from the above indicated process. These include new high acid ionomer resins neutralized to various extents with manganese, lithium, potassium, calcium and nickel cations. In addition, when a high acid ethylene/acrylic acid copolymer is utilized as the base copolymer component of the invention and this component is subsequently neutralized to various extents with the metal cation salts producing acrylic acid based high acid ionomer resins neutralized with cations such as sodium, potassium, lithium, zinc, magnesium, manganese, calcium and nickel, several new cation neutralized acrylic acid based high acid ionomer resins are produced.
TABLE 8______________________________________Formulation Wt-% Wt-% Melt Shore DNo. Cation Salt Neutralization Index C.O.R. Hardness______________________________________ 1 (NaOH) 6.98 67.5 0.9 .804 71 2 (NaOH) 5.66 54.0 2.4 .808 73 3 (NaOH) 3.84 35.9 12.2 .812 69 4 (NaOH) 2.91 27.0 17.5 .812 (brittle) 5 (MnAc) 19.6 71.7 7.5 .809 73 6 (MnAc) 23.1 88.3 3.5 .814 77 7 (MnAc) 15.3 53.0 7.5 .810 72 8 (MnAc) 26.5 106 0.7 .813 (brittle) 9 (LiOH) 4.54 71.3 0.6 .810 7410 (LiOH) 3.38 52.5 4.2 .818 7211 (LiOH) 2.34 35.9 18.6 .815 7212 (KOH) 5.30 36.0 19.3 Broke 7013 (KOH) 8.26 57.9 7.18 .804 7014 (KOH) 10.7 77.0 4.3 .801 6715 (ZnAc) 17.9 71.5 0.2 .806 7116 (ZnAc) 13.9 53.0 0.9 .797 6917 (ZnAc) 9.91 36.1 3.4 .793 6718 (MgAc) 17.4 70.7 2.8 .814 7419 (MgAc) 20.6 87.1 1.5 .815 7620 (MgAc) 13.8 53.8 4.1 .814 7421 (CaAc) 13.2 69.2 1.1 .813 7422 (CaAc) 7.12 34.9 10.1 .808 70Controls: - 50/50 Blend of Ioteks 8000/7030 C.O.R. = .810/65 Shore DHardnessDuPont High Acid Surlyn .RTM. 8422 (Na) C.O.R. = .811/70 ShoreD HardnessDuPont High Acid Surlyn .RTM. 8162 (Zn) C.O.R. = .807/65 ShoreD HardnessExxon High Acid Iotek EX-960 (Zn) C.O.R. = .796/65 Shore D Hardness23 (MgO) 2.91 53.5 2.5 .81324 (MgO) 3.85 71.5 2.8 .80825 (MgO) 4.76 89.3 1.1 .80926 (MgO) 1.96 35.7 7.5 .815Control for Formulations 23-26 is 50/50 Iotek 8000/7030,C.O.R. = .814, Formulation 26 C.O.R. was normalized to that controlaccordingly - 27 (NiAc) 13.04 61.1 0.2 .802 7128 (NiAc) 10.71 48.9 0.5 .799 7229 (NiAc) 8.26 36.7 1.8 .796 6930 (NiAc) 5.66 24.4 7.5 .786 64Control for Formulation Nos. 27-30 is 50/50 Iotek 8000/7030,C.O.R. = .807______________________________________
When compared to low acid versions of similar cation neutralized ionomer resins, the new metal cation neutralized high acid ionomer resins exhibit enhanced hardness, modulus and resilience characteristics. These are properties that are particularly desirable in a number of thermoplastic fields, including the field golf ball manufacturing.
When utilized in golf ball cover construction, it has been found that the new acrylic acid based high acid ionomers extend the range of hardness beyond that previously obtainable while maintaining the beneficial properties (i.e. durability, click, feel, etc.) of the softer low acid ionomer covered balls, such as balls produced utilizing the low acid ionomers disclosed in U.S. Pat. Nos. 4,884,814 and 4,911,451, and the recently produced high acid blends disclosed in U.S. Pat. No. 5,688,869. Moreover, as a result of the development of a number of new acrylic acid based high acid ionomer resins neutralized to various extents by several different types of metal cations, such as manganese, lithium, potassium, calcium and nickel cations, several new ionomers or ionomer blends are now available for golf ball production. By using these high acid ionomer resins harder, stiffer golf balls having higher C.O.R.s, and thus longer distance, can be obtained.
As will be further noted in the Examples below, other ionomer resins may be used in the cover compositions, such as low acid ionomer resins, so long as the molded cover produces a Shore D hardness of 65 or more. Properties of some of these low acid ionomer resins are provided in the following Table 9:
TABLE 9__________________________________________________________________________Typical Properties of Low Acid Escor .RTM. (Iotek) Ionomers__________________________________________________________________________Resin ASTMProperties Method Units 4000 4010 8000 8020__________________________________________________________________________Cation type zinc zinc sodium sodiumMelt index D-1238 g/10 min. 2.5 1.5 0.8 1.6Density D-1505 kg/m.sup.3 963 963 954 960Melting Point D-3417 .degree. C. 90 90 90 87.5Crystallization D-3417 .degree. C. 62 64 56 53PointVicat Softening D-1525 .degree. C. 62 63 61 64Point% Weight Acrylic 16 -- 11 --Acid% of Acid Groups 30 -- 40 --Cation Neutralized__________________________________________________________________________Plaque ASTMProperties Method Units 4000 4010 8000 8020__________________________________________________________________________(3 mm thick,compressionmolded)Tensile at D-638 MPa 24 26 36 31.5BreakYield point D-638 MPa none none 21 21Elongation at D-638 % 395 420 350 410break1% Secant D-638 MPa 160 160 300 350modulusShore D-2240 -- 55 55 61 58Hardness D__________________________________________________________________________Resin ASTMProperties Method Units 8030 7010 7020 7030__________________________________________________________________________Cation type sodium zinc zinc zincMelt Index D-1238 g/10 min. 2.8 0.8 1.5 2.5Density D-1505 kg/m.sup.3 960 960 960 960Melting Point D-3417 .degree. C. 87.5 90 90 90Crystallization D-3417 .degree. C. 55 -- -- --PointVicat Softening D-1525 .degree. C. 67 60 63 62.5Point% Weight Acrylic Acid -- -- -- --% of Acid Groups -- -- -- --Cation Neutralized__________________________________________________________________________Plaque ASTMProperties Method Units 8030 7010 7020 7030__________________________________________________________________________(3 mm thick,compressionmolded)Tensile at D-638 MPa 28 38 38 38BreakYield Point D-638 MPa 23 none noneElongation at D-638 % 395 500 420 395Break1% Secant D-638 MPa 390 -- -- --modulusShore Hardness D-2240 -- 59 57 55 55__________________________________________________________________________
In addition to the above noted ionomers, compatible additive materials may also be added to produce the cover compositions of the present invention. These additive materials include dyes (for example, Ultramarine Blue sold by Whitaker, Clark, and Daniels of South Painsfield, N.J.), and pigments, i.e. white pigments such as titanium dioxide (for example Unitane 0-110) zinc oxide, and zinc sulfate, as well as fluorescent pigments. As indicated in U.S. Pat. No. 4,884,814, the amount of pigment and/or dye used in conjunction with the polymeric cover composition depends on the particular base ionomer mixture utilized and the particular pigment and/or dye utilized. The concentration of the pigment in the polymeric cover composition can be from about 1% to about 10% as based on the weight of the base ionomer mixture. A more preferred range is from about 1% to about 5% as based on the weight of the base ionomer mixture. The most preferred range is from about 1% to about 3% as based on the weight of the base ionomer mixture. The most preferred pigment for use in accordance with this invention is titanium dioxide.
Moreover, since there are various hues of white, i.e. blue white, yellow white, etc., trace amounts of blue pigment may be added to the cover stock composition to impart a blue white appearance thereto. However, if different hues of the color white are desired, different pigments can be added to the cover composition at the amounts necessary to produce the color desired.
In addition, it is within the purview of this invention to add to the cover compositions of this invention compatible materials which do not affect the basic novel characteristics of the composition of this invention. Among such materials are antioxidants (i.e. Santonox R), antistatic agents, stabilizers and processing aids. The cover compositions of the present invention may also contain softening agents, such as plasticizers, etc., and reinforcing materials such as glass fibers and inorganic fillers, as long as the desired properties produced by the golf ball covers of the invention are not impaired.
Furthermore, optical brighteners, such as those disclosed in U.S. Pat. No. 4,679,795, may also be included in the cover composition of the invention. Examples of suitable optical brighteners which can be used in accordance with this invention are Uvitex OB as sold by the Ciba-Geigy Chemical Company, Ardsley, N.Y. Uvitex OB is thought to be 2,5-Bis(5-tert-butyl-2-benzoxazoly)thiophene. Examples of other optical brighteners suitable for use in accordance with this invention are as follows: Leucopure EGM as sold by Sandoz, East Hanover, N.J. 07936. Leucopure EGM is thought to be 7-(2n-naphthol(1,2-d)-triazol-2yl)-3phenyl-coumarin. Phorwhite K-20G2 is sold by Mobay Chemical Corporation, P.O. Box 385, Union Metro Park, Union, N.J. 07083, and is thought to be a pyrazoline derivative, Eastobrite OB-1 as sold by Eastman Chemical Products, Inc. Kingsport, Tenn., is thought to be 4,4-Bis(benzoxaczoly)stilbene. The above-mentioned Uvitex and Eastobrite OB-1 are preferred optical brighteners for use in accordance with this invention.
Moreover, since many optical brighteners are colored, the percentage of optical brighteners utilized must not be excessive in order to prevent the optical brightener from functioning as a pigment or dye in its own right.
The percentage of optical brighteners which can be used in accordance with this invention is from about 0.01% to about 0.5% as based on the weight of the polymer used as a cover stock. A more preferred range is from about 0.05% to about 0.25% with the most preferred range from about 0.10% to about 0.020% depending on the optical properties of the particular optical brightener used and the polymeric environment in which it is a part.
Generally, the additives are admixed with a ionomer to be used in the cover composition to provide a masterbatch (M.B.) of desired concentration and an amount of the masterbatch sufficient to provide the desired amounts of additive is then admixed with the copolymer blends.
The cover compositions described herein, when processed according to the parameters set forth below and combined with soft cores at thicknesses defined herein to produce covers having a Shore D hardness of 65, provide golf balls with a reduced spin rate. It is noted, however, that the high acid ionomer resins provide for more significant reduction in spin rate than that observed for the low acid ionomer resins.
The cover compositions and molded balls of the present invention may be produced according to conventional melt blending procedures. In this regard, the ionomeric resins are blended along with the masterbatch containing the desired additives in a Banbury type mixer, two-roll mill, or extruded prior to molding. The blended composition is then formed into slabs or pellets, etc. and maintained in such a state until molding is desired. Alternatively a simple dry blend of the pelletized or granulated resins and color masterbatch may be prepared and fed directly into the injection molding machine where homogenization occurs in the mixing section of the barrel prior to injection into the mold. If necessary, further additives such as an inorganic filler, etc., may be added and uniformly mixed before initiation of the molding process.
Moreover, golf balls of the present invention can be produced by molding processes currently well known in the golf ball art. Specifically, the golf balls can be produced by injection molding or compression molding the novel cover compositions about the hollow metal mantle cores to produce a golf ball having a diameter of about 1.680 inches or greater and weighing about 1.620 ounces. In an additional embodiment of the invention, larger molds are utilized to produce the thicker covered oversized golf balls. As indicated, the golf balls of the present invention can be produced by forming covers consisting of the compositions of the invention around the softer hollow metal mantle cores by conventional molding processes. For example, in compression molding, the cover composition is formed via injection at about 380.degree. F. to about 450.degree. F. into smooth surfaced hemispherical shells which are then positioned around the core in a dimpled golf ball mold and subjected to compression molding at 200-300.degree. F. for 2-10 minutes, followed by cooling at 50-70.degree. F. for 2-10 minutes, to fuse the shells together to form a unitary ball. In addition, the golf balls may be produced by injection molding, wherein the cover composition is injected directly around the core placed in the center of a golf ball mold for a period of time at a mold temperature of from 50.degree. F. to about 100.degree. F. After molding the golf balls produced may undergo various further finishing steps such as buffing, painting, and marking as disclosed in U.S. Pat. No. 4,911,451.
In an alternative embodiment, the resulting ball is larger than the standard 1.680 inch golf ball. Its diameter is in the range of about 1.680 to 1.800 inches, more likely in the range of about 1.700 to 1.800 inches, preferably in the range of 1.710-1.730 inches, and most preferably in the range of about 1.717-1.720 inches. The larger diameter of the golf ball results from the cover thickness which ranges from more than the standard 0.0675 inches up to about 0.130 inches, preferably from about 0.0675 to about 0.1275 inches, more preferably in the range of about 0.0825 to 0.0925 inches, and most preferably in the range of about 0.0860 to 0.0890 inches. The core is of a standard size, roughly about 1.540 to about 1.545 inches.
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon a reading and understanding of the preceding detailed description. It is intended that the invention be construed as including all such alterations and modifications insofar as they come within the scope of the appended claims or the equivalents thereof.
Claims
  • 1. A golf ball comprising:
  • a core including a mantle defining a hollow interior region and an outer core layer, said core having a Riehle compression of at least 75; and
  • a cover disposed about said core, said cover comprising at least one high acid ionomer resin including a copolymer of greater than 16% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10% to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 2. The golf ball of claim 1 wherein said mantle comprises at least one metal selected from the group consisting of steel, titanium, chromium, nickel, and alloys thereof.
  • 3. The golf ball of claim 2 wherein said mantle comprises a nickel titanium alloy.
  • 4. The golf ball of claim 1 wherein said mantle has a uniform thickness ranging from about 0.001 inches to about 0.050 inches.
  • 5. The golf ball of claim 4 wherein said thickness ranges from about 0.005 inches to about 0.050 inches.
  • 6. The golf ball of claim 5 wherein said thickness ranges from about 0.005 inches to about 0.010 inches.
  • 7. The golf ball of claim 1 wherein said mantle comprises:
  • a first spherical shell; and
  • a second spherical shell, said second shell disposed adjacent to said first shell.
  • 8. The golf ball of claim 7 wherein said first shell and said second shell independently comprise a metal selected from the group consisting of steel, titanium, chromium, nickel, and alloys thereof.
  • 9. The golf ball of claim 8 wherein at least one of said first shell and said second shell comprise a nickel titanium alloy.
  • 10. The golf ball of claim 1 wherein said golf ball further comprises:
  • a polymeric hollow substrate disposed within said interior region of said mantle.
  • 11. The golf ball of claim 1 wherein said cover is comprised of at least one high acid ionomer resin comprising a copolymer of about 17% to about 25% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10% to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 12. The golf ball of claim 11 wherein said cover is comprised of at least one high acid ionomer resin comprising from about 18.5% to about 21.5% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10 to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 13. The golf ball of claim 1 wherein said cover has a thickness greater than 0.0675 inches.
  • 14. The golf ball of claim 13 wherein said cover has a thickness from about 0.0675 inches to about 0.130 inches.
  • 15. The golf ball of claim 1 wherein said golf ball has a diameter of about 1.680 to about 1.800 inches.
  • 16. The golf ball of claim 15 wherein said golf ball has a diameter of about 1.700 to about 1.800 inches.
  • 17. The golf ball of claim 16 wherein said golf ball has a diameter of about 1.710 to about 1.730 inches.
  • 18. The golf ball of claim 17 wherein said golf ball has a diameter of about 1.717 to about 1.720 inches.
  • 19. The golf ball of claim 1 wherein said cover is a multilayer cover including a first layer and second layer.
  • 20. A golf ball comprising:
  • a core including a metal mantle defining a hollow interior, said core exhibiting a Riehle compression of at least 75; and
  • a cover disposed about said core and having a Shore D hardness of at least 65, said cover comprising a high acid ionomer.
  • 21. The golf ball of claim 20 wherein said mantle comprises at least one metal selected from the group consisting of steel, titanium, chromium, nickel, and alloys thereof.
  • 22. The golf ball of claim 21 wherein said mantle comprises a nickel titanium alloy.
  • 23. The golf ball of claim 20 wherein said mantle has a uniform thickness ranging from about 0.001 inches to about 0.050 inches.
  • 24. The golf ball of claim 23 wherein said thickness ranges from about 0.005 inches to about 0.050 inches.
  • 25. The golf ball of claim 24 wherein said thickness ranges from about 0.005 inches to about 0.010 inches.
  • 26. The golf ball of claim 20 wherein said mantle comprises:
  • a first spherical shell; and
  • a second spherical shell, said second shell disposed immediately adjacent to said first shell.
  • 27. The golf ball of claim 26 wherein said first shell and said second shell independently comprise a metal selected from the group consisting of steel, titanium, chromium, nickel, and alloys thereof.
  • 28. The golf ball of claim 27 wherein at least one of said first shell and said second shell comprise a nickel titanium alloy.
  • 29. The golf ball of claim 20 wherein said cover is comprised of at least one high acid ionomer resin comprising a copolymer of about 17% to about 25% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10% to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 30. The golf ball of claim 29 wherein said cover is comprised of at least one high acid ionomer resin comprising from about 18.5% to about 21.5% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10% to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 31. The golf ball of claim 20 wherein said cover has a thickness greater than about 0.0675 inches.
  • 32. The golf ball of claim 20 wherein said cover has a thickness from about 0.0675 inches to about 0.130 inches.
  • 33. The golf ball of claim 20 wherein said golf ball has a diameter of about 1.680 inches to about 1.800 inches.
  • 34. The golf ball of claim 33 wherein said golf ball has a diameter of about 1.700 to about 1.800 inches.
  • 35. The golf ball of claim 34 wherein said golf ball has a diameter of about 1.710 to about 1.730 inches.
  • 36. The golf ball of claim 35 wherein said golf ball has a diameter of about 1.717 to about 1.720 inches.
  • 37. The golf ball of claim 20, said cover including a first cover layer and a second cover layer.
  • 38. A golf ball comprising:
  • a core including a metal mantle defining a hollow interior, said core exhibiting a Riehle compression of from about 75 to about 115;
  • a cover disposed about said core, said cover having a Shore D hardness of at least about 65 and comprising a high acid ionomer that includes at least about 16% by weight of an alpha, beta-unsaturated carboxylic acid; and
  • a polymeric hollow spherical substrate disposed either (i) between said metal mantle and said cover, or (ii) inwardly of said metal mantle and within said hollow interior defined by said metal mantle.
  • 39. The golf ball of claim 38 wherein said mantle comprises at least one metal selected from the group consisting of steel, titanium, chromium, nickel, and alloys thereof.
  • 40. The golf ball of claim 39 wherein said mantle comprises a nickel titanium alloy.
  • 41. The golf ball of claim 38 wherein said mantle has a uniform thickness ranging from about 0.001 inches to about 0.050 inches.
  • 42. The golf ball of claim 41 wherein said thickness ranges from about 0.005 inches to about 0.050 inches.
  • 43. The golf ball of claim 42 wherein said thickness ranges from about 0.005 inches to about 0.010 inches.
  • 44. The golf ball of claim 38 wherein said mantle comprises:
  • a first spherical shell; and
  • a second spherical shell, said second shell disposed adjacent to said first shell.
  • 45. The golf ball of claim 44 wherein said first shell and said second shell independently comprise a metal selected from the group consisting of steel, titanium, chromium, nickel, and alloys thereof.
  • 46. The golf ball of claim 45 wherein at least one of said first shell and said second shell comprise a nickel titanium alloy.
  • 47. The golf ball of claim 38 wherein said polymeric substrate has a thickness from about 0.005 inches to about 0.010 inches.
  • 48. The golf ball of claim 38 wherein said cover is comprised of at least one high acid ionomer resin comprising a copolymer of about 17% to about 25% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10% to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 49. The golf ball of claim 48, wherein said cover is comprised of at least one high acid ionomer resin comprising from about 18.5% to about 21.5% by weight of an alpha, beta-unsaturated carboxylic acid, and an alpha olefin of which about 10% to about 90% of the carboxyl groups of the copolymer are neutralized with a metal cation.
  • 50. The golf ball of claim 38 wherein said cover has a thickness greater than about 0.0675 inches.
  • 51. The golf ball of claim 50 wherein said cover has a thickness from about 0.0675 inches to about 0.130 inches.
  • 52. The golf ball of claim 38 wherein said golf ball has a diameter of about 1.680 inches to about 1.800 inches.
  • 53. The golf ball of claim 52 wherein said golf ball has a diameter from about 1.700 inches to about 1.800 inches.
  • 54. The golf ball of claim 53 wherein said golf ball has a diameter from about 1.717 inches to about 1.720 inches.
  • 55. The golf ball of claim 38 wherein said cover is a multilayer cover.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of U.S. Ser. No. 08/966,446 filed Nov. 7, 1997 which claims priority from U.S. provisional application Ser. No. 60/042,120 filed Mar. 28, 1997; U.S. provisional application Ser. No. 60/042,430 filed Mar. 28, 1997; and is a continuation-in-part of U.S. Ser. No. 08/714,661 filed Sep. 16, 1996.

US Referenced Citations (215)
Number Name Date Kind
RE25427 Harkins Jul 1963
D107066 Cavignac Nov 1937
D228394 Martin et al. Sep 1973
D243866 Shaw et al. Mar 1977
D247685 Haines et al. Apr 1978
696887 Kempshall Apr 1902
696890 Kempshall Apr 1902
696891 Kempshall Apr 1902
696895 Kempshall Apr 1902
697816 Davis Apr 1902
697925 Kempshall Apr 1902
699089 Kampshall Apr 1902
700656 Kempshall May 1902
700658 Kempshall May 1902
700660 Kempshall May 1902
701741 Kempshall Jun 1902
704748 Kempshall Jul 1902
704838 Kempshall Jul 1902
705249 Kempshall Jul 1902
705359 Kempshall Jul 1902
707263 Saunders Aug 1902
711177 Richards Oct 1902
711227 Richards Oct 1902
711474 Chapman Oct 1902
712413 Richards Oct 1902
713772 Kempshall Nov 1902
719499 Painter Feb 1903
720852 Smith, Jr. Feb 1903
727200 Richards May 1903
739753 Kempshall Sep 1903
740403 Day Oct 1903
878254 Taylor Feb 1908
906644 Meade Dec 1908
906932 Riblet Dec 1908
922773 Kempshall May 1909
985741 Harvey Feb 1911
1182604 Wassworth May 1916
1182605 Wadsworth May 1916
1255388 Cobb Feb 1918
1265036 Bendelow Aug 1918
1270008 Cobb Jun 1918
1286834 Taylor Dec 1918
1339992 Wais May 1920
1418220 White May 1922
1482232 Hazeltine Jan 1924
1568514 Lewis Jan 1926
1586514 Arnott Jun 1926
1591117 Floyd Jul 1926
1656408 Young Jan 1928
1666699 Hagen Apr 1928
1681167 Beldam Aug 1928
1716435 Fotheringham Jun 1929
1855448 Hazeltine Apr 1932
2002726 Young May 1935
2055326 Young Sep 1936
2106704 Davis Feb 1938
2258331 Miller Oct 1941
2258332 Miller Oct 1941
2258333 Miller Oct 1941
2364955 Diddel Dec 1944
2643125 Juve Jun 1953
2728576 Martin et al. Dec 1955
2730159 Semegen Jan 1956
2741480 Smith Apr 1956
2786684 Muccino Mar 1957
2861810 Veatch Nov 1958
2997302 Smith Aug 1961
3031194 Strayer Apr 1962
3218075 Shakespeare Nov 1965
3264272 Rees Aug 1966
3534965 Harrison et al. Oct 1970
3572721 Harrison et al. Mar 1971
3572722 Harrison et al. Mar 1971
3671477 Nesbitt Jun 1972
3708172 Rango Jan 1973
3819190 Nepela et al. Jun 1974
3819768 Molitor Jun 1974
3908993 Gentiluomo Sep 1975
3940145 Gentiluomo Feb 1976
4085937 Schenk Apr 1978
4090716 Martin et al. May 1978
4123061 Dusbiber Oct 1978
4141559 Melvin et al. Feb 1979
4142727 Shaw et al. Mar 1979
4201384 Barber May 1980
4235441 Ciccarello Nov 1980
4256304 Smith et al. Mar 1981
4258921 Worst Mar 1981
4266773 Treadwell May 1981
4274637 Molitor Jun 1981
4284276 Worst Aug 1981
4346898 Badke Aug 1982
4431193 Nesbitt Feb 1984
4483537 Hanada et al. Nov 1984
4546980 Gendrea et al. Oct 1985
4560168 Aoyama Dec 1985
4625964 Yamada Dec 1986
4653758 Solheim Mar 1987
4660834 Carrigan Apr 1987
4674751 Molitor et al. Jun 1987
4679795 Melvin et al. Jul 1987
4681323 Alaki et al. Jul 1987
4714253 Nakahara et al. Dec 1987
4720111 Yamada Jan 1988
4722529 Shaw et al. Feb 1988
4726590 Molitor Feb 1988
4729567 Oka et al. Mar 1988
4729861 Lynch et al. Mar 1988
4744564 Yamada May 1988
4762326 Gobush Aug 1988
4765626 Gobush Aug 1988
4770422 Isaac Sep 1988
4772026 Gobush Sep 1988
4787638 Kobayashi Nov 1988
4801649 Statz Jan 1989
4804189 Gobush Feb 1989
4805914 Toland Feb 1989
4813677 Oka et al. Mar 1989
4830378 Aoyama May 1989
4836552 Puckett et al. Jun 1989
4839116 Puckett et al. Jun 1989
4840381 Ihara et al. Jun 1989
4844471 Terence et al. Jul 1989
4844472 Ihara Jul 1989
4848766 Oka et al. Jul 1989
4848770 Shama Jul 1989
4852884 Sullivan Aug 1989
4858923 Gobush et al. Aug 1989
4863167 Matsuki et al. Sep 1989
4867459 Ihara Sep 1989
4869512 Nomura et al. Sep 1989
4877252 Shaw Oct 1989
4880241 Melvin et al. Nov 1989
4884814 Sullivan et al. Dec 1989
4886275 Walker Dec 1989
4886277 Mackey Dec 1989
4911451 Sullivan et al. Mar 1990
4915389 Ihara Apr 1990
4915390 Gobush et al. Apr 1990
4919434 Saito Apr 1990
4921255 Taylor May 1990
4925193 Melvin et al. May 1990
4932664 Pockington et al. Jun 1990
4936587 Lynch et al. Jun 1990
4943055 Corley Jul 1990
4949976 Gobush Aug 1990
4960283 Gobush Oct 1990
4968038 Yamada Nov 1990
4971330 Morell Nov 1990
4973057 Morell Nov 1990
4974853 Morell Dec 1990
4974854 Morell Dec 1990
4974855 Morell Dec 1990
4974856 Morell Dec 1990
4979747 Jonkouski Dec 1990
4982964 Morell Jan 1991
4986545 Sullivan Jan 1991
4991852 Pattison Feb 1991
4995613 Walker Feb 1991
4998733 Lee Mar 1991
5000459 Isaac Mar 1991
5002281 Nakahara et al. Mar 1991
5009427 Stiefel et al. Apr 1991
5009428 Yamagishi et al. Apr 1991
5016887 Jonkouski May 1991
5018740 Sullivan May 1991
5018741 Stiefel et al. May 1991
5020803 Gendreau et al. Jun 1991
5024444 Yamagishi et al. Jun 1991
5033750 Yamagishi et al. Jul 1991
5037104 Watanabe et al. Aug 1991
5044638 Nesbitt et al. Sep 1991
5046742 Mackey Sep 1991
5048838 Chikaraishi et al. Sep 1991
5060953 Bunger et al. Oct 1991
5060954 Gobush Oct 1991
5062644 Lee Nov 1991
5064199 Morell Nov 1991
5068151 Nakamura Nov 1991
5072945 Oka et al. Dec 1991
5078402 Oka Jan 1992
5080367 Lynch et al. Jan 1992
5098105 Sullivan Mar 1992
5120891 Sullivan Jun 1992
5150905 Yuki et al. Sep 1992
5150906 Molitor et al. Sep 1992
5184828 Kim et al. Feb 1993
5187013 Sullivan Feb 1993
5194191 Nomura et al. Mar 1993
5209485 Nesbitt et al. May 1993
5222739 Horiuchi et al. Jun 1993
5253871 Viollaz Oct 1993
5273286 Sun Dec 1993
5273287 Rees Dec 1993
5298571 Statz et al. Mar 1994
5304608 Yabuki et al. Apr 1994
5314187 Proudfit May 1994
5368304 Sullivan et al. Nov 1994
5421580 Sugimoto et al. Jun 1995
5439227 Egashira et al. Aug 1995
5452898 Yamagishi et al. Sep 1995
5480155 Molitor et al. Jan 1996
5482286 Molitor et al. Jan 1996
5511791 Ebisuno et al. Apr 1996
5580057 Sullivan et al. Dec 1996
5586950 Endo Dec 1996
5645497 Sullivan et al. Jul 1997
5688192 Aoyama Nov 1997
5688869 Sullivan et al. Nov 1997
5733207 Sullivan et al. Mar 1998
5759676 Cavallaro et al. Jun 1998
5762568 Kato Jun 1998
5830087 Sullivan et al. Nov 1998
5833554 Sullivan et al. Nov 1998
B14884814 Sullivan et al. Feb 1992
Foreign Referenced Citations (13)
Number Date Country
192618 Jan 1983 AUX
4774 Jan 1892 GBX
4360 Jan 1898 GBX
20778 Jan 1911 GBX
3012 Jan 1912 GBX
22179 Jan 1912 GBX
645 Jan 1914 GBX
189551 Sep 1921 GBX
377354 May 1931 GBX
420410 Jan 1934 GBX
2230531 Oct 1990 GBX
2260546 May 1996 GBX
WO 02509 Nov 1980 WOX
Non-Patent Literature Citations (2)
Entry
Du Pont--Surlyn Grade Selector Guide (1985).
"The Curious History of the Golf ball, Mankind's Most Fascinating Sphere," John Stuart Martin, Horizon Press, N.Y. 1968. See pp. 88 and 89.
Continuation in Parts (2)
Number Date Country
Parent 966446 Nov 1997
Parent 714661 Sep 1996