Corresponding reference characters indicate corresponding parts throughout the drawings.
Thus, in one form the invention comprises a method including detecting a vacuum condition associated with the pump 204 and selectively supplying power to the motor 202 driving the pump 204 in response to operator input via the actuator 212. The motor 202 is temporarily disabled by the switch 206 when the vacuum condition occurs. After disabling the motor 202 when the vacuum condition occurs, the circuit 208 selectively supplies power to the motor 202 only in response to operator input via the actuator 212 to reset the circuit 208.
In operation, an operator would actuate the actuator 302 such as by pressing an air button at the surface of the tub or other device causing the momentary switch S1 to momentarily close and causing the alternated action switch S2 to move in the down position to create a closed circuit which energizes the relay coil RY1 and the motor M to begin driving the pump P and to close the contacts K1. Switch S3 is normally closed to complete the circuit between power supply L1, L2. The closed contacts K1 and alternated action switch S2 in its down state complete a closed circuit and continues to supply power to the motor M and the relay coil RY1. When the switch S2 is moved to the up position by operation of the actuator 302, an open circuit is created and power to the relay RY1 and the motor M are interrupted and contacts K1 are opened.
If the momentary switch S3 opens momentarily in response to sensing a vacuum, it momentarily creates an open circuit that de-energizes the relay coil RY1 to open contacts K1 causing an open circuit which interrupts power to the motor M to discontinue operation of the pump P. At this point, the actuator 302 must be operated by the operator in order to reenergize the motor M and continue operation of the pump. In this embodiment, the first actuation of the actuator 302 resets the alternated action switch S2 to the up position and momentarily closes switch S1 which does not affect the operation of the motor because the circuit is open. The next actuation of actuator 302 simultaneously closes momentary switch S1 and moves switch S2 to the down position to close the circuit and energize the motor M and drive the pump P.
Thus, the pump P is shut off and the energization of the motor M is discontinued when the switch S3 detects a vacuum on the suction side of the pump P. The embodiment of the circuit illustrated in
According to one embodiment, the circuit as illustrated in
Table 1 illustrates the three different modes of the circuit according to one embodiment of the invention.
In the OFF mode, contacts K1 are open, momentary switch S1 is initially closed when transitioning into the OFF mode and S1 is open after the transition, switch S2 is in the up position (creating an open circuit), and switch S3 is closed so that the motor is OFF. The OFF mode is a transition from either the ON mode or the VACUUM mode. To transition out of the OFF mode to the ON mode, the OFF mode is responsive to the actuator.
In the ON mode, contacts K1 are closed, momentary switch S1 is initially closed when transitioning into the ON mode and S1 is open after the transition, switch S2 is in the down position (creating a closed circuit), and switch S3 is closed so that the motor is ON. The ON mode is a transition from the OFF mode. To transition out of the ON mode to the OFF mode, the ON mode is responsive to the actuator. When a vacuum condition is detected, there is a transition out of the ON mode to the VACUUM mode, so that the ON mode is responsive to the vacuum switch.
In the VACUUM mode, contacts K1 are open, momentary switch S1 is open, switch S2 is in the down position, and momentary switch S3 is initially open when transitioning into the VACUUM mode. The motor is OFF. The VACUUM mode is a transition from the ON mode. To transition from the VACUUM mode to the OFF mode, the VACUUM mode is responsive to the actuator.
Table 2 illustrates a series of mode changes exemplifying one embodiment of operation of the invention. The right column indicates the action that causes a transition from one row to the next.
Row 1 illustrates the circuit in the OFF mode and illustrates that action by the operator manipulating the actuator changes the status of the circuit to the ON mode as shown in row 2. In row 2 in the ON mode transitioning from the OFF mode, switch S1 momentarily closes and switch S2 changes to the down position in response to the manipulation of the actuator. This closes the circuit to energize the motor M to drive the pump P and energizes the relay coil RY1 to close contacts K1.
Row 2 illustrates the circuit in the ON mode and illustrates that action by the operator manipulating the actuator changes the status of the circuit to the OFF mode as shown in row 3. In row 3 in the OFF mode transitioning from the ON mode, switch S1 momentarily closes and switch S2 changes to the up position in response to the manipulation of the actuator. This de-energizes the motor M to discontinue driving of the pump P and de-energizes the relay coil RY1 to open contacts K1.
Row 3 illustrates the circuit in the OFF mode and illustrates that action by the operator manipulating the actuator changes the status of the circuit to the ON mode as shown in row 4. In row 4 in the ON mode transitioning from the OFF mode, switch S1 momentarily closes and switch S2 changes to the down position in response to the manipulation of the actuator. This energizes the motor M to drive the pump P and energizes the relay coil RY1 to close contacts K1.
Row 4 illustrates the circuit in the ON mode and illustrates that the vacuum switch changes the status of the circuit to the VACUUM mode as shown in row 5. In row 5 in the VACUUM mode transitioning from the ON mode, switch S1 remains open, switch S2 remains in the down position and switch S3 opens momentarily in response to detecting a vacuum condition. This de-energizes the motor M to discontinue driving of the pump P and de-energizes the relay coil RY1 to open contacts K1.
Row 5 illustrates the circuit in the VACUUM mode and illustrates that action by the operator manipulating the actuator changes the status of the circuit to the OFF mode as shown in row 6. In row 6 in the OFF mode transitioning from the VACUUM mode, switch S1 closes momentarily, switch S2 changes to the up position in response to manipulation of the actuator and S3 remains closed. The relay RY1 and motor M continues to be de-energized and contacts K1 remain open.
Row 6 illustrates the circuit in the OFF mode and illustrates that action of the operator manipulating the actuator changes the status of the circuit to the ON mode as shown in row 2.
Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions, products, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.