The present invention relates to liquid metal galvanic electrochemical cells for use in dynamic storage of energy, and more particularly to these galvanic cells operating at low temperatures.
Electrical energy generation in the United States relies on a variety of energy sources that are then converted into electricity, such as fossil, nuclear, solar, wind and hydroelectric. Apart from the concern of the dwindling supply of fossil fuel, one of the great challenges of energy supply chains is balancing supply with demand. Part of the problem is the inability to store electrical energy in an efficient way so that it can be turned on or off to match high or low energy demand. For example, some sources of energy, such as a nuclear plant, cannot easily be switched off and on or in the cases of the renewable resources, such as wind or solar power, are dependent on natural forces beyond our control which may not be productive when needed or become productive when not needed. This mismatch is one of the factors that limit the adoption of these sources of energy. Electrochemical cells using liquid metals have been developed but require the use of expensive materials and high temperature to be operative. To be affordable on a large scale use, there remains a need for the provision of low cost, efficient storage of electrical energy that may support commercial electrical energy management.
Using a number of variables, a relatively inexpensive electrochemical system has been developed that can operate at much lower temperatures than conventionally known liquid metal electrochemical cells using metals that are abundant and readily available.
In a first embodiment of the invention, there is provided an electrochemical cell having an active alkali metal with three distinct phases. The first phase defines a positive electrode and includes a metal other than the alkali, but which can form an alloy with the alkali, such alloy having a different potential than the alkali at the negative electrode. The second phase defines the electrolyte and includes one or more salts of the alkali metal and includes at least hydroxide anions. The first phase is in contact with the second phase at one of two interfaces of the second phase. The third phase defines a negative electrode having the alkali metal, such as sodium, in its elemental, metallic form. The third phase is separate from the first phase and in contact with the second phase at its second of two interfaces. The first and third phases have respective volumes which decrease or increase at the expense of one another during operation of the cell. As a result the second phase is displaced from a first position to a second position depending on the charging or discharging operation of the cell. The first, second and third phases may be solid (such as during manufacturing or transport or maintenance of the cell), liquid (generally in operation), or in a combination of solid or liquid states. The alkali metal when present, resides at respective disparate chemical potentials in the first and third phases, originating a voltage between the first and third phases.
In another embodiment, the electrochemical cell is in a discharged state and may include two distinct phases defining the positive electrode and electrolyte, such as prior to use. The first phase defines a positive electrode and includes the alkali metal and an elemental metal other than the alkali. The second phase includes salts of the alkali metal, and defines two separate interfaces. The first phase is in contact with the second phase at one of the interfaces.
In some embodiments, the first phase comprises a metal of any one of the groups IIA, IIIA, IVA and VA of the periodic table of the elements. In some embodiments, this metal is selected from at least one of cadmium, tin, mercury, lead, antimony and bismuth. In some embodiments, this metal is mercury. In some embodiments, this metal is lead. In some embodiments, this metal is an alloy of lead and antimony. In some embodiments, this metal is an alloy of lead and bismuth. In some embodiments, the metal is an alloy comprising mercury. In some embodiments, this metal is a eutectic of an alloy. In some embodiments, the alloy is 20 atomic % lead in bismuth.
In some embodiments, the electrolyte includes a hydroxide salt of the alkali, in combination with one, two or more other salts, such as a halide, sulfate, carbonate or amide of the alkali. In some other embodiments, the electrolyte includes a binary salt system of a hydroxide salt and another salt such as iodide. In some other embodiments, the electrolyte also includes a salt of a second alkali. In some other embodiments, the second alkali is potassium. In some embodiments, the electrolyte has an ionic conductivity selected from about 1 to about 1.5 S/cm.
In some embodiments, the alkali metal is sodium. In some embodiments, the device is a Na/NaOH—NaI/Hg, a Na/NaOH—NaI/Sb—Pb, or a Na/NaOH—NaI/Bi—Pb electrochemical cell.
In some embodiments, the first, second and third phases have a melting temperature independently selected from about 300° C. or below. In some other embodiments, the first, second and third phases have a melting temperature independently selected from about 200° C. to about 300° C. In some other embodiments, the first, second and third phases are molten phases.
In accordance with other embodiments, a battery includes two or more electrochemical cells as described above. In other embodiments, a system includes a plurality of batteries, as described above, electrically connected in series. Alternatively, the system may include a plurality of these batteries electrically connected in parallel, or, a plurality of the noted batteries electrically connected in series and in parallel.
Among others, the electrochemical system may have a total capacity of less than about 30 kWh. In other embodiments, the electrochemical system may have a total capacity of more than about 30 kWh.
In some embodiments, some of the inner walls of the electrochemical cells in contact with at least the first and third phases are covered with an insulating material. This insulating material may be a polymer stable at temperatures below 300° C. In some embodiments, the insulating material is poly(oxyethylene) methacrylate-g-poly(dimethyl siloxane) (POEM-g-PDMS).
In other embodiments, there is provided a method to store electrical energy transferred from an external circuit into the electrochemical cell as described above. To that end, the method provides at least one electrochemical cell having either two or three phases. When using a fully discharged cell, the first phase defines a positive electrode and includes a metal other than the alkali, but which can form an alloy with the alkali, such alloy having a different potential than the alkali at the negative electrode. The second phase defines the electrolyte and includes one or more salts of the alkali metal and includes at least hydroxide anions. The first phase is in contact with the second phase at one of two interfaces of the second phase. The third phase defines a negative electrode having the alkali metal, such as sodium, in its elemental, metallic form. The third phase is separate from the first phase and in contact with the second phase at its second of two interfaces. When used to store electrical energy, the first phase has a volume which decreases while the third phase has a volume which increases thus transferring energy from the external circuit to the electrochemical cell. As a result, the second phase is displaced from a first position to a second position.
In other embodiments, there is provided a method to use electrical energy transferred from an external circuit into the electrochemical cell as described above. To that end, the method provides at least one electrochemical cell having three phases as described above. When the cell is used to release electrical energy, the first phase has a volume which increases while the third phase has a volume which decreases thus transferring energy from the electrochemical cell to the external circuit. As a result the second phase is displaced from a first position to a second position in a reverse motion from the charging mode.
In some embodiments, the method includes an electrochemical cell connected to one or more of an electric power plant or renewable energy source, a power transmission line, or an external circuit that delivers energy converted from a renewable energy source. In some embodiments, the method includes an electrochemical cell that is part of a system to provide a continuous or steady power supply.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Embodiments of the invention significantly decrease the material, assembly, and system costs of liquid metal batteries while at the same time increasing their lifetime and suitability for ubiquitous deployment in a distributed power-grid network. All of these advances are possible due to lower operating temperatures resulting from advantageous chemistries of the electrolyte system and the metals in the positive and negative electrodes. Specifically, the chemistries are selected such that the operating temperature of the cell can be dramatically lowered from 500° C. and above of previous chemistries to temperatures below about 300° C., or between about 200° C. and about 300° C. Lowering operating temperatures results in enhanced opportunities and advantages for system design and choice of containment materials and represents a promising new approach towards delivering on the promise of economically feasible widely implementable grid-storage solutions.
The new systems according to embodiments of the present invention represent a notable departure from previous work where materials and components of the cells are selected to minimize costs while maintaining acceptable voltage and energy output.
Historically, the choice of electrode materials has been pursued as an exercise in maximizing the thermodynamic maximum performance while minimizing the costs of the active component of the cell, the electrode and electrolyte. This approach did not take into consideration factors such as the cost of power systems, thermal management, thermally-activated corrosion, high-temperature seals, or limited availability of high temperature resistant containment materials and thus favored systems operable at elevated temperatures in the range of 500° C. to 800° C. In considering systems to be operated at low temperature, more choices become available to address these further factors even though voltage output may not be maximized. A new index has been developed that takes into consideration material performance cost, Cmp index, that includes $/kWh values, the bulk market prices, approximated utilization rates, thermodynamic voltages, corrosion, cost of and availability of containment materials, the melting temperatures of the electrodes and electrolyte, and market price per mole for each cell element or compounds for the electrodes and the electrolyte. In embodiments of the present invention, a matrix of electrode couples has been identified based on the Cmp index (see table 1). The first element, A, in the pair serves as the negative electrode and the second element, B, serves as the positive electrode.
By considering these further factors, a tractable number of candidate electrode couples have been identified which present a low Cmp (see table 1). Because the operating temperature of a system is determined by the highest melting point component, the melting temperature of the electrolyte must also be considered.
In general, a device (e.g., a cell or battery) has a positive electrode with an element that is other than an alkali metal, and a negative electrode having an alkali metal component. These electrodes cooperate to efficiently store and deliver energy across an electrolyte. Although these electrodes and the electrolyte preferably are in a liquid phase during operation, in some embodiments, the device is in a solid phase such as when not in use or for transport. In other embodiments, the device is in a solid-liquid phase mixture. Details of various embodiments are discussed below.
As used herein, the term “battery” may encompass an individual electrochemical cell or cell unit having a positive electrode, a negative electrode, and an electrolyte, as well as configurations having an array of electrochemical cells.
The electrically conductive layers 14, 16 and 20 are confined in a container 22 that may be electrically conductive and mechanically supports an insulating inner sheath 24. The sheath 24 prevents shorting by electric conduction between the negative electrode 14 and the positive electrode 16 through the container 22 when such container is made of conductive material. The container 22 is covered by a lid 26 which may be electrically conductive. An electrically insulating seal 29 electrically isolates the lid 26 from the container 22 to confine molten constituents and vapors within the container 22. The portion of the lid 26 in contact with the negative electrode 14 functions as a negative current collector 27, through which electrons may pass to an external source or sink (not shown) by way of a negative terminal 28 that is in contact with the lid 26.
The portion of the container 22 in contact with the positive electrode 16 functions as the positive current collector 23, through which electrons may pass to the external source or load by way of a positive terminal 30 connected to the container 22. The negative terminal 28 and the positive terminal 30 are oriented to facilitate arranging individual cell units in series by connecting the negative terminal 28 of one cell unit to the positive terminal 30 of another cell unit 10 to form a battery. The terminals 28 may also be connected to one another, and the terminal 30 also may be connected to one another to arrange the cells in series.
The cell 10 also may have an inert gas layer 32 overlaying the negative electrode 14 to accommodate global volume changes in the three-phase system produced by 1) charging and discharging, or 2) temperature changes. Optionally, the lid 26 or seal 29 incorporates a safety pressure valve (not shown).
The container 22 and the lid 26 are each formed from material having the requisite electric conductivity (when so required), mechanical strength, and resistance to chemical attack by the liquid electrodes 14 and 16 and electrolyte 20. Depending on the composition of the electrodes, conventional materials such as mild steel may be a suitable material for the container 22 and the lid 26. The sheath 24 may be formed from an electrically insulating material and should be corrosion-resistant against the two liquid electrodes 14 and 16 and the electrolyte 20. While boron nitride, aluminum nitride, alumina, and magnesia are also appropriate materials for the sheath 24, because of the low operating temperature of the cells described herein, other materials such as polymers, like poly(oxyethylene) methacrylate-g-poly(dimethyl siloxane) (POEM-g-PDMS) may be advantageously substituted. The same is true for the seal 29 material. Alternatively, the entire container may be made of polymer, but for current collectors that connect each electrode 14 and 16 to a corresponding positive and negative terminal.
In illustrative embodiments, the electrodes 14 and 16 and electrolyte 20 are constituted to establish chemical and physical properties compatible with simplicity and economy of construction, robustness, and rapid and efficient receipt and delivery of electrical energy. Accordingly, as noted above, the chemical compositions of the molten electrodes 14 and 16 are formulated conjunctionally to incorporate an active alkali metal, such as sodium, potassium, rubidium or cesium, at respective disparate thermodynamic activities, consequently generating a voltage between the electrodes 14 and 16.
To create thermodynamic disparity of the active alkali metal between the negative 14 and positive 16 electrodes, at least one of the electrodes 14 and 16 includes one or more additional elements, other than the alkali metal. Any such additional element may be, for example, miscible in the liquid composition of the electrode 14 or 16 to form an alloy with the alkali metal. A fraction of such additional element may also exist as a compound with the alkali metal under the operating conditions without impairment of the output of the cell. Preferably, the additional elements are chosen such that the alloy melts at temperature lower than 300° C. The one or more additional elements are chosen to constitute the positive electrode 16 as an environment of relatively low thermodynamic activity of the active alkali metal, compared to the negative electrode 14, when the cell 10 is in a charged state. The positive electrode 16 may be a liquid-phase solution, conventionally referred to as an alloy of the active alkali metal. Alternatively, the positive electrode 16 may include a liquid-phase compound of the active alkali metal, and one or more other elements.
It is also possible to alloy the positive electrode metal to achieve a suitable melting temperature. This can allow the use of metals that have attractive voltages despite their high melting temperatures. For example, a Pb—Bi alloy can be used as its eutectic composition melts at 200° C. Alloying the positive electrode metal with metals of lower electronegativity may be advantageously used to lower the melting point of the liquid metal alloy (e.g., antimony melts at 631° C., while the lead-antimony eutectic alloy melts at 253° C.). Optimization of the electrode material composition can lead to additional cost savings through further operating temperature reduction.
This, in turn, allows the cells to operate at a lower temperature and/or operate more efficiently. Lowering the melting point of the cathode materials can also increase the solubility limit of the alkali metal in the cathode, which represents an increase in capacity of the cathode and decrease the cost per energy storage capacity of the cell. Furthermore, a cell operating at a lower temperature should experience less corrosion and potentially extended operating lifespan of the cell. Numerous factors are important when choosing additional elements for the electrodes 14 and 16.
For example, those factors include among other things, the chemical equilibrium and solution thermodynamics in the electrodes 14 and 16, their interactions with the electrolyte 20, their relative densities, melting points and boiling points. It is preferred to select elements that create alloys with low melting point and a high boiling point. Those additional elements in the electrodes 14 or 16 ideally should not interact with the ions in the electrolyte in a way that would provide a competing pathway for charge transport and circumvent the prescribed electrode reactions.
As noted, the positive electrode 16 may include one or more elements besides the alkali metal. The positive electrode 16 of binary or higher order composition may have physical properties that allow the cell 10 to operate at a lower temperature. Elements that may be appropriate for incorporation in the positive electrode 16 include one or more elements of Groups IIA, IIIA, and IVA of the periodic table of the elements, such as cadmium, tin, mercury, lead, antimony and bismuth and alloys thereof.
The compositions of the electrode 14 and 16 and electrolyte 20 may be formulated so that all-liquid operation may be reached at relatively low temperatures, such as lower than about 300° C., such as between about 200° C. and about 300° C. Operating at relatively low temperatures reduces the solubility of the alkali in the electrolyte 20. Difficulties such as volatilization of cell constituents, structural weakness, chemical attack of ancillary materials, and power required to maintain liquidity of the electrodes 14 and 16 and electrolyte 20 become more manageable as operating temperature decreases, reducing the cost of operating the cell 10.
Most widely used electrolytes are metal-halide salt mixtures that have eutectic melting temperatures in excess of 300° C. In contrast, for systems operating at low temperature, hydroxide based electrolytes, such as sodium hydroxide, are of particular interest for several major reasons. First, sodium hydroxide salts form deep eutectics with a number of other sodium salts. These include, for example, NaOH—NaBr (260° C.), NaOH—NaI (230° C.), NaOH—Na2SO4 (294° C.), and NaOH—Na2CO3 (286° C.). Secondly, molten sodium hydroxide has very high ionic conductivities in the range of 1.0-1.5 S/cm2 which enables high current densities of the systems. Third, pure sodium metal is stable with its own hydroxide molten salt. Pure sodium is also stable with polymer components, like poly(oxyethylene) methacrylate-g-poly(dimethyl siloxane) (POEM-g-PDMS), which become available for use as insulating materials for the cells instead of brittle ceramics.
Hydroxide salts, and particularly with sodium, are highly hygroscopic and generally contain some amount of water. In systems with pure sodium metal and sodium hydroxide, these components could undergo two primary reactions:
Na(s)+NaOH.H2O→2NaOH+H2 (with hydrates) 1)
Na(s)+NaOH→Na2O+H2 2)
While the second reaction is detrimental for the system because it forms Na2O which is a solid that significantly decreases the electrolyte conductivity, it occurs thermodynamically less often in the case of sodium. The system may tolerate a minor amount of this secondary reaction because it shifts the equilibrium away from the water (via Le Chatelier's principle).
The electrodes 14 and 16 and the electrolyte 20 may be further formulated so that their densities are ordered in accordance with their functions in the cell 10. Various embodiments having respective densities increasing, as shown in
The illustrative alkali metal ion cell 10 receives or delivers energy by transporting an alkali metal, referred to herein as the active alkali metal, between the two electrically conductive molten electrodes 14 and 16 via an electrochemical pathway. The liquid electrolyte 20, comprising a cation of the active alkali metal, enables ionic transport of the active alkali metal during charging or discharging.
An illustrative electrochemical cell is preferably constructed in a fully discharged state by first melting the alloy of the alkali metal and the one or more other elements as the cathode. The electrolyte is then added. The negative electrode current collector is then installed, and the cell is heated to the operating temperature inside an argon filled test vessel.
Specifically,
The active alkali metal deposited in the molten active metal electrode 14 represents stored electrical energy which may persist substantially indefinitely, as long as no external electric path joins the two electrodes 14 and 16. The half-cell reactions in the cell 10 generate liquid-phase products that remain at the electrodes 14 and 16, and in contact with the electrolyte. While the electrodes 14 and 16 and electrolyte 20 remain in their liquid state, the active alkali metal and the active cation are available to mechanize charge and discharge via an electrochemical pathway. This reversibility renders the active alkali metal ion cell suitable to use in batteries for energy storage.
The charge and discharge sequences of
The substantially constant thickness of the electrolyte layer throughout the charge-discharge cycles enables the use of an electrolyte layer that is relatively thin compared to those of the electrodes. The thin electrolyte layer, combined with the inherently low resistivity of molten salts (e.g., hydroxides, carbonates, etc.), may minimize the ohmic overpotential associated with the electrolyte. The energy capacity of the cell 10 may be limited by the smaller of the respective quantities of active alkali metal that can be accommodated by the negative electrode 14 and by the positive electrode 16. The energy capacity can be augmented by scaling up the quantity of material in the electrodes 14 and 16 without, in principle, increasing the mass of the electrolyte 20 or its associated IR drop. For example, the thickness of the electrolyte 20 may be on the order of only 10%, 20% or 50% of the thickness of either of the electrodes 14 and 16.
It has been observed that in some instances, the electrolyte more readily wets the bottom of the container than does a molten metal, such as the alloy of the positive electrode. This wetting undesirably blocks electric conduction between the positive electrode and the container. Thus, in some instances it may be desirable to introduce a plug of a material, such as another layer of a metal, by compression fit in the bottom of the container 22, that functions as the positive current collector 23. The alloy of the positive electrode 16 preferably has a greater wettability than the electrolyte 20, and thus secures an electrically conductive pathway between the molten positive electrode 16 and the positive terminal 30.
An alternative embodiment eliminates the expense and complexity of electrically insulating the interior surface of the container 22 as shown for the cell 10 (
In another alternative embodiment, the alkali metal ion energy storage cell is configured for enhanced robustness by impeding mixing of the two electrically conductive liquids of the electrodes 14 and 16 during shaking or tipping of the container 22. Such features for liquid electrodes are discussed in commonly owned pending U.S. application Ser. Nos. 12/505,937 and 12/839,130, incorporated herein by reference in their entirety.
The alkali metal ion cell 10 (
The power capacity may be large, e.g., on the order of one megawatt (MW) per ten units, and scalable for adaptation from a variety of medium scale capacity for use in residential applications to a variety of large-scale capacity in industrial and power management applications. Several approaches are possible in expanding the capacity of the alkali metal ion energy storage cell to adapt it to the requirements of large-scale applications, on the order of several megawatts. In one approach, scalability may be exploited in a single large alkali metal ion energy storage cell by increasing the mass of the electrodes 14 and 16 and thus, increasing the mass of alkali metal available for transfer within the cell. In another approach, a battery including many smaller alkali metal ion cells connected in series may confer a higher battery voltage more practically integrated with the power electrics necessary to serve large-scale systems. In yet another approach, an array of cells may be interconnected in series and parallel connections for increased robustness with respect to failure due to individual cell malfunction.
One potential use for the alkali metal ion energy storage cell is at a large-scale power generator. The diurnal fluctuation in energy demand reduces plant efficiency, consequently increasing emissions by preventing generator operation at optimum output levels around the clock. A high-capacity electrical energy storage apparatus, with a power capacity greater than 1 MW, could allow load-leveling, which is effected by downloading power from the generator to a storage device during low-demand periods, and then uploading power to the grid during times of higher demand, permitting the power plant to operate at a more constant level—with fewer power spikes.
A second potential use for the alkali metal ion energy storage cell is at renewable energy source converters. Variability in supply makes management of power generated by renewable sources challenging. Sources such as wind and solar energy generate only intermittently. Without adequate power storage, additional power generators are needed on standby to operate in the event that the wind stops blowing, or the sky clouds over. The underutilized capital in the form of excess power generators ultimately may limit the scale of deployment of renewable energy sources. A reliable, high-capacity electrical storage device, used in conjunction with a renewable energy source, should provide dedicated load leveling, thus supporting implementation of renewable energy sources on the grid. Such a combination should also support the use of intermittent renewable energy sources as an alternative to generators in remote, off-grid locations, e.g., locations where periodic delivery of fuel may be difficult.
A third potential use for the alkali metal ion energy storage cell is in support of transmission lines. Transmission and distribution systems generally have no storage capacity. The grid therefore must meet instantaneous demand. As the load on a transmission line approaches its capacity, it incurs heavy ohmic losses, which decrease its efficiency. Furthermore, the resulting resistive heating can melt system components and cause transmission line failure. Portable generators of the requisite power capacity (tens of MW) available to boost supply at the load center may be noisy, polluting, and require periodic refueling. Upgrading or replacing transmission lines as they reach capacity limits is very expensive, time consuming, and frequently meets with public opposition.
A re-locatable alkali metal ion energy storage unit located near a load center could supply a portion of the energy carried by the transmission line during peak hours of the day, thus mitigating load demands on the line. Ideally, the storage unit would provide a significant portion, for example, at least 2% to 20% of the line's capacity, which is typically on the order of 500 MW. Such a unit could defer the need for a transmission line upgrade. Alternatively, a portable alkali metal ion energy storage unit could be deployed to supply emergency power after a system failure, or to maintain power delivery during construction of new lines. The storage unit then can be relocated when no longer needed.
Distribution systems from load centers suffer similar problems, although at much lower loads, and could similarly be addressed using a portable power storage unit. Commercial and residential consumers requiring a constant supply of electricity are especially vulnerable to blackouts. Auxiliary generators are less than ideal for backup because they require time to reach full output levels. These consumers would benefit from backup power systems, or uninterruptible power systems (“UPS”), configured to provide continuity in electricity in the event of a grid-power failure. A charged alkali metal ion energy storage unit, configured to discharge when the power is interrupted, could meet that need. Finally, a facility that is sensitive to voltage irregularities can be adversely affected by brownouts or other inconsistencies in delivered power. A UPS in the form of a charged alkali metal ion energy storage unit, configured to discharge to eliminate deviations from the desired power level, could act as a buffer between the grid and the facility to ensure high power quality.
Many large-scale implementations are expected to have a capacity of greater than about 30 kWh. An alkali metal ion energy storage cell of capacity lower than 30 kWh may be implemented at a small commercial or residential level, where an energy source, such as solar panels or individual wind turbines, may be used to charge the cell. Such a system should provide a continuous source of electricity to sustain the energy needs of the commercial or residential facility. These types of cell systems may be used advantageously in remote locations, off the grid, where the import of electricity with power lines is exorbitant or not practicable. Of course, such systems may be used in various other environments, such as in an urban or suburban environment.
Alkali metal ion energy storage cells thus may achieve high current capability while using low-cost, abundant metal in the alloy compositions. Selection of the alkali metal, electrolyte, and alloy in various combinations discussed herein permits a self-assembling cell and enables low-cost manufacturing.
The sodium-mercury system provides components with extremely low melting point, relatively inexpensive active materials, suitable voltage, compatibility with common cell engineering materials. The eutectic composition of NaOH and NaI was chosen as the electrolyte to achieve suitable ionic conductivity at the lowest operating temperature. The operating temperature of the cell is 275° C.
As shown in
The Na—Hg system was also tested to determine the approximate order of magnitude of the internal resistance of the cell. The internal resistance, also known as “IR drop,” is an important characteristic of any electrochemical cell which stores energy. The IR drop causes a voltage drop during discharge and a voltage increase during charge. In turn, less energy is extracted than is theoretically possible in the former case and more energy is needed to charge in the latter case. The IR measurements in this system were difficult to pinpoint however the best result is shown in
A Na—Pb/Sb system was developed as another low temperature chemistry because of the high theoretical potential of the Na—Sb alloy, and because alloying Sb with Pb effectively lowers the melting temperature of the alloy without sacrificing excessive potential. The NaOH—NaI eutectic electrolyte was utilized to build the cells. For the alloy at the anode, 18 atomic % of Pb in Sb was used. The operating temperature of the cell was 275° C.
A stable potential was achieved after partially charging the cell (see
A low operating temperature Na—Pb/Bi cell was prepared with 20 mol % Pb alloyed with Bi. As shown in
Similar to the Na—Pb/Sb system, the Na—Pb/Bi cell was partially charged and held at open circuit to confirm a stable voltage was attained. As can be seen in
A cyclic voltammetry experiment was conducted on the NaOH—NaI eutectic electrolyte (80/20 mole %, respectively), and the resulting plot is shown in
With cells operating at temperatures lower than 300° C., cost savings can also be realized with alternative sealing options for the containment of the cell components. Specifically, whereas previously known high temperature liquid metal battery designs require a complex series of ceramic washers, ultratorr fittings, and welded containers, containment systems for low temperatures liquid metal batteries leverage a simple O-ring design which exploit the compatibility of PTFE (Teflon) O-rings or POEM-g-PDMS. The use of this type of O-ring design greatly decreases cost and assembly time while using far fewer parts.
It should be noted that even though lower-temperature systems as disclosed herein currently operate at lower voltages than known cells operating at higher temperatures, the present systems, which are producing voltages of 770 mV and 680 mV for the Na—Hg and Na—Bi/Pb cells, respectively, still represent a gain due to the cost saving from the materials for and components of the cell, even taking into consideration the need to link multiple cells to reach high voltage output.
This patent application claims priority to U.S. Provisional Patent Application No. 61/710,398 filed Oct. 5, 2012, the disclosure of which is incorporated by reference herein in its entirety.
This invention was made with government support under Grant No. DE-AR0000047 awarded by ARPA-E. The U.S. government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3057946 | Eidensohn | Oct 1962 | A |
3507703 | Heredy | Apr 1970 | A |
4457989 | Coetzer | Jul 1984 | A |
5011748 | Shacklette | Apr 1991 | A |
6548212 | Heider | Apr 2003 | B1 |
20020015886 | Ogasawara | Feb 2002 | A1 |
20030044686 | Bushong | Mar 2003 | A1 |
20040229116 | Malinski | Nov 2004 | A1 |
20080044725 | Sadoway | Feb 2008 | A1 |
20110014503 | Bradwell | Jan 2011 | A1 |
20110104526 | Boxley | May 2011 | A1 |
20120077070 | Soloveichik | Mar 2012 | A1 |
20120104990 | Boysen et al. | May 2012 | A1 |
20130084474 | Mills | Apr 2013 | A1 |
20130136980 | Bartling | May 2013 | A1 |
Number | Date | Country |
---|---|---|
WO2011116236 | Sep 2011 | WO |
Entry |
---|
Define, Enable, Merriam Webster. |
International Searching Authority, International Search Report—International Application No. PCT/US2013/063472, dated Jan. 27, 2014, together with the Written Opinion of the International Searching Authority, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140099522 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61710398 | Oct 2012 | US |