Mass spectrometers (MS) operate in a vacuum and separate ions with respect to mass-to-charge ratio. In some embodiments using a mass spectrometer, a sample, which may be solid, liquid, or gas, is ionized. The ions are separated in a mass analyzer according to mass-to-charge ratio and are detected by a device capable of detecting charged particles. The signal from a detector in the mass spectrometer is then processed into spectra of the relative abundance of ions as a function of the mass-to-charge ratio. The atoms or molecules are identified by correlating the identified masses with known masses or through a characteristic fragmentation pattern.
A low temperature plasma probe, a mass spectrometry system, and a method for using a low temperature plasma probe are described. In an embodiment, a low temperature plasma probe includes an intake capillary that provides an ion flow from a sample surface to a mass spectrometer; at least one low temperature plasma tube that provides low temperature plasma gas; at least one heated gas tube that provides heated gas to the sample surface, where the heated gas enhances low temperature plasma gas desorption and ionization of a sample on the sample surface and guides analyte ions to the intake capillary. A heated gas tube is more proximate to the sample surface than a low temperature plasma tube and provides a heated gas to the sample surface such that low temperature plasma gas desorption of the sample is enhanced. Additionally, a mass spectrometry system includes a mass spectrometer and a low temperature plasma probe coupled to the mass spectrometer.
In an implementation, a method for using a low temperature plasma probe includes providing a low temperature plasma gas using a low temperature plasma source and at least one low temperature plasma tube; providing a heated gas using a heated gas source and at least one heated gas tube, the at least one heated gas tube coupled to the at least one low temperature plasma tube, where the low temperature plasma gas and the heated gas contact a sample; receiving an ionized intake flow using an intake capillary, the intake capillary coupled to the at least one low temperature plasma tube, the ionized intake flow including heated gas, low temperature plasma gas, and ions from the sample; and analyzing the ionized intake flow using a mass spectrometer, the mass spectrometer coupled to the intake capillary.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The detailed description is described with reference to the accompanying figures. The use of the same reference number in different instances in the description and the figures may indicate similar or identical items.
Mass spectrometers (MS) operate in a vacuum and separate ions with respect to the mass-to-charge ratio. In some embodiments using a mass spectrometer, a sample, which may be solid, liquid, and/or gas, is ionized and analyzed. The ions are separated in a mass analyzer according to mass-to-charge ratio and are detected by a detector capable of detecting charged particles. The signal from the detector is then processed into the spectra of the relative abundance of ions as a function of the mass-to-charge ratio. The atoms or molecules are identified by correlating the identified masses with known masses or through a characteristic fragmentation pattern.
Portable mass spectrometer systems have limitations on sample introduction methods into a vacuum manifold because of the smaller pumping systems (most commonly effluent from gas chromatography capillary or flow through a permeable membrane are used). The range of analytes which can be efficiently examined is thereby limited by the sample introduction and ionization methods employed. One type of portable mass spectrometry includes surface ionization, which involves the creation of ions proximate to an ion source.
Ambient ionization methods can be used in an ion-mobility spectrometry-mass spectrometry (IMS) or a mass spectrometry (MS) system to ionize substances for real-time and in situ chemical analysis without any sample preparation. Among ambient ionization methods are desorption electrospray ionization (DESI), direct analysis in real-time (DART), low-temperature plasma (LTP), direct atmospheric pressure chemical ionization (DAPCI), and many others. One concentric LTP design combines ionization-desorption by low temperature plasma and the transfer of ions formed on/or near the surface/sample using a central capillary. However, the intake flow through the central capillary is larger than the gas flow through the plasma, thus preventing heating of the surface/sample by the plasma gas. This results in reduced sensitivity for the analytes with small vapor pressure, such as RDX, etc.
Another design described using a heat gun to increase substrate temperature: “For those experiments that employed a heated substrate, heating was achieved by directing a heat gun (NTE Electronics, Bloomfield, N.J.) under the sample holder to increase the temperature of the substrate (glass slide) to ˜120 C.” See Cooks et al., Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry, Anal. Chem., 2011, 83 (3), pp 1084-1092. However, this arrangement is not practical for real-life problems like inspecting luggage, etc., because it is not feasible to heat the surface from the “back” side.
It has also been proposed to heat either the gas supplied to low-temperature plasma or the whole LTP probe to facilitate sample desorption from the surface. See Cooks et al., U.S. Pat. No. 9,064,674, and Mester et al., U.S. Patent Pub. No. 2011/0168881. This design does allow an increase of detection sensitivity while using an LTP configuration.
A concentric LTP design with an inner capillary and a concentric outer tube that provides a low temperature plasma cannot use the previous approaches because the heated gas from the plasma doesn't reach the sample surface due to the gas flow through the plasma region is typically 5-10 times smaller than the intake flow though the central capillary. As a result, the heated plasma gas is immediately “sucked in” by this intake flow.
Accordingly, a low temperature plasma probe, a mass spectrometry system, and a method for using a low temperature plasma probe are described. In an embodiment, a low temperature plasma probe includes an intake capillary that provides an ion flow from a sample surface to a mass spectrometer; at least one low temperature plasma tube that provides low temperature plasma gas; at least one heated gas tube that provides heated gas to the sample surface, where the heated gas enhances low temperature plasma gas desorption and ionization of a sample on the sample surface and guides analyte ions to the intake capillary. A heated gas tube is more proximate to the sample surface than a low temperature plasma tube and provides a heated gas to the sample surface such that low temperature plasma gas desorption of the sample is enhanced. Additionally, a mass spectrometry system includes a mass spectrometer and a low temperature plasma probe coupled to the mass spectrometer.
In an implementation, a method for using a low temperature plasma probe includes providing a low temperature plasma gas using a low temperature plasma source and at least one low temperature plasma tube; providing a heated gas using a heated gas source and at least one heated gas tube, the at least one heated gas tube coupled to the at least one low temperature plasma tube, where the low temperature plasma gas and/or the heated gas contact a sample; receiving an ionized intake flow using an intake capillary, the intake capillary coupled to the at least one low temperature plasma tube, the ionized intake flow including heated gas, low temperature plasma gas, and ions from the sample; and analyzing the ionized intake flow using a mass spectrometer, the mass spectrometer coupled to the intake capillary.
The low temperature plasma probe, the mass spectrometry system, and the method for using a low temperature plasma probe described herein provides a simple way of heating a sample surface when using the low temperature probe for direct surface analysis. Previous solutions, such as heating plasma gas from the low temperature plasma probe, are not effective in the case of concentric device geometry. Additionally, heating a sample surface using light requires relatively large devices (e.g. heating lamps or IR lasers), which are not practical for a hand-held probe.
In the embodiments illustrated in
The LTP probe 100 includes an LTP tube 104 coupled and/or proximate to the intake capillary 102. The LTP tube 104 includes a tube and/or conduit for providing a low temperature plasma gas 110. In some embodiments, the LTP tube 104 can include a polymer tube and/or a metal tube. Additionally, the LTP tube 104 may function as and/or include an electrode (e.g., a second electrode) configured to provide a voltage for providing a low temperature plasma gas 110 in conjunction with a first electrode disposed as a portion of the intake capillary 102. In these embodiments utilizing a first electrode and a second electrode, the LTP probe 100 can include and/or be coupled to a voltage source for providing an electric potential. The electric potential can create an electric field, which further creates a low temperature plasma that a discharge gas flows through and creates a low temperature plasma gas 110 in the LTP tube 104 when the electric potential is sufficiently large. In one specific implementation, the first electrode (e.g., intake capillary 102) and the second electrode (e.g., LTP tube 104) can cause a dielectric barrier discharge for providing a low temperature plasma and/or a low temperature plasma gas 110. A low temperature plasma gas 110 can include high energy electrons with relatively low energy ions and neutrals, which can be used to desorb and ionize analytes from a sample 124 and/or a surface 108 and produce molecular ions of the analytes. Additionally, the LTP tube 104 can be coupled to a gas source 118 (e.g., a pump, a gas cylinder, and/or other gas supply) for providing a low temperature plasma gas 110 (e.g., air, He, N2, Ar, etc.) that flows through the LTP tube 104. In some further embodiments, at least one dopant may be added to the low temperature plasma gas 110. For example, at least one dopant can be introduced through the at least one heated gas tube 106 and/or the LTP tube 104.
In the embodiments illustrated in
In some implementations, the LTP probe 100 may be coupled to a probe interface (e.g., a sampling conduit 122), which can include equipment and/or plumbing to supply gas pumped through the LTP tube 104, equipment and/or plumbing to couple the intake capillary 102 to analysis equipment, such as a mass spectrometer 120, and/or equipment and/or plumbing to couple the at least one heated gas tube 106 to a heated gas source 116 (e.g., a resistive heating element, a fan, etc.).
The LTP probe 100 illustrated in
As shown in
In some specific embodiments, a mass spectrometer 120 may include an ion funnel. An ion funnel can include an assembly of parallel, coaxially arranged ring-shaped apertured diaphragms with tapering internal diameter separated by narrow intermediate spacers. In these implementations, the diameters of the apertures of the diaphragms gradually taper toward the central exit orifice of the ion funnel into the subsequent chamber (e.g., ion guide chamber, mass analyzer system, etc.). The ion funnel may function to focus an ion beam (or ion sample) into a small conductance limit at the exit of the ion funnel. In some embodiments, the ion funnel operates at relatively high pressures (e.g., up to 30 Torr) and thus provides ion confinement and efficient transfer into next vacuum stage (e.g., an ion guide, mass analyzer, etc.), which is at a relatively lower pressure. The ion sample may then flow from the ion funnel into an ion guide and/or mass analyzer.
Additionally, a mass spectrometer 120 may include an ion guide adjacent to and downstream from the ion funnel. In some implementations, the ion guide serves to guide ions from the ion funnel into the mass analyzer while pumping away neutral molecules. In a specific embodiment, an ion guide includes a multipole ion guide, which may include multiple rod electrodes located along the ion pathway where an RF electric field is created by the electrodes and confines ions along the ion guide axis. In some embodiments, the ion guide operates at up to approximately 100 mTorr pressure, although other pressures may be utilized. Additionally, the ion guide may be followed by a conductance limiting orifice, which may have a smaller diameter than the diameter of the exit orifice of the ion guide. In one specific embodiment, a low pressure end of a sampling tube coupled to a mass spectrometer can include an RF ion guide that is positioned close to the inner wall of the sampling tube. This RF ion guide can be configured such that ions and charged particles experience an average net motion away from the sampling tube inner wall over the duration of an RF cycle.
Further, a mass spectrometry system 134 may include a pump, such as a low vacuum pump and/or a high vacuum pump. A vacuum, at least partially created by a low vacuum pump (e.g., a diaphragm pump), may be necessary because it can reduce and/or eliminate intermolecular collisions that would otherwise reduce the effectiveness of the mass spectrometry system 134 at separating elements based on their mass-to-charge ratios because molecular collisions may significantly alter the trajectories of ions involved and result in less ions reaching a detector. In embodiments, the vacuum pump can be coupled to at least one vacuum chamber of the mass spectrometer 120. In a specific embodiment, the vacuum pump may include, for example, a scroll vacuum pump. In one specific implementation, the vacuum pump provides a vacuum of approximately up to 30 Torr (e.g., for a vacuum chamber that includes an ion funnel) although it is contemplated that the pump(s) may provide other vacuum pressures as needed.
Accordingly, low temperature plasma gas is provided (Block 202). In implementations, a low temperature plasma gas 110 is provided using a low temperature plasma and/or an LTP tube 104. In a specific embodiment, a dielectric barrier discharge method can be utilized to form a low temperature plasma where a voltage can be applied to intake capillary 102 and/or first electrode and the LTP tube 104 and/or a second electrode. A carrier/discharge gas (e.g., He, N2, air, Ar, etc.) can flow through the low temperature plasma to form a low temperature plasma gas 110 that discharges through and/or from the LTP tube 104. It is contemplated that providing a low temperature plasma gas 110 can include using other methods to form a low temperature plasma.
Additionally, a heated gas is provided by at least one heated gas tube (Block 204). The heated gas 112 can be provided using a heated gas source 116, such as a resistive heating element and/or a fan within and/or coupled to a heated gas tube 106. In one specific implementation, providing the heated gas 112 can include using a heated gas source 116 to provide heated air at approximately 60° C. at approximately 1 L/min. It is contemplated that providing a heated gas 112 can include other gases (e.g., Ar, He, N2, etc.), heated gas 112 temperatures (e.g., ambient temperature, 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 65° C., etc.) and/or other heated gas 112 flow rates (e.g., 0.1 L/min, 0.25 L/min, 0.35 L/min, 0.65 L/min, 0.8 L/min, 1 L/min, etc.).
Then, an ionized intake flow is received using an intake capillary (Block 206). In implementations, the intake capillary 102 and/or the mass spectrometer system 134 can provide a suction and/or a vacuum that draws an ionized intake flow 114 into the intake entrance 128 and to the mass spectrometer 120, where the ionized intake flow can include ambient air, heated gas 112, and/or ions from the ionized sample 124.
The ionized intake flow is analyzed using a mass spectrometer (Block 208). Analyzing an ionized intake flow 114 can include using a mass spectrometer 120 and/or a controller coupled to the mass spectrometer 120 to analyze the ion intake flow 114 drawn into the intake entrance 128 and the intake capillary 102. In implementations, an ionized intake flow 114 can flow from the intake capillary 102 to a mass spectrometer 120, which can detect the ions in the intake flow 114 using a detector. A detector can include a device configured to record either the charge induced or the current produced when an ion passes by or hits a surface of the detector. Some examples of detectors may include an electron multiplier, a Faraday cup, and/or ion-to-photon detectors. The controller can receive information regarding the detected ions and compare the information with other empirical/calibration information for providing analysis results (e.g., a graphical representation, etc.).
Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Although various configurations are discussed the apparatus, systems, subsystems, components and so forth can be constructed in a variety of ways without departing from this disclosure. Rather, the specific features and acts are disclosed as example forms of implementing the claimed invention.
This invention was made with Government support under contract HSHQDC-15-C-B0027 with the Department of Homeland Security. The Government has certain rights in this invention.