Low thermal inertia integrated exhaust manifold

Information

  • Patent Grant
  • 6298660
  • Patent Number
    6,298,660
  • Date Filed
    Thursday, April 20, 2000
    24 years ago
  • Date Issued
    Tuesday, October 9, 2001
    22 years ago
Abstract
A non-metallic vehicle gas-directing component includes a plurality of ceramic members embedded within an inner surface. The ceramic members extend into a passageway to form a boundary layer between the flow of exhaust gas and exposed portions of the inner surface to provide a highly heat resistant and lightweight passageway for directing a high temperature gas. A method for producing the vehicle gas-directing component includes temporarily attaching a plurality of ceramic members to an inner mold core during a lost core molding process. In one disclosed embodiment, the ceramic members are temporarily attached directly to the inner mold core by an adhesive. In another disclosed embodiment, the plurality of ceramic members are attached to an inner contour of a core casting cavity by an adhesive.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a vehicle gas-directing component, and more particularly to a non-metallic exhaust manifold with an inner surface having a plurality of embedded ceramic members.




Various types of exhaust manifolds have been used in the field of internal combustion engines. Known exhaust manifolds are typically manufactured of a heat resistance metal such as cast iron to resist the high temperature exhaust gas emitted from the vehicle engine. However, these known manifolds are relatively heavy and tend to absorb much of the thermal energy generated by the exhaust gases.




In order to reduce their weight, some known exhaust manifolds are constructed of a light metal such as aluminum. When using such a material for an exhaust manifold, it becomes necessary to line or coat the inner surface with a heat insulating material such as a ceramic. In one known exhaust manifold, a ceramic fiber layer coats the inner surface of the aluminum exhaust manifold. However, because of the great difference in the thermal expansion properties of metals and ceramics, prolonged use tends to induce undesirable separation of the ceramic layer from the metallic surface. Separation of the ceramic fiber layer typically results in the destruction of the light metal surface by the high temperature exhaust gas.




Known iron exhaust manifolds have a high thermal conductivity and tend to immediately absorb much of the thermal energy generated by the exhaust gases. High thermal conductivity can be a disadvantage as the exhaust system catalyst can not immediately “light off” and a high percentage of total emissions occur before the catalysts are active. It would therefore be further desirable to prevent the exhaust manifold from absorbing the heat of the exhaust gases and allow the residual heat to activate the downstream catalytic converter. The catalytic converter will then “light off” earlier and will operate with higher efficiency which may effectively reduce the emission levels of the engine.




Accordingly, it is desirable to provide a lightweight vehicle gas-directing component which can resist the highly heated exhaust gas emitted from the vehicle engine.




SUMMARY OF THE INVENTION




The present invention provides a non-metallic vehicle gas-directing component having a plurality of ceramic members embedded within an inner surface and a method for producing the same. The inner surface preferably defines an exhaust passageway within an exhaust manifold for directing exhaust gas away from a vehicle engine.




The ceramic members are embedded within the inner surface to be in direct contact with the exhaust gas. Notably, the ceramic members need not form a completely continuous layer along the inner surface. Because the ceramic members extend into the exhaust passageway, a boundary layer is formed between the flow of exhaust gas and exposed portions of the inner surface. The exhaust gas, although impacting the ceramic members, tends to flow over the exposed inner surface portions because of the boundary layer.




The method for producing a vehicle gas-directing component preferably includes temporarily attaching a plurality of ceramic members to an inner mold core during a lost core molding process. In one disclosed embodiment, the ceramic members are temporarily attached directly to the inner mold core by an adhesive. In another disclosed embodiment, the plurality of ceramic members are attached to an inner contour of a core casting cavity by an adhesive. By temporarily tacking the ceramic members to the inner contour, the ceramic members will be transferred to the outer contour of the inner mold core.




The next step includes placing the inner mold core having the ceramic members attached to its outer contour within an outer core casting cavity and overmolding a non-metallic material over the surface of the inner mold core. The outer mold is sealed and the non-metallic material for forming finished component is injected or otherwise filled in between the inner mold core and outer core casting cavity of the outer mold. During the setting of non-metallic material, the ceramic members become embedded within what will become the inner surface of the finished component.




After the non-metallic material is set within the outer core casting cavity, the finished component is removed and the inner mold core is destructively removed leaving the ceramic members embedded in the inner surface of the finished component. The inner surface of the finished component now includes the plurality of embedded ceramic members to provide, for example, a highly heat resistant and lightweight exhaust passageway for directing the exhaust gas as described above.











BRIEF DESCRIPTION OF THE DRAWINGS




The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:





FIG. 1

is a general perspective view of a vehicle exhaust system having an exhaust manifold designed according to the present invention;





FIG. 2

is an expanded view of the exhaust manifold of

FIG. 1

;





FIG. 3

is a sectional view of the exhaust manifold of

FIG. 2

taken along the line


3





3


;





FIG. 4A

is an enlarged partially fragmented sectional view of a ceramic member according to the present invention;





FIG. 4B

is an enlarged partially fragmented sectional view of a ceramic member according to the present invention;





FIG. 5

is a sectional view of the exhaust manifold of

FIG. 2

taken along the line


5





5


in

FIG. 2

;





FIG. 6A

is a schematic illustration of a step of the method of manufacture of the present invention;





FIG. 6B

is a schematic illustration of a step of the method of manufacture of the present invention;




FIG.


6


AA is a schematic illustration of an alternate step that replaces the steps illustrated in

FIG. 6A and 6B

;





FIG. 6C

is a schematic illustration of a step of the method of manufacture of the present invention;





FIG. 6D

is a schematic illustration of a step of the method of manufacture of the present invention;





FIG. 6E

is an expanded view of the finished component manufactured in accordance with the present invention; and





FIG. 7

is a flow diagram showing the steps of an embodiment of the process of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

illustrates a vehicle gas directing component


10


such as an exhaust manifold


10


affixed to an engine


12


and exemplary exhaust system


14


. The exhaust system


14


typically includes an exhaust pipe


16


, a connecting pipe


18


, a catalytic converter


20


, a straight pipe


22


, a muffler


24


, a second connecting pipe


26


and a tail pipe


28


.




In general, the engine


12


produces exhaust gas from the cylinders (not shown) which exit through the exhaust manifold


10


. The exhaust gas, as schematically illustrated by the directional arrows E, passes through the exhaust manifold


10


, through the exhaust pipe


16


, connecting pipe


18


and the catalytic converter


20


. The exhaust gas E continues through the catalytic converter


20


, to the straight pipe


22


, through the muffler


24


, the second connecting pipe


26


and out into the atmosphere through the tail pipe


28


.




Referring to

FIG. 2

, the exhaust manifold


10


includes inlet flanges


11


and an outlet flange


13


. In use, the inlet flanges


11


are attached to the exterior of the engine block to mount the manifold thereon and the outlet flange


13


is attached to the exhaust system (FIG.


1


).




Referring to

FIG. 3

, a sectional view of the manifold


10


is illustrated. The manifold


10


has an outer surface


30


and an inner surface


32


. The outer surface


30


is preferably manufactured of a non-metallic material such as nylon, PET, LCP, PPC, PBT or various other plastics. The inner surface


32


defines an exhaust passageway


34


for directing the exhaust gas away from the engine


12


(FIG.


1


).




The inner surface


32


preferably includes a plurality of embedded ceramic members


36


. The ceramic members


36


are positioned at least partially within the inner surface


32


. The ceramic members


36


are preferably cast in place, as will be discussed in further detail below with respect to the method of manufacture of the present invention, such that the inner surface


32


is substantially coated with the ceramic members


36


.




Referring to

FIG. 4A

, one disclosed embodiment provides a plurality of hollow ceramic spheres


38


. A preferred hollow ceramic sphere


38


has an outer surface


39


, and an inner surface


41


which defines the shape of an inner cavity


43


. The preferred hollow ceramic sphere


38


has an outer diameter between approximately 0.75 to approximately 1 inch. The inner cavity


43


may be filled with a gas, for example air, or may be substantially devoid of gas, as in a vacuum.




Referring to

FIG. 4B

, another disclosed embodiment provides a ceramic sphere


38


′ having a plurality of grooves


45


. The grooves


45


assist in the retention of the ceramic spheres


38


′ within the inner surface


32


. Although, the grooves


45


are illustrated in a substantial checkerboard pattern, it should be realized that other groove orientations are contemplated.




It is contemplated that the manifold


10


may have ceramic members


36


embedded therein which are not spherical in shape and are not of a consistent shape or size. For example only, granular, cubic, elliptical, and rectangular shaped ceramic members are also within the scope of the present invention, as is any shape that is amenable to disposition on the inner surface


32


.




Referring to the sectional view of

FIG. 5

, the ceramic members


36


are embedded within the inner surface


32


of the manifold


10


in direct contact with the exhaust gas E from the engine


12


. Notably, the ceramic members


36


need not form a completely continuous layer along the inner surface


32


. As illustrated, inner surface portions


32


′ are exposed through the layer of ceramic members


36


. Preferably the ceramic members


36


are arranged in relation to the direction of the exhaust gas E. Because the ceramic members


36


extend into the exhaust passageway


34


, a boundary layer B is formed between the flow of exhaust gas E and the exposed inner surface portions


32


′.




The exhaust gas E, although impacting the ceramic members


36


, tends to flow over the exposed inner surface portions


32


′ because of the boundary layer B. The exposed inner surface portions


32


′ are thereby not directly impacted by the exhaust gas E and the resulting high temperatures. The allowable size and spacing of the ceramic members


36


, and the allowable size, spacing, and temperature exposure of the exposed inner surface portions


32


′ in part depends on the boundary layer. Calculation of these parameters is commonly determinable in the art of fluid dynamics and such calculations will not be further detailed herein.




The ceramic members


36


, the inner surface


32


and the outer surface


30


, have different thermal expansion coefficients and encounter different temperatures. The surfaces will therefore expand and contract relative to each other. The substantially non-continuos layer of ceramic members


36


allows for this differential mechanical and thermal expansion. Thus, the probability of fracture over an extended time period commonly associated with continuos layers of ceramic material affixed to materials of differing thermal and mechanical expansion is reduced. Each ceramic member is of such a small dimension that the difference between its cold site and its hot site is a small amount. The plastic will easily accommodate this amount.




A method for producing the above mentioned exhaust manifold will now be described. However, it should be realized that the use of an exhaust manifold is for illustrative purposes only, and that the methodology of the present invention may be applied to any other gas ducting vehicle components.




Referring to

FIG. 6A

, the first step (step


100


of

FIG. 7

) is the forming of a first inner mold core


40


having an outer contour


42


. The outer contour


42


produces the desired inner surface


32


of the finished component


10


such as the above described exhaust passageway


34


(FIG.


2


).




The inner mold core


40


may be manufactured by any known method, such as the disclosed casting. The core casting cavity


44


includes an inner contour


46


which forms the outer contour


42


of the inner mold core


40


. Preferable examples of the material for the inner mold core


40


include metallic materials having a melting temperature below that of the finished component material


10


, such as Tin-Bismuth alloy.




The next step (step


104


, of

FIG. 7

) includes temporarily attaching the plurality of ceramic members


36


to the inner mold core


40


. The ceramic members


36


may be attached to the entire outer contour


42


or to selected locations of the finished component


10


which will be exposed to high temperatures. In one disclosed embodiment, the ceramic members


36


are temporarily attached directly to the inner mold core


40


by a simple adhesive. Preferably, the adhesive is non-toxic.




Alternatively, referring to FIG.


6


AA another disclosed embodiment (steps


102




a


-


102




b


, of

FIG. 7

) includes temporarily attaching the plurality of ceramic members


36


to an inner contour


46


′ of the core casting cavity


44


′ by an adhesive. The adhesive preferably only lightly tacks the ceramic members


36


to the inner contour


46


′. Again, the ceramic members


36


may be attached to the inner contour


46


′ of the core casting cavity


44


′ or to selected locations which correspond to desired locations on the finished component


10


. By lightly tacking the ceramic members


36


to the inner contour


46


′ the ceramic members will be transferred to the outer contour


42


′ of the inner mold core


40


′.




Referring to

FIG. 6C

, the next step (step


104


, of

FIG. 7

) is the step of overmolding a non-metallic material (shown schematically at


48


) over the surface of the inner mold core


40


in a known manner. The inner mold core


40


having the ceramic members


36


attached to its outer contour


42


is placed in position within an outer mold


50


having a outer core casting cavity


52


which receives the non-metallic material


48


to form the outer surface


30


of the finished component


10


.




Outer mold


50


is sealed and the non-metallic material


48


for forming finished component


10


is injected or otherwise filled in between the inner mold core


40


and outer core casting cavity


52


of the outer mold


50


. The non-metallic material used in this step is not particularly limited, and various plastics as described above, may be used singly or in combination. The inner mold core


40


having the ceramic members


36


attached to its outer contour


42


is now surrounded by the molten non-metallic material


48


within the outer core casting cavity


50


.




During the setting of non-metallic material


48


, the ceramic members


36


become embedded within what will become the inner surface


32


of the finished component


10


. Although a single non-metallic material is molded over the inner mold core


40


in a single step in the illustrated embodiment, two or more different non-metallic materials may be molded in additional steps over the inner mold core


40


until the desired outer surface


32


is formed.




Referring to

FIG. 6D

, the outer core casting cavity


50


is separated after the non-metallic material


48


has set. The outer surface


32


of the finished component


10


is now substantially complete while the inner mold core


40


remains within the finished component


10


. Unnecessary portions of the outer surface may now need to be cut away in a known manner to obtain the desired finished component


10


outer surface


32


contours.




Referring to

FIG. 6E

, the inner mold core


40


is now destructively removed leaving the ceramic members


36


embedded in the inner surface


30


of the finished component


10


(Step


108


of FIG.


7


). Preferably, the inner mold core


40


is removed by melting as known in a variety of lost core molding processes. Because the inner mold core


40


has a melting temperature below that of the set non-metallic material, the finished component


10


is unaffected. The inner surface


32


now includes the plurality of embedded ceramic members


36


to provide a highly heat resistant and lightweight exhaust passageway


34


for directing the exhaust gas as described above.




The basic molding techniques discussed above may rely upon steps and parameters as known in the basic art of lost core molding. It is the inclusion of the ceramic particles into the inner core which is inventive here.




The foregoing description is exemplary rather than limiting in nature. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications are possible that would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope of protection given for this invention.



Claims
  • 1. A vehicle gas directing component comprising:a substantially plastic duct for directing a gas, said duct having an inner surface; and a plurality of ceramic members partially embedded in said inner surface said plurality of ceramic members forming a substantially non-continuos layer arranged along said inner surface to form a boundary layer between said gas and said inner surface exposed through said substantially non-continuos layer.
  • 2. The component as recited in claim 1, wherein said ceramic members are ceramic spheres.
  • 3. The component as recited in claim 1, wherein said ceramic members are hollow ceramic spheres.
  • 4. The component as recited in claim 1, wherein said ceramic members are of a substantially uniform diameter within a range from 0.75 to 1 inches.
  • 5. The component as recited in claim 1, wherein said ceramic members form a substantially non-continuous layer, partially embedded within said inner surface.
  • 6. The component as recited in claim 1, wherein said ceramic members include a plurality of grooves.
  • 7. The component as recited in claim 1, wherein said component is a vehicle exhaust component.
  • 8. The component as recited in claim 1, wherein said component is an exhaust manifold.
  • 9. A vehicle exhaust manifold comprising:a substantially plastic duct for directing an exhaust gas, said duct having an inner surface; and a plurality of ceramic members partially embedded in said inner surface, said plurality of ceramic members forming a substantially non-continuos layer arranged along said inner surface in relation to a flow direction of said exhaust gas to form a boundary layer between said gas and said inner surface exposed through said substantially non-continuos layer.
  • 10. The component as recited in claim 9, wherein said ceramic members are ceramic spheres.
  • 11. The component as recited in claim 9, wherein said ceramic members are hollow ceramic spheres.
  • 12. The component as recited in claim 9, wherein said ceramic members are of a substantially uniform diameter within a range from 0.75 to 1 inches.
  • 13. A vehicle exhaust manifold comprising:a substantially plastic duct for directing an exhaust gas, said duct having an inner surface; and a plurality of ceramic spheres partially embedded in said inner surface, said plurality of ceramic spheres forming a substantially non-continuos layer arranged along said inner surface in relation to a flow direction of said exhaust gas to form a boundary layer between said gas and said inner surface exposed through said substantially non-continuos layer.
  • 14. The component as recited in claim 13, wherein said ceramic spheres are of a substantially uniform diameter within a range from 0.75 to 1 inches.
  • 15. The component as recited in claim 13, wherein said ceramic members form a substantially non-continuous layer, partially embedded within said inner surface.
  • 16. The component as recited in claim 13, wherein said ceramic members include a plurality of grooves.
Parent Case Info

The present application claims priority to United States Provisional Patent Application Ser. No. 60/141,789, filed Jun. 30, 1999.

US Referenced Citations (15)
Number Name Date Kind
3568723 Sowards Mar 1971
3921273 Kondo etla. Nov 1975
3939897 Kaneko et al. Feb 1976
4124732 Leger Nov 1978
4712605 Sasaki et al. Dec 1987
4884400 Tanaka et al. Dec 1989
4890663 Yarahmadi Jan 1990
5400830 Stiles et al. Mar 1995
5404716 Wells et al. Apr 1995
5404721 Hartsock Apr 1995
5419127 Moore, III May 1995
5687787 Atmur et al. Nov 1997
5692373 Atmur et al. Dec 1997
5888641 Atmur et al. Mar 1999
6062268 Elsasser et al. May 2000
Foreign Referenced Citations (1)
Number Date Country
60078727 May 1985 JP
Provisional Applications (1)
Number Date Country
60/141789 Jun 1999 US