Low supply current RMS-to-DC converter

Information

  • Patent Grant
  • 6172549
  • Patent Number
    6,172,549
  • Date Filed
    Wednesday, February 24, 1999
    25 years ago
  • Date Issued
    Tuesday, January 9, 2001
    23 years ago
Abstract
An RMS-to-DC converter implements the difference of squares function using two squaring cells operating in opposition to attain a balance. Each of the squaring cells is implemented as a grounded-base transistor and a two-transistor current mirror. The emitter of the grounded-base transistor is coupled to the input terminal of the current mirror at a node which receives the input signal. The collector of the grounded-base transistor and the output of current mirror are coupled together to generate an output current having a square-law relationship to the input signal. One of the squaring cells receives the input signal and operates at high frequencies (HF), while the other receives a feedback signal and operates in a quasi-DC mode. In a measurement node, a nulling circuit closes a feedback loop around the DC squaring cell to null the output currents from the squaring cells. The nulling circuit includes a filter capacitor for low-pass filtering the output signal from the HF squaring cell, an error amplifier, which is essentially an integrator, for sensing the difference between the currents from the squaring cells, and a circuit for converting the output voltage from the error amplifier to a feedback current for driving the DC squaring cell. The error amplifier includes a resistive load for converting the currents to voltages and a specialized op-amp having high DC precision for sensing the voltage difference. The squaring cell bias current adjusts the input impedance of the cell. The squaring cell may be matched to an external signal source. The dynamic range can be extended by using a non-linear load in the error amplifier and emitter resistors in the squaring cells. The output signal is obtained by replicating the feedback current in a separate path. The two squaring cells are inherently balanced by design and by careful attention to device matching, including cross-quadding of parallel cells, and by using a single bias voltage.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to RMS-to-DC converters, and more particularly, to RMS-to-DC converters that are capable of measuring true power at high frequencies and low supply currents.




SUMMARY OF THE INVENTION




The present invention utilizes two balanced squaring cells operating in opposition to implement the difference of squares function, thereby achieving true RMS-to-DC conversion. By implementing the squaring cells as simple three transistor cells, each having a grounded base transistor and a two-transistor current mirror, an RMS-to-DC converter in accordance with the present invention can operate at microwave frequencies while dissipating as little as 1 mW of quiescent power in these cells.




One of the squaring cells receives the high frequency (HF) input signal and generates a first current which represents the square of the HF input signal. The other squaring cell generates a second current that represents the square of a DC feedback current which is input to the cell.




Used as a measurement device, a nulling circuit closes a feedback loop around the DC squaring cell so as to balance the output currents from the squaring cells. This path includes a filter capacitor for low-pass filtering the output signal from the HF squaring cell, an error amplifier for sensing the difference between the output currents from the squaring cells, and a circuit for converting the output from the error amplifier to a feedback current for driving the DC squaring cell. The error amplifier includes a balanced resistive load for converting the currents from the squaring cells to voltages, and an op-amp for sensing the resulting voltage difference. In a preferred embodiment, a nonlinear load is used to extend the dynamic range of the squaring cells.




Each of the squaring cells includes a grounded base transistor and a current mirror. The grounded base transistor has its base anchored at a suitable bias voltage. The emitter of the grounded base transistor and the input terminal of the current mirror are connected together at the input terminal of the squaring cell. The collector of the grounded base transistor and the output of the current mirror are connected together at the output terminal of the squaring cell to generate the output current which approximates the square of the input signal.




The squaring cell provides a good square-law approximation over an input signal range that is largely determined by the thermal voltage V


T


=kT/q. The input node of a squaring cell according to the present invention appears as a broad-band matching network to an external signal source, thereby terminating the generator without the need for an external termination resistor. The bias current through the squaring cells determines this input impedance. The two squaring cells are balanced by careful device matching and layout techniques. In a preferred embodiment, the HF cell is implemented as two parallel-connected cells which are physically located on opposite sides of the DC squaring cell to cancel effects from doping and thermal gradients. Using a single bias voltage for all of the cells further insures a high degree of balance between the two cells.




The output signal is obtained by replicating the current flowing into the input cell through a feedback interface; this current is unidirectional, that is, its sign is independent of the sign of the input current presented to the first squaring cell. The replicated current is converted to a voltage and buffered to provide substantial load driving capability even though quiescent current consumption is low.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic diagram of a first embodiment of a squaring cell in accordance with the present invention.





FIG. 2

is a graph showing the output function of the circuit of FIG.


1


.





FIG. 3

is a schematic diagram of an embodiment of an RMS-to-DC converter in accordance with the present invention.





FIG. 4

is a schematic diagram of another embodiment of a squaring cell in accordance with the present invention.





FIG. 5

is a schematic diagram of an embodiment of a squaring cell utilizing inductors in accordance with the present invention.





FIG. 6

is a schematic diagram of an embodiment of a squaring cell utilizing overlapping emitter-degenerated and fully translinear transistors in accordance with the present invention.





FIG. 7

is a schematic diagram of an embodiment of two cross-quadded squaring cells in accordance with the present invention.





FIG. 8

shows the cross-quad layout of the squaring cells of FIG.


7


.





FIG. 9

shows the layout of two balanced squaring cells in accordance with the present invention in which one of the squaring cells is implemented as two parallel-connected cells that are arranged on opposite sides of the other squaring cell.





FIG. 10

is a schematic diagram of a practical embodiment of a nulling circuit and output buffer in accordance with the present invention.





FIG. 11

is a schematic diagram of a practical embodiment of a bias voltage generator in accordance with the present invention.




FIGS.


12


-


15


are graphs showing simulation results for the circuit of FIG.


1


.




FIGS.


16


-


17


are graphs showing simulation results for the circuit of FIG.


4


.





FIG. 18

is a schematic diagram of another embodiment of a nonlinear load in accordance with the present invention.











DETAILED DESCRIPTION





FIG. 1

is a schematic diagram of an embodiment of a squaring cell in accordance with the present invention. Squaring cell includes a transistor Q


1


configured in a grounded base arrangement with its base connected to receive a bias voltage V


BIAS


. The circuit of

FIG. 1

is shown in a BJT embodiment, but could also be realized in a field-effect transistor (FET) embodiment (e.g., CMOS). In the context of Q


1


, grounded base refers to any type of transistor or other current control device having its control terminal (i.e., the base of a BJT or the gate of an FET) connected to an AC ground. The emitter of Q


1


is connected to the base and collector of NPN transistor Q


2


, which forms a current mirror with transistor Q


3


. The collectors of diode-connected transistor Q


1


and mirror transistor Q


3


are connected together at the output terminal


16


of the cell for providing the output current I


OUT


. The input signal is generated by a voltage source V


IN


having a source resistance R


S


. The input current I


IN


is input to the input terminal


22


which is connected to the emitter of Q


1


and the base-collector terminals of Q


2


. The emitters of Q


2


and Q


3


are connected to a power supply ground terminal GND. A blocking capacitor C


DC


eliminates DC input currents which would be caused by the input terminal


22


being at a V


BE


above GND.




The squaring cell of

FIG. 1

is biased by an adjunct cell which includes two series-connected transistors Q


12


and Q


13


that are diode-connected in series between the bias node


20


and GND. The base of Q


1


is also connected to the bias node


20


. A current source


14


applies a bias current I


0


to the collector of Q


12


to set up the bias voltage V


BIAS


. The resulting quiescent (zero-signal) current in Q


1


-Q


3


is proportional to absolute temperature (PTAT).




It can be shown that the output current I


OUT


from the squaring cell of

FIG. 1

has the following form:








I




OUT




=I




0




{square root over (x


2


+4)}


  (Eq. 1)






where x=I


IN


/I


0


, and assuming all transistors have the same emitter areas.





FIG. 2

is a graph showing the function of Eq. 1 as a solid line, from which it is apparent that, for small values of x, the function of Eq. 1 takes on a curvature reaching a minimum value of 2I


0


at x=0 which will be referred to as the quiescent or zero-signal baseline current. The zero signal baseline current can be removed from Eq. 1 to yield:








I




SQR




=I




OUT


−2


I




0




=I




0




{square root over (x


2


+4)}−


2






I




0


.  (Eq. 2)






By rearranging this equation and using the approximation:






{square root over (1+α)}≈


1


+α/


2


,  (Eq. 3)






it can be shown that








I




SQR




≈x




2


/4


I




0


  (Eq. 4)






when the magnitude of x is small (<<4). Thus, for input currents that are small compared to I


0


, the circuit of

FIG. 1

can closely approximate a squaring function.




For values of x>>4, Eq. 1 can be approximated by:








I




OUT




≈I




0




{square root over (x


2


)}=




I




0




|x|


  (Eq. 5)






which is the absolute-value function. Thus, for relatively large values of input current I


IN


, the output current is approximately equal to the absolute-value of the input current. The function of Eq. 5 is shown in

FIG. 2

as a broken line for comparison to the function of Eq. 1.




Therefore, if the input signal I


IN


applied to the squaring cell of

FIG. 1

is limited to less than about ±4I


0


, the squaring cell provides a good square-law approximation. That is, the optimum function of the squaring cell is limited to the curved portion of the solid curve shown in

FIG. 2

which approximates a parabola.





FIG. 3

is a simplified schematic diagram of an embodiment of an RMS-to-DC converter in accordance with the present invention which uses the squaring cell of

FIG. 1

to implement the difference of squares function. The circuit of

FIG. 3

is intended for fabrication in monolithic form on an integrated circuit.




The circuit of

FIG. 3

includes a first squaring cell which will be referred to as a high frequency or “HF” squaring cell. The HF squaring cell is formed from NPN transistors Q


1


-Q


3


which are arranged in the same manner as the squaring cell of

FIG. 1

, but with the addition of a further NPN transistor Q


4


which has its collector connected to the collector of Q


1


at node


16


, its emitter connected to the collector of Q


3


, and its base connected to the base of Q


1


. Transistor Q


4


acts as a cascode to Q


3


and serves to improve the overall accuracy by equalizing the collector-base voltage of Q


3


to that of Q


2


. In the context of Q


4


, cascode refers to a transistor having its control terminal (i.e., the base of a BJT or the gate of a FET) connected to an AC ground for the purpose of improving the accuracy of the circuit and/or counteracting the effects of the collector-junction capacitance (C


JC


) of another bipolar transistor such as Q


3


(or the drain-gate capacitance of a field-effect transistor).




The circuit of

FIG. 3

includes a second, identical squaring cell which will be referred to as a “DC” squaring cell. The DC squaring cell includes NPN transistors Q


5


-Q


8


which are configured in the same arrangement as Q


1


-Q


4


. The collectors of Q


5


and Q


8


are connected together at node


18


. The bases of Q


1


, Q


4


, Q


5


and Q


8


are commonly connected at node


20


to receive the same bias voltage V


BIAS


. Base resistors can be connected between the bases and collectors of Q


2


and Q


6


to compensate for the alpha of the transistors.




The bias voltage V


BIAS


is generated at bias node


20


by an adjunct cell including NPN transistors Q


12


-Q


14


and current source


14


. The adjunct cell is in most respects similar to that of

FIG. 1

but with the addition of transistor Q


14


which is arranged to supply all of the DC base currents thereby improving the bias accuracy. A capacitor C


6


is coupled between node


20


and GND to make this a low impedance node. The overall power consumption of the circuit of

FIG. 3

can be reduced by using a lower bias current I


0


through the adjunct cell transistors Q


12


and Q


13


and then reducing the emitter areas of Q


12


and Q


13


with respect to Q


1


, Q


2


, Q


4


, Q


5


, Q


6


and Q


7


.




The circuit of

FIG. 3

further includes an error amplifier which includes load resistors RL


1


and RL


2


and an operational amplifier


28


. The load resistors RL


1


and RL


2


are connected between the positive power supply terminal VPOS and nodes


16


and


18


, respectively. An on-chip filter capacitor C


1


is connected in parallel with RL


1


for extracting the mean value of the output current generated by the HF squaring cell. A bonding pad


26


is provided at node


16


to allow the addition of an external capacitor C


2


in parallel with C


1


in order to extend the averaging interval.




Operational amplifier


28


has its inverting and noninverting terminals connected to nodes


16


and


18


, respectively, and its output terminal connected to the bases of transistors Q


9


and Q


10


. Although shown as bipolar transistors, Q


9


and Q


10


would be very suitable for implementation as PMOS devices in a BiCMOS realization.




The input stage of op-amp


28


must be designed to accommodate a large common-mode voltage swing at its input terminals. The emitters of Q


9


and Q


10


are connected to VPOS through resistors R


1


and R


2


, respectively. The collector of Q


9


is connected to the base of Q


7


at node


32


which forms the input terminal to the DC squaring cell. The collector of Q


10


is connected to the collector and base of diode-connected NPN transistor Q


11


which serves to equalize the collector voltages of Q


9


and Q


10


under quiescent conditions. The emitter of Q


11


is connected to GND through resistor R


3


which converts output current I


OUTPUT


to a voltage. A buffer amplifier


30


has an input terminal connected to the emitter of Q


11


and an output terminal for providing the final output voltage V


OUT


. A capacitor C


3


is connected between the output terminal of the op-amp


28


and the collector of Q


10


to provide high frequency stabilization of the (nonlinear) feedback system.




In operation, the circuit of

FIG. 3

generates a voltage V


OUT


that is a quasi-DC signal


15


which is essentially proportional to the true RMS value of the input signal. In

FIG. 3

, the input signal is shown as being provided by a signal generator


24


which is coupled to the HF squaring cell through a DC-blocking capacitor C


4


connected to input terminal


22


. The HF and DC squaring cells operate in opposition to generate the first and second currents I


1


and I


2


in RL


1


and RL


2


, respectively. A nulling circuit, which includes capacitor C


1


(and C


2


if present), the error amplifier, and transistor Q


9


, equalizes the currents I


1


and I


2


over an averaging period which is long compared to the signal period or that of the modulation components thereon.




The first current I


1


is low-pass filtered by capacitor Cl which shunts load resistor RL


1


. The currents I


1


and I


2


are converted into voltages by load resistors RL


1


and RL


2


at nodes


16


and


18


, respectively. Op-amp


28


drives transistor Q


9


which converts the voltage output from the op-amp to a feedback current I


FB


which drives the DC squaring cell, thereby closing a feedback loop through the DC squaring cell. The feedback loop nulls the imbalance caused by the output generated by the HF squaring cell.




Transistor Q


10


replicates the current through Q


9


(optionally with a change in scaling factor including R


1


and R


2


) to provide the current I


OUTPUT


to R


3


. Resistor R


3


converts the current I


OUTPUT


to a voltage which is buffered by buffer amplifier


30


to generate the output voltage V


OUT


having a ground-referenced value. For good accuracy, it is important to maintain the collectors of Q


9


and Q


10


at the same voltage, so transistor Q


11


is included to replicate the base-emitter voltage across Q


6


and Q


7


, and the value of R


3


may chosen to replicate the impedance seen at the input to the HF squaring cell.




The arrangement of a DC squaring cell in a feedback path implements the implicit square-root function. Thus, the HF squaring cell provides the “square”, the filter capacitor C


1


provides the “mean”, and the DC squaring cell in the feedback path provides the “root” of the “root-mean-square” (RMS) function. However, for signals below the low-pass filter frequency, the circuit provides the absolute-value function.




Since a squaring cells doubles the dynamic range of an input signal, the squaring cells, the load resistors, and the op-amp must be very well-balanced to maintain an accurate RMS-to-DC conversion for small inputs. An RMS-to-DC converter in accordance with the present invention is preferably embodied in a monolithic implementation in which this balance can be achieved through interdigitation and cross-quadding of the squaring cells and load resistors, as well as by attention to detail in numerous such ways in the error amplifier. Thus, the balance between the squaring cells should be achieved through the physical structure (layout) of the cells, as well as by careful design. The use of a common bias voltage V


BIAS


for both squaring cells contributes to the balance between the cells; in particular, the balance does not depend on the absolute-value of the bias current because the dual squaring cell structure inherently equalizes the zero-signal baseline current. However, the value of the bias current I


0


affects the input impedance of the cells, and this dictates the need for suitably accurate bias control.




Load resistors RL


1


and RL


2


are chosen to provide the largest possible voltage swing across these resistors and thus provide maximum sensitivity at low input levels. However, using high resistance load resistors limits the peak input signal range because, as the currents I


1


and I


2


increase, the voltage at the collectors of Q


1


and Q


4


decreases, and these transistors will saturate if the voltage drops too low. In a preferred embodiment, the load resistors are made non-linear as described below to improve the input signal range.




Although the circuit shown in

FIG. 3

is configured in a measurement mode, it can also be reconfigured as a controller by disconnecting the collector of Q


9


from node


32


and using the voltage V


OUT


as a control signal to control the gain of a variable gain device such as an RF power amplifier. The output signal from the power amplifier is then sampled with a directional coupler and used as the input signal to the HF squaring cell. The overall system can be arranged to regulate the true output power of the amplifier to a value determined by a set-point signal applied to the input of the DC squaring cell at node


32


. (Another arrangement for providing both measurement or control modes of operation is described below with respect to

FIG. 10.

)




An advantage of the circuit of

FIG. 3

is that it provides true RMS detection even at very high input frequencies and at low power supply currents. In

FIG. 3

, only the four transistors Q


1


-Q


4


in the HF squaring cell must operate at RF frequencies. The first squared current I


1


is immediately filtered by C


1


, so the remainder of the circuit can operate at much lower frequencies. The loop bandwidth of the feedback path is determined by the filter time-constant RL


1


C


1


(or RL


1


(C


1


+C


2


) if C


2


is present) and the poles in the transfer function of the op-amp


28


, largely determined by the transconductance (gm) of its input stage and the capacitor C


3


.




This structure is well suited to applications in demanding systems such as carrier division multiple access (CDMA) which entail complicated modulation envelopes with high crest factors imposed on a high-frequency carrier. From the perspective of power measurement, CDMA modulation appears very similar to noise of high crest factor, which requires the use of a filter with a long time constant to measure the true power of the full modulation, while the RMS-to-DC converter must have enough bandwidth to accurately respond to the carrier frequency. The HF squaring cell of

FIG. 3

can be fast enough to respond to even a microwave carrier, while C


1


can increased without limit by the connection of an external capacitor C


2


to assure that the filter time constant is as long as necessary to measure the true power of any modulation envelope on a time-scale of milliseconds or even longer.




A key feature of the dual squaring cell configuration of the circuit of

FIG. 3

is that the zero-signal baseline currents of the two squaring cells are highly balanced for all conditions of bias current, temperature and supply voltage. The use of dual squaring cells and the nulling process also results in some cancellation of the square-law conformance errors between the two cells, thereby reducing the effect of these errors for signals of high crest factor.




A further advantage of a squaring cell in accordance with the present invention is that, not only does it provide a good square-law approximation over a certain input range, but it still provides useful power-measurement capabilities even when the magnitude of the input signal exceeds the square-law range. Referring to

FIG. 2

, when the input signal is large, the output function of the squaring cell (shown as a solid line) no longer approximates a parabola (curved portion of the function), but instead begins to converge on the absolute-value function (shown as broken lines). However, even when the input signal is large enough to cause the squaring cells to operate as absolute-value cells, the circuit of

FIG. 3

still operates as an excellent AC voltmeter. This is in contrast to squaring cells based on other techniques such as, for example, the multi-tanh triplet transconductance cells described in co-pending application Ser. No. 09/245,051 which have a more limited large-signal capacity.




A general problem with integrated-circuit RMS-to-DC converters operating at low currents, and thus low current densities, its that they may be too slow to operate at high RF frequencies. However, by implementing the circuit of

FIG. 3

using “low inertia” transistors of small device geometries (such as those currently available with bipolar processing technologies that produce transistors having an f


T


of 25 GHz), good high frequency operation (i.e., upwards of 3 GHz) can be achieved even at low bias currents.




Another advantage of the squaring cells shown in

FIGS. 1 and 3

is that they provide a well-defined input impedance that can also be adjusted by a simple adjustment of the bias current I


0


. The incremental (small-signal) resistance r


e


of a BJT is given by r


e


=V


T


/I


0


where V


T


is the thermal voltage (≈26 mV at 300K) and I


0


is the quiescent or bias current. Thus, at a bias current of 260 μA, Q


1


and Q


2


each have an r


e


of 100 ohms which, operating effectively in parallel, gives the cell a 50-ohm input impedance. The bias currents through the squaring cells should be proportional to absolute temperature (PTAT) so that the input impedance remains constant with temperature. It should also be noted that the input to the HF squaring cell behaves more as a matching network than as a termination network, so it is not necessary to use additional resistors to define the input impedance.




For several reasons, it may be preferable to configure the circuit of

FIG. 3

for some other impedance, for example 200 ohms rather than 50 ohms. First, a squaring cell in accordance with the present invention has a “V


T


scaling”; that is, it provides a good square-law approximation for input voltages that are roughly in the range of about ±2V


T


. For this full scale input voltage range (about ±50 mV), a 200-ohm input impedance provides a power sensitivity (to a certain available power) that is four times greater than the sensitivity of a 50-ohm impedance. Second, a higher input impedance mandates lower bias currents, and thus, less power is dissipated in both squaring cells. Finally, it allows for the use of a 200-ohm directional coupler when the circuit is used to measure the power from an antenna driven by an RF power amplifier. It should also be noted that it is easy to use a matching network to couple a 200-ohm input to a 50-ohm source if necessary.




The upper end of the dynamic range of the circuit of

FIG. 3

is determined largely by the departure from square-law behavior at high input signal levels. The lower end of the dynamic range is determined largely by the balance that can be achieved in the system, including the matching of the transistors in the squaring cells. Since the transconductance of these cells is very small near the vertical axis, small input voltages cause only tiny changes in their output. The error-amplifier system must be able to respond to the very small changes in the currents I


1


and I


2


if it is to accurately measure the input signal.




The square-law behavior discussed above with respect to Eqs. 1-5 and

FIG. 2

is defined in terms of a pure current input. However, the HF squaring cell is driven in an impedance mode in conjunction with the input signal generator. The impedance signal generator and the input impedance of the circuit of

FIG. 1

affect the square-law behavior as illustrated with reference to FIGS.


12


-


15


.





FIG. 12

shows a simulation result of the baseline-corrected and normalized output current (solid line) for the circuit of

FIG. 1

compared to an ideal square-law function (broken line) using a voltage source coupled to the input terminal


22


through a resistor of 129 ohms. The bias current I


0


is 100 μA, and the voltage source generates a voltage V


GEN


=Y(kT/q), where kT/q is the thermal voltage V


T


(≈26 mV at 300K). Thus, the horizontal axis is a normalized input voltage. The 129 ohm source impedance is the nominal input impedance of the squaring cell when I


0


is 100 μA.





FIG. 13

shows the error between the actual output and the ideal square-law function, i.e., the difference between the solid and broken lines, in FIG.


12


. The error obtained from this group of parameters ranges from 0 to about +2.5 percent as Y swings from −2.5 to +2.5.





FIGS. 14 and 15

show the simulation results for an optimized arrangement utilizing a source resistance of 50 ohms and I


0


=75 μA. In this case, the actual (solid line) and ideal (broken line) curves track closely. The error only ranges from −0.35 to about +0.1 percent as Y swings from −2.5 to +2.5.




One way to achieve a good square-law conformance in the circuit of

FIGS. 1 and 3

is to limit the input current range and use large bias current I


0


. However, a more robust solution can be obtained by using emitter resistors R


E


in series with Q


1


, Q


2


and Q


3


as shown in FIG.


4


. These resistors contribute to the input impedance of the squaring cell, so to maintain a given input impedance, the bias current must be increased to reduce the r


e


of the transistors accordingly. The use of higher bias currents raises the f


T


of the transistors and thus improves the speed of the circuit.




While the resulting circuit uses more power and the input tends to look more like a termination and less like a matching network, there are overall benefits to this modification. For example, the resistors increase the voltage input range of the squaring cells, and improve the overall square-law approximation as is illustrated in

FIGS. 16 and 17

which show simulation results for the circuit of

FIG. 4

with emitter resistors RE=140 ohms to provide a 200-ohm input impedance, and using I


0


=100 μA and a source impedance of 200 ohms. As is apparent from

FIGS. 16 and 17

, the emitter resistors allow the circuit of

FIG. 4

to operate accurately over a large range of input voltages. The error in this case ranges from about −2.5 to +2.5 percent as Y swings from −5.5 to +5.5.




An alternative embodiment of a squaring cell in accordance with the present invention uses inductors as shown in

FIG. 5

in place of the emitter resistors. In this case, the output characteristics of the squaring cell are frequency dependent.





FIG. 6

shows another embodiment of a squaring cell in accordance with the present invention. The circuit of

FIG. 6

includes a squaring cell essentially as shown in

FIG. 4

, but with an overlapping pure translinear (resistorless) squaring cell. That is, there is an additional transistor connected in parallel with each of the transistor-resistor pairs of FIG.


4


. The transistors without emitter resistors have unit emitter areas “e”, while the transistors with emitter resistors have emitter areas of A times “e”. By vary the contribution from the emitter-degenerated and fully translinear portions of the circuit of

FIG. 6

, it is possible to take advantage of the relative advantage of both forms of the circuit. This configuration can provide improved performance, especially when driven from a pure voltage source, although it provides similar improvements when impedance driven. It provides a lower error over a larger range of input and provides much greater peak current output while preserving accuracy. Some optimum parameters for this circuit have been determined to be as follows: emitter area ratio A=62 and RE=32.5 ohms when using I


0


=100 μA and a pure voltage drive.





FIG. 7

is a schematic diagram of an embodiment of a pair of balanced squaring cells in accordance with the present invention. Each squaring cell in

FIG. 7

is implemented as a pair of parallel connected cells. Thus, squaring cells A and B operate in parallel as the HF squaring cell, and cells C and D operate in parallel as the DC squaring cell. The squaring cells are physically arranged on a substrate in a full cross-quad configuration as shown in

FIG. 8

so that the effects of thermal and doping gradients as well as mechanical stress are cancelled as much as possible to provide good balance between the cells.




An emitter resistor R


E


is connected in series with the emitter of each of transistors Q


1


-Q


3


and Q


5


-Q


7


as well as the emitters of corresponding transistors Q


1


A-Q


3


A and Q


5


A-Q


7


A in the respective parallel squaring cells. A base resistor R


B


is connected in series with the base of each of transistors Q


1


-Q


3


, Q


5


-Q


7


, Q


1


A-Q


3


A, and Q


5


A-Q


7


A. When emitter resistors are included, the bias current must be adjusted to maintain the overall input impedance of the squaring cell at the desired value.




Some preferred design parameters for the circuit of

FIG. 7

are as follows: R


E


=160Ω; R


B


=500Ω; and quiescent bias current through each transistor I


0


=42 μAP (where P indicates PTAT). Using the equation r


e


=V


T


/I


0


, it can be seen that the electronic resistance of each transistor is r


e


=620, and therefore, the resistance total of each transistor and its associated emitter resistor R


E


is about 800Ω which results in an input impedance of about 200Ω. This bias current and emitter resistor values adjust the fit of the square-law approximation as discussed above to provide an RMS-to-DC converter that has a dynamic range of about 30 dB at 2 GHz operating from a 2.7V supply.




To reduce quiescent current consumption of the pair of squaring cells shown in

FIG. 7

, the DC squaring cell can be implemented as a single, rather than double, cell. In this case, the parallel cell labeled “D” in

FIG. 7

is eliminated, and the remaining cells A, B and C are laid out in a linear arrangement in which the HF cells A and B are positioned on opposite sides of the DC cell C as shown in FIG.


9


. The resistance of RL


2


must increased by a factor of two to compensate for the reduction of the output current I


2


which results from the use of a single DC squaring cell.




Although the embodiments of the present invention described herein are implemented with BJTs, FETs can also be used, and in such an implementation, the BJT terminology should be understood to refer to the corresponding FET terminology. For example, a grounded base transistor would refer to a grounded gate transistor, emitter resistors would refer to source resistors, V


BE


would refer to V


GS


, and so forth.





FIG. 10

is a simplified schematic of a practical embodiment of a nulling circuit and output buffer in accordance with the present invention. The circuit of

FIG. 10

includes a filter capacitor C


1


, load resistors RL


1


and RL


2


and op-amp


28


configured as in FIG.


3


. However, the primary load resistor RL


1


is connected in parallel with an additional current path formed by diode connected transistors Q


15


and Q


16


connected in series with a secondary load resistor RL


1


A. Likewise, the primary load resistor RL


2


is connected in parallel with an additional current path formed by diode connected transistors Q


17


and Q


18


connected in series with a secondary load resistor RL


2


A. Resistor values in a practical embodiment are RL


1


,RL


2


=2.5 KΩ and RL


1


A,RL


2


A=1.25 KΩ. Although the circuit of

FIG. 10

is shown with two diodes connected in series with each of load resistors RL


1


A,RL


2


A, a different number may be used.




The load resistors and series connected diodes of

FIG. 10

taken together form a nonlinear loading system which extends the dynamic range of the overall system by preventing the transistors in the squaring cells from saturating. When the input signal to the system is small, the currents I


1


and I


2


flow entirely through the relatively high-resistance primary load resistors, which results in a large voltage swing, thereby maintaining the sensitivity to low input signals. However, as the input signal becomes larger, the diodes conduct progressively, and the secondary load resistors prevent the voltage drop across the loading circuit from becoming too great, thereby preventing the transistors in the squaring cells from saturating.




Transistors Q


9


and Q


10


of

FIG. 10

are connected to operate with a common V


BE


. Transistor Q


9


is implemented as two transistors Q


9


A and Q


9


B in parallel. The collector of Q


9


is connected to the input of the DC squaring cell at node


32


through a diode-connected transistor Q


19


in series with a 150Ω resistor R


4


. The collector of Q


10


is connected to GND through two diode-connected transistors Q


20


and Q


11


in series with a 447Ω resistor R


3


. Resistor R


3


converts the current I


OUT


to a voltage at the noninverting input terminal of an op-amp


30


. The output voltage V


OUT


from the op-amp is made available to the user at pin


34


. In this embodiment, the inverting input terminal of op-amp


30


is also made available to the user at pin


36


.




In a measurement mode, V


OUT


is connected directly back to V


SET


, or via a simple off-chip resistive attenuator R


8


and R


9


in order to raise the scale factor. In a controller mode, V


OUT


performs the control function, e.g., is used to control the gain of the driver to a power amplifier, and the set-point signal is applied to V


SET


. The circuit of

FIG. 10

can also be used to implement a simple RF comparator, in which case the input signal is applied to the HF squaring cell, and the threshold voltage is applied to V


SET


. In this mode, V


OUT


switches quickly to one extreme or the other when the voltage across R


3


—the filtered mean of the square of V


IN


(that is, the RMS value of the input signal)—equals V


SET


.




Transistor Q


20


provides a voltage drop that corresponds to the voltage drop across Q


19


, and Q


11


provides a voltage drop that corresponds to the V


BE


at the input to the HF squaring cell. Resistor R


3


provides a resistance that corresponds to the resistor R


4


and the input impedance of the HF squaring cell. Transistors Q


11


, Q


19


and Q


20


are arranged to maintain the collectors of Q


9


and Q


10


at equal voltages so as to improve the matching of the currents I


OUT


and I


FB


. Transistors Q


9


and Q


10


should preferably have small current sources coupled to their collectors to prevent them from turning off completely for small input levels.





FIG. 18

is a schematic diagram of another embodiment of a nonlinear load in accordance with the present invention. The circuit of

FIG. 18

includes load resistor RL


1


connected between the output terminal of the HF squaring cell


16


and a node


40


. Another load resistor RL


2


connected between the output terminal of the DC squaring cell


18


and node


40


. Node


40


is connected to VPOS through a resistor R


0


. Transistors Q


15


and Q


17


, rather than being diode connected, have their bases connected to node


40


and their collectors connected to VPOS. Secondary load resistor RL


1


A is connected between the emitter of Q


15


and terminal


16


, while secondary load resistor RL


2


A is connected between the emitter of Q


17


and terminal


18


. The circuit of

FIG. 18

provides increased sensitivity at low current levels, while still allowing large maximum currents.





FIG. 11

is a simplified schematic of a practical embodiment of a bias voltage generator in accordance with the present invention. The circuit of

FIG. 11

generates a bias voltage V


BIAS


at node


20


that varies with temperature such that it causes the bias current through each transistor in the squaring cells to be proportional to absolute temperature. However, it does so in a different manner than the circuit shown in FIG.


3


. The circuit of

FIG. 3

generates the bias voltage V


BIAS


at node


20


by simply using a PTAT current I


0


flowing through Q


12


and Q


13


to generate the necessary voltage the base of Q


12


. In contrast, the circuit of

FIG. 11

generates this voltage somewhat indirectly.




The circuit of

FIG. 11

is based on a ΔV


BE


cell such as that described with reference to FIG. 19 of U.S. patent application Ser. No. 08/918,728 filed Aug. 21, 1997 titled “RF Mixer With Inductive Degeneration” which is herein incorporated by reference. However, in the circuit of

FIG. 11

, the collector of emitter follower transistor Q


26


, rather than driving the ΔV


BE


cell Q


21


,Q


22


directly, is connected to the base of NPN transistor Q


28


. The collector of Q


28


is connected to VPOS through a 7.6KΩ resistor R


5


, and its emitter is connected to the base of Q


22


to drive the ΔV


BE


cell. Another NPN transistor Q


29


is connected as a diode between the emitter of Q


28


and GND, and NPN current source transistor Q


27


has its base connected to the base of Q


22


, its emitter connected to GND, and its collector connected to the emitter of Q


26


. The base of Q


28


is connected to node


20


through a 234Ω resistor R


10


.




In operation, Q


28


forms a nonlinear voltage divider with Q


29


. The PTAT bias voltage V


BIAS


, is generated at the emitter of Q


26


which is held at 2V


BE


above GND by Q


28


and Q


29


. A second PTAT bias voltage V


BIAS2


is generated at the base of Q


22


and used for biasing components in the output buffer


30


. A third bias voltage V


BIAS3


is generated at the emitter of Q


24


and used for biasing components in the error amplifier.




Resistor R


10


has the effect of lowering the DC bias of the squaring cells as a function of the DC beta to peak the drive to Q


3


so that the current mirror has very similar phase characteristics to Q


2


, thereby improving the robustness of the circuit.




Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. We claim all modifications and variations coming within the spirit and scope of the following claims.



Claims
  • 1. An RMS-to-DC converter comprising:a first squaring cell for generating a first squared signal responsive to a first input signal; a second squaring cell for generating a second squared signal responsive to a second input signal; and a nulling circuit coupled to the first and second squaring cells for generating an output signal responsive to the first and second squared signals; wherein the first squaring cell includes: an input terminal and an output terminal, a grounded base transistor coupled between the input and output terminals of the first squaring cell, and a current mirror coupled between the input and output terminals of the first squaring cell.
  • 2. An RMS-to-DC converter according to claim 1 wherein the second squaring cell includes:an input terminal and an output terminal, a grounded base transistor coupled between the input and output terminals of the second squaring cell, and a current mirror coupled between the input and output terminals of the second squaring cell.
  • 3. An RMS-to-DC converter according to claim 2 wherein the nulling circuit includes:a load circuit coupled to the first and second squaring cells; a filter circuit coupled to the load circuit; and an amplifier coupled to the load circuit.
  • 4. An RMS-to-DC converter according to claim 3 wherein the load circuit includes:a first resistor coupled to the output terminal of the first squaring cell; and a second resistor coupled to the output terminal of the second squaring cell.
  • 5. An RMS-to-DC converter according to claim 3 wherein the filter circuit includes a capacitor coupled to the output terminal of the first squaring cell.
  • 6. An RMS-to-DC converter according to claim 3 wherein the amplifier has a first input terminal coupled to the output terminal of the first squaring cell, a second input terminal coupled to the output terminal of the second squaring cell, and an output terminal.
  • 7. An RMS-to-DC converter according to claim 3 wherein the nulling circuit further includes a transistor coupled between the amplifier and the input terminal of the second squaring cell to provide a feedback signal thereto.
  • 8. An RMS-to-DC converter according to claim 7 further including a second transistor coupled to the amplifier and the first transistor so as to replicate the feedback signal, thereby generating an output signal.
  • 9. An RMS-to-DC converter according to claim 8 further including a diode-connected transistor and a resistor coupled between the second transistor and a power supply terminal, wherein the resistor has a resistance that corresponds to the input resistance of the first squaring cell.
  • 10. An RMS-to-DC converter according to claim 3 wherein the load circuit is nonlinear.
  • 11. An RMS-to-DC converter according to claim 10 wherein the load circuit includes:a first resistor coupled between the output terminal of the first squaring cell and a power supply terminal; a second resistor coupled between the output terminal of the second squaring cell and the power supply terminal; a first diode and a third resistor coupled in series between the output terminal of the first squaring cell and the power supply terminal; and a second diode and a fourth resistor coupled in series between the output terminal of the second squaring cell and the power supply terminal.
  • 12. An RMS-to-DC converter according to claim 2 wherein a bias current is established in the grounded base transistor and the current mirror transistor in each of the squaring cells when the input signal is zero.
  • 13. An RMS-to-DC converter according to claim 2 wherein the first and second squaring cells are coupled together to balance the cells.
  • 14. An RMS-to-DC converter according to claim 13 further including:a third squaring cell coupled in parallel with the first squaring cell; and a fourth squaring cell coupled in parallel with the second squaring cell; wherein the first and third squaring cell are fabricated in a cross-quad arrangement with the second and fourth squaring cells.
  • 15. An RMS-to-DC converter according to claim 13 wherein the bases of the grounded base transistors in the first and second squaring cells are coupled together to receive a bias signal.
  • 16. An RMS-to-DC converter according to claim 2 wherein each of the squaring cells includes a cascode transistor coupled between the output terminal and the current mirror of the squaring cell.
  • 17. An RMS-to-DC converter according to claim 2 wherein the base of the grounded base transistor in each of the squaring cells is maintained at a voltage of about 2VBE from the voltage of a power supply terminal.
  • 18. An RMS-to-DC converter according to claim 2 wherein:the grounded base transistor of the first squaring cell has a collector coupled to the output terminal of the first squaring cell, a base coupled to a bias node for receiving a bias signal, and an emitter coupled to the input terminal of the first squaring cell; the current mirror of the first squaring cell includes: a diode-connected transistor having a collector coupled to the input terminal of the first squaring cell, a base coupled back to its collector, and an emitter coupled to a first power supply terminal, and a mirror transistor having a collector coupled to the output terminal of the first squaring cell, a base coupled to the base of the diode-connected transistor, and an emitter coupled to the first power supply terminal; the grounded base transistor of the second squaring cell has a collector coupled to the output terminal of the second squaring cell, a base coupled to the bias node for receiving the bias signal, and an emitter coupled to the input terminal of the second squaring cell; the current mirror of the second squaring cell includes: a second diode-connected transistor having a collector coupled to the input terminal of the second squaring cell, a base coupled back to its collector, and an emitter coupled to the first power supply terminal, and a second mirror transistor having a collector coupled to the output terminal of the second squaring cell, a base coupled to the base of the second diode-connected transistor, and an emitter coupled to the first power supply terminal; and the nulling circuit includes: a first load resistor coupled between the output terminal of the first squaring cell and a second power supply terminal, a second load resistor coupled between the output terminal of the second squaring cell and the second power supply terminal, a capacitor coupled between the output terminal of the first squaring cell and the second power supply terminal, an amplifier having a first input terminal coupled to the output terminal of the first squaring cell, a second input terminal coupled to the output terminal of the second squaring cell, and an output terminal, and a first transistor having an emitter coupled to a current source, a base coupled to the output terminal of the amplifier, and a collector coupled to the input terminal of the second squaring cell.
  • 19. An RMS-to-DC converter according to claim 18 wherein each of the squaring cells includes a cascode transistor having a collector coupled to the output terminal of the squaring cell, a base coupled to the bias node, and an emitter coupled to the collector of the mirror transistor.
  • 20. An RMS-to-DC converter according to claim 19 wherein each of the squaring cells includes:a first resistor coupled in series with the emitter of the grounded base transistor; a second resistor coupled in series with the emitter of the diode-connected transistor; and a third resistor coupled in series with the emitter of the mirror transistor.
  • 21. An RMS-to-DC converter according to claim 20 further including:a second transistor having an emitter coupled to the collector of the first transistor, a base coupled to the output terminal of the amplifier, and a collector; a diode-connected transistor and a third resistor coupled in series between the collector of the second transistor and the first power supply terminal; and a buffer amplifier coupled to the third resistor.
  • 22. An RMS-to-DC converter according to claim 21 further including:a first diode and a fourth resistor coupled in series between the output terminal of the first squaring cell and the power supply terminal; and a second diode and a fifth resistor coupled in series between the output terminal of the second squaring cell and the power supply terminal.
  • 23. A method for performing an RMS-to-DC conversion comprising:establishing a bias current in a first squaring cell having an input terminal for receiving an input signal, an output terminal for transmitting an output signal, a grounded base transistor coupled between the input and output terminals, and a current mirror coupled between the input and output terminals; establishing a bias current in second squaring cell having an input terminal for receiving an input signal, an output terminal for transmitting an output signal, a grounded base transistor coupled between the input and output terminals, and a current mirror coupled between the input and output terminals; and nulling the output signals from the first and second squaring cells.
  • 24. A method according to claim 23 further including applying a signal to be measured to the input terminal of the first squaring cell, and wherein nulling the output signals includes:filtering the output signal from the first squaring cell; generating a feedback signal responsive to the difference of the output signals from the first and second squaring cells; and applying the feedback signal to the input terminal of the second squaring cell.
  • 25. A method according to claim 24 further including replicating the feedback signal, thereby generating an RMS output signal.
  • 26. A method according to claim 23 further including applying a set-point signal to the input terminal of the second squaring cell, and wherein nulling the output signals includes:filtering the output signal from the first squaring cell; generating a control signal responsive to the difference of the output signals from the first and second squaring cells; controlling the gain of a variable-gain device responsive to the control signal, thereby generating controlled output signal; coupling a sample of the controlled output signal to the input terminal of the first squaring cell.
  • 27. A method according to claim 23 further including applying a bias signal to the bases of the grounded base transistor in each of the first and second squaring cells to establish the bias current in each of the first and second squaring cells.
  • 28. A method according to claim 23 wherein the output signals from the first and second squaring cells are currents, and nulling the output signals includes:filtering the output signal from the first squaring cell; converting the output signals to voltages; and amplifying the difference between the voltages.
  • 29. A method according to claim 23 further including limiting the input signal to the first squaring cell to a range in which the output function of the squaring cell approximates a square-law.
  • 30. A method according to claim 23 further including coupling the first and second squaring cells together to balance the cells.
  • 31. A method for operating a transistor cell comprising an input terminal for receiving an input signal, an output terminal for transmitting an output signal, a grounded base transistor coupled between the input and output terminals, and a current mirror coupled between the input and output terminals, wherein the current mirror includes a diode-connected transistor and a mirror transistor coupled to the diode-connected transistor, the method comprising:biasing the transistor cell to establish a bias current in the grounded base transistor and the current mirror when the input signal is zero; and coupling first, second, and third resistors in series with the grounded base transistor, the diode-connected transistor and the mirror transistor, respectively.
  • 32. A method according to claim 31 further including adjusting the bias current to compensate for the impedance of the resistors, thereby maintaining the input impedance of the transistor cell.
  • 33. A method for operating a transistor cell comprising an input terminal for receiving an input signal, an output terminal for transmitting an output signal, a grounded base transistor coupled between the input and output terminals, and a current mirror coupled between the input and output terminals, wherein the current mirror includes a diode-connected transistor and a mirror transistor coupled to the diode-connected transistor, the method comprising:biasing the transistor cell to establish a bias current in the grounded base transistor and the current mirror when the input signal is zero; and coupling first, second, and third inductors in series with the grounded base transistor, the diode-connected transistor and the mirror transistor, respectively.
  • 34. A squaring cell comprising:an input terminal; an output terminal; a grounded base transistor coupled between the input and output terminals; a current mirror coupled between the input and output terminals wherein the current mirror includes a diode-connected transistor coupled between the input terminal and a power supply terminal, and a mirror transistor having a collector coupled to the output terminal, a base coupled to the input terminal, and an emitter coupled to the power supply terminal; a bias signal generator coupled to the grounded base transistor to establish a bias current through the grounded base transistor and the current mirror; and first, second and third resistors coupled in series the with emitters of the grounded base transistor, the diode connected transistor, and the mirror transistor, respectively.
  • 35. A squaring cell according to claim 34 further including first, second and third inductors coupled in series the with emitters of the grounded base transistor, the diode connected transistor, and the mirror transistor, respectively.
  • 36. A squaring cell according to claim 34 further including:a second grounded base transistor coupled between the input and output terminals; a second diode-connected transistor coupled between the input terminal and the power supply terminal; and a second mirror transistor having a collector coupled to the output terminal, a base coupled to the input terminal, and an emitter coupled to the power supply terminal.
  • 37. A squaring cell comprising:an input terminal; an output terminal; a grounded base transistor coupled between the input and output terminals, wherein the grounded base transistor has a collector coupled to the output terminal, a base for receiving the bias signal, and an emitter coupled to the input terminal; a current mirror coupled between the input and output terminals, wherein the current mirror includes: a diode-connected transistor having a collector and base coupled to the input terminal and an emitter coupled to a power supply terminal, and a mirror transistor having a collector coupled to the output terminal, a base coupled to the input terminal, and an emitter coupled to the power supply terminal; a bias signal generator coupled to the grounded base transistor to establish a bias current through the grounded base transistor and the current mirror; a first resistor coupled between the emitter of the grounded base transistor and the input terminal; a second resistor coupled between the emitter of the diode-connected transistor and the power supply terminal; and a third resistor coupled between the emitter of the mirror transistor and the power supply terminal.
  • 38. A squaring cell according to claim 37 wherein the first, second and third resistors have a resistance of about 160 ohms.
  • 39. A squaring cell according to claim 38 wherein the bias current through each transistor is about 85 μA.
  • 40. A squaring cell comprising:an input terminal; an output terminal; a grounded base transistor coupled between the input and output terminals; a current mirror coupled between the input and output terminals; a bias signal generator coupled to the grounded base transistor to establish a bias current through the grounded base transistor and the current mirror; wherein the bias signal generator includes: a ΔVBE cell having a common terminal and a base terminal, wherein the common terminal is coupled to a power supply terminal; a diode-connected transistor coupled between the base terminal of the ΔVBE cell and the power supply terminal; a divider transistor having an emitter coupled to the base terminal of the ΔVBE cell and a base for generating the bias signal; and an emitter follower transistor having an emitter coupled to the base of the divider transistor for driving the base terminal of the ΔVBE cell through a nonlinear voltage divider formed by the divider transistor and the diode-connected transistor.
  • 41. A squaring cell according to claim 40 further including a resistor coupled between the base of the divider transistor and the base of the grounded base transistor.
  • 42. A squaring cell comprising:an input terminal; an output terminal; a grounded base transistor coupled between the input and output terminals, wherein the grounded base transistor has a collector coupled to the output terminal, a base for receiving the bias signal, and an emitter coupled to the input terminal; a current mirror coupled between the input and output terminals, wherein the current mirror includes: a diode-connected transistor having a collector and base coupled to the input terminal and an emitter coupled to a power supply terminal, and a mirror transistor having a collector coupled to the output terminal, a base coupled to the input terminal, and an emitter coupled to the power supply terminal; and a bias signal generator coupled to the grounded base transistor to establish a bias current through the grounded base transistor and the current mirror; wherein the bias signal generator includes: a ΔVBE cell including: a first transistor having an emitter coupled to the power supply terminal, a collector coupled to receive a first bias current, and a base, and a second transistor having an emitter coupled to the power supply terminal through a first resistor, a collector coupled to receive a second bias current, and a base coupled to the base of the first transistor; a third transistor having an emitter coupled to the power supply terminal, a collector coupled to receive a third bias current, and a base coupled to the collector of the second transistor; a fourth transistor having a collector coupled to receive a fourth bias current, a base coupled to the collector of the third transistor, and an emitter; a fifth transistor having a collector coupled to a second power supply terminal, a base coupled to the emitter of the fourth transistor and the base of the grounded base transistor, and an emitter; and a sixth transistor having a collector coupled to the emitter of the fifth transistor, an emitter coupled to the power supply terminal, and a base coupled back to its collector in a diode connection.
  • 43. A squaring cell according to claim 42 wherein the bias signal generator further includes a seventh transistor having an emitter coupled to the power supply terminal, a collector coupled to the emitter of the fourth transistor, and a base coupled to the base of the second transistor.
  • 44. A squaring cell according to claim 42 further including a resistor coupled between the bases of the fifth transistor and the grounded base transistor.
  • 45. An RMS-to-DC converter comprising:a first squaring cell for generating a first squared signal responsive to a first input signal; a second squaring cell for generating a second squared signal responsive to a second input signal; and a nulling circuit coupled to the first and second squaring cells for generating an output signal responsive to the first and second squared signals; wherein the nulling circuit includes a nonlinear load coupled to the first and second squaring cells.
  • 46. An RMS-to-DC converter according to claim 45 wherein the nonlinear load includes:a first resistor coupled between the first squaring cell and a node; a second resistor coupled between the second squaring cell and the node; a first diode and a third resistor coupled in series between the first squaring cell and the node; and a second diode and a fourth resistor coupled in series between the second squaring cell and the node.
Parent Case Info

This application is related to co-pending U.S. patent application Ser. No. 09/245,051 titled “RMS-To-DC Converter With Balanced Multi-Tanh Triplet Squaring Cells” filed Feb. 4, 1999 which is incorporated herein by reference.

US Referenced Citations (2)
Number Name Date Kind
4250457 Hofmann Feb 1981
5909136 Kimura Jun 1999
Non-Patent Literature Citations (2)
Entry
Gilbert, Barrie; Novel Technique for R.M.S.—D.C. Conversion Based on the Difference of Squares; Electronics Letters; vol. 11, No. 8; Apr. 17, 1975; pp. 181-182.
Gilbert, Barrie; Current-mode Circuits From A Translinear Viewpoint: A Tutorial; Analogue IC design: the current mode approach; 1990; pp. 33-53.