The disclosed embodiments relate generally to electronic devices, and more particularly to input devices for electronic devices.
Many electronic devices typically include one or more input devices such as keyboards, touchpads, mice, or touchscreens to enable a user to interact with the device. These devices can be integrated into an electronic device or can stand alone as discrete devices that can transmit signals to another device either via wired or wireless connection. For example, a keyboard can be integrated into the housing of a laptop computer or it can exist in its own housing.
It is often desirable to reduce the size of electronic devices and minimize machining costs and manufacturing time of such devices. For example, laptops may be designed to be as small and light as possible, but input devices such as a keyboard may occupy relatively large portions of the available interior space. One way to alleviate design constrains of a keyboard is to minimize the z-stackup of key mechanisms. Accordingly, what is needed is an improved key mechanism design.
In one aspect, a key mechanism includes a butterfly hinge. The butterfly hinged key mechanism according to various embodiments enable substantially low travel distances with desired tactile response. The key mechanism uses a double wing design operative to move between a depressed position and non-depressed position. In one embodiment, a low travel key mechanism includes a keycap assembly, a support structure, and a butterfly hinge having two independently articulating wings, each wing coupled to the keycap assembly and the support structure, wherein each wing is operative to pivot about its own pivot axis during a keystroke of the key mechanism.
In another aspect, a low travel key mechanism includes a keycap assembly includes a support structure, and a butterfly hinge including two separate wings positioned adjacent to each other such that a cavity is formed between the two wings, each wing comprising a pair of pivot pins and a pair of keycap pins, wherein the pivot pins are coupled to the support structure and the keycap pins are coupled to the keycap assembly. In addition, a dome switch is secured within the cavity between the keycap assembly and the support structure, the dome switch operative to bias the keycap assembly in a first position.
In yet another aspect, a low-travel key mechanism includes a keycap assembly having a keycap and a substructure having a pair of locking pivot receiving members and a pair of sliding pivot receiving members. The key mechanism further includes a butterfly hinge having four pairs of pins, wherein a first pair of the pins is securely coupled to the pair of locking pivot receiving members and a second pair of pins is moveably coupled to the pair of sliding pivot receiving members. It includes a support structure that secures third and fourth pairs of the pins in place so that they rotate freely when the key mechanism is subjected to a keystroke, and wherein when the keycap assembly moves vertically up and down with respect to the support structure during the keystroke event, the second pair of pins moves horizontally within the pair of sliding pivot receiving members.
In another aspect, a low-travel key mechanism includes a keycap assembly, a carrier structure comprising a plate and arms fixed to opposite ends of the plate, wherein each arm includes a plurality of pivot pin retaining members, and a butterfly hinge comprising two separate wings positioned adjacent to each other, each wing comprising a pair of pivot pins and a pair of keycap pins, wherein the pivot pins are coupled to the carrier structure and the keycap pins are coupled to the keycap assembly. The carrier structure can house an electronics package that includes circuitry such as a switch, light source, or a display.
In another aspect, a butterfly assembly can include first and second wings, each wing comprising a pair of pivot pins and a pair of keycap pins, wherein the pins of each pair are coaxially aligned with their own respective pair axis, first and second hinges that couple the first and second wings together, and a cavity is formed between the first and second wings when the wings are hinged together.
In yet another aspect, a key mechanism can include a keycap assembly, a support structure, and a half-butterfly hinge. The half-butterfly hinge includes two separate wings positioned adjacent to each other such that a cavity is formed between the two wings. Each wing includes a full or major arm and a minor arm that is shorter than the major arm. Each wing includes a pair of pivot pins that couple to the support structure and a pair of keycap pins that couple to the keycap assembly. A coupling mechanism couples the major arms of the half-butterfly hinge together. The coupling mechanism can be, for example, a flexible or living hinge or a gear hinge.
In another aspect, a switch includes an upper conductive structure attached to a substrate, and a lower conductive structure disposed under the upper conductive structure and attached to the substrate. The upper and lower conductive structures can be conductive deformable structures. The switch is closed when the upper conductive structure contacts the lower conductive structure.
In another aspect, a toggle switch includes first and second wings and first and second hinges that couple the first and second wings together. A cavity is formed between the first and second wings when the wings are hinged together. A first switch positioned under the first wing and a second switch positioned under the second wing.
In yet another aspect, a method for producing a glyph for a top surface of a keycap can include bonding a foil layer to an underlying first layer and forming an opening in the foil layer. The foil layer can have a thickness that is less than 100 microns. For example, the thickness of the foil layer is approximately 50 microns in some embodiments. The opening is then filled with material in the underlying first layer to produce the glyph. The opening can be filled by applying heat and/or pressure to the underlying first layer. The underlying first layer can be, for example, a thermoplastic layer.
In another aspect, another method for producing a glyph for a top surface of a keycap can include bonding a top liner layer to a bottom foil layer and forming an opening in the foil layer. The foil layer can have a thickness that is less than 100 microns. For example, the thickness of the foil layer is approximately 50 microns in some embodiments. The opening is then filled with a material to produce the glyph and the top liner layer is removed. The opening can be filled with a liquid or ink.
The above and other aspects and advantages of the invention will become more apparent upon consideration of the following detailed description, taken in conjunction with accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
Some embodiments described herein provide a key mechanism for an input device such as a keyboard that includes a butterfly hinge. The butterfly hinged key mechanism can enable substantially low travel distances with desired tactile response. For example, a butterfly hinged key mechanism can enable keystrokes ranging between 0.1 mm to 2.0 mm, and in some embodiments, the keystroke can be 0.5 mm or 0.75 mm. The key mechanism uses a double wing design operative to move between a depressed position and non-depressed position. Corresponding arms of the butterfly hinge are coupled together with coupling mechanisms. The coupling mechanisms can be, for example, a flexible or living hinge or a gear hinge. The wings of the butterfly hinge articulate independently with each wing operative to pivot about its own pivot axis during a keystroke of the key mechanism.
Other embodiments described herein provide a key mechanism for an input device such as a keyboard that includes a half-butterfly hinge. The half-butterfly hinged key mechanism can enable similar low travel distances with desired tactile response in a smaller space. One arm of each wing is a full or major arm while the other arm is a shorter or minor arm. The two major arms are coupled together with a coupling mechanism. The coupling mechanism can be, for example, a flexible or living hinge or a gear hinge. The two minor arms are not coupled to each other but can be coupled to a component in the key mechanism, such as a switch housing. The wings of the half-butterfly hinge articulate independently with each wing operative to pivot about its own pivot axis during a keystroke of the key mechanism.
Various substructures are described herein that provide support to a keycap of a key mechanism. Additional support devices, such as rods or stiffener plates can be included in a key mechanism to provide support and/or to transfer an applied force across or over a key mechanism during a keystroke event.
Methods for producing a keycap or a top surface of a keycap are disclosed. One method bonds a first layer to a second layer and forms an opening through the first layer to expose the second layer. The first layer can be a foil layer, such as an aluminum foil layer. The first layer can have a thickness that is less than 100 microns. In some embodiments, the foil layer has a thickness of approximately 50 microns. The second layer can be a resin or thermoplastic layer. The opening can be in the shape of one or more glyphs that will be visible on the top surface of the keycap. Once the opening is formed in the first layer, pressure and/or heat is applied to the layers to cause the second layer to flow into the opening and produce the desired glyph or glyphs.
Another method bonds a first top layer and a second bottom layer together and forms an opening in the second bottom layer to expose the first top layer. The second bottom layer can be a foil layer, such as an aluminum foil layer. The first layer can have a thickness that is less than 100 microns. In some embodiments, the foil layer has a thickness of approximately 50 microns. The first top layer can be a liner layer. The opening can be in the shape of one or more glyphs that will be visible on the top surface of the keycap. Once the opening is formed in the second bottom layer, the opening is filled with a material to produce the desired glyph or glyphs. The opening can be filled, for example, using a liquid or ink.
Key mechanisms according to various embodiments discussed herein provide a substantially low travel keystroke while maintaining a desired tactile feel over the lifetime of the keyboard. Decreasing the keystroke distance enables keyboard 12 to be built thinner than contemporary keyboards. For example, key mechanisms according to various embodiments described herein can enable keystrokes ranging between 0.1 mm to 2.0 mm, and in some particular embodiments, the keystroke can be 0.5 mm or 0.75 mm.
The tactile performance of the key mechanism is consistent regardless of where a user presses down on key 14. That is, the tactile response of key 14 is substantially the same if the user pressed down at the center (at region 15a), the corner (at region 15b), or the edge (at region 15c) of key 14. In addition to having a uniform tactile response, the movement of key 14 during a keystroke is also uniform regardless of where it is depressed. For example, imagine a reference plane exists at the top surface of key 14. When key 14 is pressed at region 15a, its movement is one in which the top planer surface of key 14 remains parallel to the reference plane throughout the keystroke. The same is true when key 14 is depressed at a corner or edge; the top planer surface remains parallel or substantially parallel to the reference plane throughout the keystroke. Maintaining this parallel movement, with a relatively low travel, and desired tactile response, is accomplished using a butterfly hinge mechanism according to various embodiments.
Referring now to
Keycap 14 is the portion of key mechanism that a user depresses during a keystroke. Keycap 14 can take any suitable shape and can be constructed from any suitable material. For example, keycap 14 can be constructed from plastic, glass, or metal. In some embodiments, keycap 14 can be constructed from a translucent material so that a backlight can shine through. Moreover, a translucent keycap can be masked so that it displays a character.
Substructure 20 can take any suitable shape and be constructed from any suitable material. Substructure 20 can fulfill several different functions in its use in key mechanism. In one function, it provides pin retaining mechanisms 22 for coupling to butterfly hinge 50. In particular, substructure can include four pin retaining mechanisms 22, each one operative to couple to one of keycap assembly pins 54 and 57 of butterfly hinge 50. Additional details of pin retaining mechanisms 22 are discussed in more detail below.
As another function, substructure 20 can serve as a light guide panel (hereinafter “LGP”) for distributing backlight emitted from a light source such as, for example, a LED. In embodiments that use substructure 20 as a LGP, the shape of substructure 20 can be designed to minimize the impact of backlighting performance. For example, substructure 20 can occupy an outer periphery of keycap 14, thereby leaving an interior portion of keycap largely unobfuscated. The use of a LGP as part of substructure 20 is discussed in more detail below.
The combination of keycap 14 and substructure 20 (and potentially other components such as switch 40, electronics (not shown), and flex circuitry (not shown)) is sometimes referred to herein as a keycap assembly. In some embodiments, depending on the stiffness of keycap 14, a relatively strong substructure is needed to provide the rigidity needed for property operation of key mechanism 12. For example, if keycap 14 is constructed from a plastic, substructure 20 may be constructed from metal. In other embodiments, keycap 14 can be constructed from a relatively stiff material such as glass and substructure can be constructed from a plastic or metal material. In yet another embodiment, keycap 14 and substructure 20 can be an integrally formed keycap assembly. For example, keycap 14 and substructure 20 can be formed from a single plastic mold or a single piece of machined glass.
Switch 40 can be any suitable mechanical switch such as a dome switch. A metal dome switch or an elastomeric dome switch may be used, for example. As will be explained more detail in connection with
Butterfly hinge 50 functions as the movable hinge that enables the keycap assembly to move relative to support structure 70. Butterfly hinge 50 can include wings 51 and 52, which are separate components coupled together by coupling mechanisms 60. Wing 51 includes keycap assembly pins 54 and pivot pins 55, and wing 52 includes keycap assembly pins 57 and pivot pins 56. Wings 51 and 52 may each include a cutout such that when wings 51 and 52 are coupled together, cavity 53 exists. Cavity 53 can have any suitable shape such as, for example, a square, a rectangle, circle, or ellipse.
Keycap assembly pins 54 and 57 are coupled to pin retaining mechanisms 22a, 22b of substructure 20. Pivot pins 55 and 56 are coupled to pivot pin retaining mechanisms 75 and 76, respectively, of support structure 70. The manner in which pins are coupled to substructure 20 and support structure 70 vary depending on specific embodiments, discussed below.
Coupling mechanisms 60, though coupling wings 51 and 52 together, may enable wings 51 and 52 to move independent of each other. Thus, if one wing were locked in a position, the other wing would be free to move, and vice versa. However, as will be explained in
Support structure 70 can be constructed from any suitable material or combination of different materials. The specific construction and materials used depends on particular key mechanism embodiment being employed, and thus these notable features are discussed in more detail below. One notable feature of structure 70 shown in
Referring now to
Pivot pin retaining mechanisms 75 and 76 are operative to securely hold pivot pins 55 and 56 in place, while enabling pivot pins 55 and 56 to rotate within pivot pins retaining mechanisms 75 and 76. Keycap assembly pin 57 is coupled to pin retaining mechanism 22a, which can secure keycap assembly pin 57 to substructure 20 (not shown) in a manner similar to how pivot pin retaining mechanisms 75 and 76 secure their pins. Thus, pin retaining mechanism 22a may rotate when keycap 14 is undergoing a keystroke. Keycap assembly pin 54 can be coupled to pin retaining mechanism 22b, which is operative to enable keycap assembly pin 54 to slide horizontally within the pin retaining mechanism as key mechanism 12 travels up and down. Thus, the pin retaining system uses three sets of pin retaining mechanisms (one set for each pair of pins 57, 56, and 55) for securing rotating pins 57, 56, and 55 in place with minimal horizontal movement, and a fourth set (for pins 54) for securing sliding pins 54 in place with a fixed amount of horizontal movement. Additional aspects and features on the retaining mechanisms are discussed in more detail below for various different embodiments.
Referring collectively now to
In the non-depressed position, switch 40 is in its natural unbuckled position. In this position, switch 40 biases keycap 14 upwards when key mechanism 12 is not being subjected to a keystroke event. With the upward bias of switch 40, it pushes keycap 14 up, resulting in having pin retaining mechanism 22a, 22b pull keycap assembly pins 54, 57 of wings 51, 52 up. Since, pivot pins 55 and 56 are secured in place, wings 51 and 52 pivot about their own respective pivot axes 510 and 520, and keycap assembly pin 57 remains fixed in position, keycap assembly pin 54 slides horizontally to the left (shown here as the −X direction) within pin retaining mechanism 22b. As shown, in the non-depressed position, wings 51 and 52 resemble a v-shaped hinge, with its outer portions (e.g., pin regions 57 and 54) raised relative to pin plane 410.
In the depressed position, switch 40 is buckled, and keycap 14 has moved down vertically, thereby pushing the outer portions of wings 51 and 52 down towards support structure 70. Pins 57, 56, and 55 are secured in place and rotate within their secured positions, whereas keycap assembly pin 54 slides horizontally within its retaining mechanism in the +X direction. As shown in
Use of the butterfly hinge 50 in key mechanism 12 provides not only a low travel keystroke, but a stable key mechanism. The double wing design of butterfly hinge 50 distributes loading evenly with respect to the keycap assembly. The evenly distributed loading is accomplished by placing the load bearing keycap assembly pins 57 and 54 at the outer portions of wings 51 and 52, respectively. This stable loading is translated to keycap 14 because regardless of where a user presses down on keycap 14, the load will be distributed across the key, resulting in a tactically desirable and non-wavering keystroke.
Referring now to
As shown, substructure 620 has pin retaining mechanisms 622a and 622b located near the corners of keycap 614. Pin retaining mechanisms 622a are operative to securely couple pins and allow the pins to rotate freely within. In particular, pin retaining mechanisms 622a can be c-clip retaining members. Pin retaining mechanisms 622b are operative to slidably couple pins therein. That is, the pins are retained within the mechanism, but are allowed to slide horizontally within the mechanism when the key mechanism is undergoing a keystroke event. Pin retaining mechanism 622b can have an extruded L-shape that extends a minimum distance sufficient to contain the sliding pin. Note that both pin retaining mechanisms 622b may face each other. It is understood that any suitable number of different configurations of pin retaining mechanisms 622b can be used to achieve the desired coupling effect.
Butterfly hinge 1750 can include wings 1751 and 1752. Wing 1751 can include pivot pins 1755 and keycap assembly pins 1754. Wing 1752 can include pivot pins 1756 and keycap assembly pins 1757. Keycap assembly pins 1754 and 1757 are coupled to substructure 1720, and pivot pins 1755 and 1756 are coupled to support structure 1770. Pivot pins 1755 and 1756 are secured within slots 1775 and 1776 of support structure 1770. Slots 1775 and 1776 may be cavities in the structure 1770 that are covered by laminate material 1716. In some embodiments, laminate material 1716 can be the same as a web (such as web 30). In effect, laminate material 1716 locks pivot pins 1755 and 1756 in place within support structure 1770. In this embodiment, pivot pins 1755, 1756 and keycap assembly pins 1754, 1757 all extend away from butterfly hinge 1750.
Switch 1740 can fit in a cavity existing between wings 1751 and 1752, as shown. In this particular embodiment, the base of switch 1740 can reside on support structure 1770, as opposed to being fixed to substructure 1720. When key mechanism 1712 is in its non-depressed position, switch 1740 is in its unbuckled state and props or biases the keycap assembly up. When key mechanism 1712 is in its depressed position, switch 1740 will be buckled and wings 1751 and 1752 will be pressed down in a log shaped position, with all pins 1754, 1755, 1756, 1757 in substantially the same plane.
Each wing can include upstops 1910, which are operative to limit the up-travel of the wings when the key mechanism is in its undepressed position. Upstops 1910 may engage laminate layer 1716 in the undepressed position. Upstops 1910 may be shaped at an angle to enable flush interfacing with the laminate layer.
Carrier plate 2090 is constructed to fit within cavity 2053 (
Butterfly hinge 2050 can include two wings 2051, 2052 connected together using a coupling mechanism (not shown). Any suitable coupling mechanism can be used. Various examples of such coupling mechanism are described in more detail below. Cavity 2053 can exist between the two wings 2051, 2052 when placed adjacent to each other.
Carrier plate 2090 can be constructed from any suitable material such as metal or plastic. The construction of carrier plate 2090 can include a flat plate 2091, which is flanked by two raised arm members 2092. Each raised arm member 2092 can include pivot pin retaining member 2095 and pivot pin retaining member 2096. In addition, each raised arm member 2092 can include two upstop protrusions 2099. Upstop protrusions 2099 are operative to engage upstops 2059 of butterfly hinge 2050 when key mechanism 2012 is in its non-depressed position. Protrusions 2099 prevent wings 2051, 2052 of butterfly hinge 2050 from traveling beyond a fixed vertical up direction.
Flat plate 2091 can serve as a platform for electronics package 2042, which can include among other features, switch 2040, LED, light guide panel, display, and/or flex circuitry. This arrangement promotes easy connections between circuit board 2080 and electronics package 2042 because carrier plate 2090 is directly connected to circuit board 2080. This is in contrast to the flex printed circuit board embodiment associated with key mechanism 612 (described earlier). Moreover, as shown in this embodiment, switch 2040 is mounted such that its dome is facing substructure 2020 and keycap 2014. Thus, when switch 2040 is in its unbuckled position, it is operative to bias keycap 2014 and substructure 2020 upwards.
Referring now to
Butterfly hinge 2900 can be manufactured using a double-shot process, wherein the first shot creates wings 2910 and 2920, and the second shot forms living hinge 2930. When the second shot is applied, it self-locks itself to self-locking structures 2912 and 2922 to couple wings 2910 and 2920 together. Note that the thickness of living hinge 2930 is substantially thinner at center axis 2940 of butterfly hinge 2900 than at other portions of living hinge 2930. The thinner section at the junction between wings 2910 and 2920 can promote ease of flexing between wings 2910 and 2920.
Living hinge 3030 can be a relatively thin piece of metal (e.g., steel) that is operative to bend to enable wings 3010 and 3020 to move when used in a key mechanism. Living hinge 3030 can include retention features 3012 and 3014 to promote adhesion to the wings when the wings are molded thereto. When wings 3010 and 3020 are molded onto strip 3050, shutoffs can be used to prevent wings from completely covering living hinge 3030, thereby leaving a portion of living hinge 3030 exposed.
Living hinge 3230 can be formed from the overmold that couples cores 3201 and 3202 together. It can be sized to be relatively narrow at the junction between wings 3210 and 3220 to promote ease of movement. Hinge 3200 can be constructed in batch fashion in that strip 3250 can contain several cores. The cores can be overmolded and then die cut to yield each butterfly hinge 3200.
In another embodiment (not shown), a butterfly hinge can be constructed from two metal cores, having forged or die cast pins, that are at least partially overmolded with a molding material, but in a way so that the pins are left exposed. This way, the metal pins are exposed and formed from metal, as opposed to an injection molded plastic. A living hinge is formed from the injection molded plastic coupling the two cores together.
Referring to
Butterfly hinge 3450 can include two wings 3451, 3452 connected together using a coupling mechanism (not shown). Any suitable coupling mechanism can be used. For example, living hinges or gear hinges can be used to connect wings 3451, 3452 together. Cavity 3453 can exist between the two wings 3451, 3452 when placed adjacent to each other. Pivot pins 3455, 3456 extend within cavity 3453 of butterfly hinge 3450, whereas keycap assembly pins 3454 and 3457 extend away from an outside surface of butterfly hinge 3450.
Switch housing 3459 is constructed to fit within cavity 3453 of butterfly hinge 3450 and be secured to feature plate 3470. Switch housing 3459 can be secured to feature plate 3470 in any number of suitable different ways. For example, switch housing 3459 can be glued or welded to feature plate 3470. As another example, heat staking can be used to secure switch housing 3459 to feature plate 3470 using studs 3472. Alternatively, pins (not shown) on switch housing 3459 can couple with studs 3472 (e.g., snap into studs).
Pivot pins 3455 and 3456 are secured to switch housing 3459 using pivot pin retaining members 3495 and 3496. Pivot pin retaining members 3495 and 3496 can be cavities or openings formed through the sides of switch housing 3459. Pivot pin retaining members 3495 secure pivot pins 3455 on wing 3451 and pivot pin retaining members 3496 secure pivot pins 3456 on wing 3452. Once secured, pivot pins 3455, 3456 are free to rotate in place within pivot pin retaining members 3495, 3496.
The keycap assembly pins 3454 on wing 3451 couple to pin retaining mechanisms 3422a of substructure 3420, and keycap assembly pins 3457 on wing 3452 couple to pin retaining mechanisms 3422b of substructure 3420.
Feature plate 3470 can be constructed from any suitable material such as metal or plastic. Membrane 3460 can be secured to feature plate 3470, for example, with pressure sensitive adhesive 3465. Switch 3440 can be implemented as a deformable or rubber dome switch in some embodiments. Switch 3440 is connected to membrane 3460, which can include the circuitry for switch 3440. Switch 3440 can be connected to membrane 3460 in any number of suitable different ways. For example, an adhesive layer can be used to secure switch 3440 membrane 3460. Switch 3440 is configured to fit into opening 3497 formed through the bottom surface of switch housing 3459. Moreover, as shown in this embodiment, switch 3440 is mounted such that its dome is facing substructure 3420 and keycap 3414. Thus, when switch 3440 is in its unbuckled position, it is operative to bias keycap 3414 and substructure 3420 upwards.
Membrane 3460 includes openings 3461, 3462, 3463, and 3464 and PSA 3465 includes openings 3466, 3467, 3468, and 3469. Feature plate 3470 includes openings 3473 and 3474. Openings 3463, 3468, and 3473 and openings 3464, 3469, and 3474 align with respective arms of the wings 3451 and 3452 of butterfly hinge 3450. Openings 3461 and 3466 and openings 3462 and 3467 align with the outer portions of respective wings 3451 and 3452.
In the depressed position shown in
Referring now to
A rectangular key mechanism is illustrated in
Referring now to
In some embodiments, a half-butterfly hinge can be included in key mechanisms having smaller keycaps. Other embodiments can include one or more half-butterfly hinge in larger keycaps. Half-butterfly hinge 4050 includes wing 4051 adjacent to wing 4052. One full or major arm of wing 4051 is connected by coupling mechanism 4030 to a corresponding major arm of wing 4052. The shorter or minor arms of wings 4051 and 4052 are secured to switch housing 4059 at 4056 and 4058. The minor arms can be connected to switch housing 4059 by any suitable means. For example, a pivot pin (not shown) can extend out from the inner surfaces of the minor arms and secure into corresponding openings or slots in the switch housing.
Keycap assembly pins 4054 and 4057 extend away from an exterior surface of wings 4051 and 4052, respectively. Keycap assembly pins 4054 and 4057 can attach to a keycap or substructure using pin retaining mechanisms 4122a and 4122b (
Half-butterfly hinge 4050 can maintain the same travel distance as a butterfly hinge but in a smaller space. Additionally, key mechanism 4112 is stable when a user depresses a corner because the connection points 4056 and 4058 stabilize the key mechanism 4112 and transfer the applied force across wings 4051 and 4052. For example, if a user depresses a lower right corner of wing 4151, the force is transferred across the outer portion of wing 4151 to coupling mechanism 4130, which in turn transfers the force to wing 4152.
Referring now to
Switch 4200 in
Referring now to
The first substructure component 4506 includes pin retaining mechanisms 4522a that are configured to couple to keycap assembly pins on a butterfly or half-butterfly hinge. Although not visible in
The keycap 4614 in
Substructure 4620 includes pin retaining mechanisms 4622a and 4622b that couple with respective keycap assembly pins on a butterfly or half-butterfly hinge. In the illustrated embodiment, pin retaining mechanisms 4622a are c-clip retaining members and pin retaining mechanisms 4622b have an extruded L-shape similar to pin retaining mechanisms shown in
Referring now to
In the embodiment of
Substructure 4920 can be made of any suitable material, such as a plastic, and can be attached to the underside of keycap 4914 by any suitable method. Substructure 4920 can include openings 4990 that emit light for a backlighting effect. In one embodiment, the light can be produced by an LED component and substructure 4920 can act as a LGP.
Referring now to
In
The substructure in
Key mechanism 5300 can be substantially horizontal when not depressed. If a user depresses the up arrow, the key mechanism rocks downward toward the up arrow. Similarly, the key mechanism rocks downward toward the down arrow when a user depresses the down arrow.
Pin retaining mechanisms 5422a and 5422b on wings 5451 and 5452 secure keycap assembly pins 5454 and 5457, respectively. In the illustrated embodiment, pin retaining mechanisms 5422a, 5422b are attached to keycap 5414. Other embodiments can position pin retaining mechanisms 5422a, 5422b on a substructure that is attached to keycap 5412. Pivot pins (not shown) can be used to attach wings 5451 and 5452 to structure 5470. Switches 5440 are disposed under each glyph (not shown) on keycap 5414. Deformable structure 5490 can be disposed between wings 5421, 5422 to restrict the downward movement of keycap 5414 when depressed. For example, deformable structure 5490 can prevent keycap 5414 from activating both switches 5440 simultaneously or sequentially. Sequential activation of both switches is known as a double-click event.
Referring now to
Glyph opening 5600 is formed in first layer 5500 to expose second layer 5502 (
Glyph opening 5900 is formed in second layer 5802 to expose first layer 5800 (
Various embodiments have been described in detail with particular reference to certain features thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the disclosure. For example, a key mechanism can include a butterfly hinge and a half-butterfly hinge. Additionally, the switch can be constructed differently from the switch described herein. For example, the switch can include a first conductive structure positioned over a second conductive structure. The first conductive structure has a plunger that is positioned over the dome or top region of the second conductive structure. The switch is closed or activated when the plunger contacts the second conductive structure.
Even though specific embodiments have been described herein, it should be noted that the application is not limited to these embodiments. In particular, any features described with respect to one embodiment may also be used in other embodiments, where compatible. Likewise, the features of the different embodiments may be exchanged, where compatible.
This application is a continuation patent application of U.S. patent application Ser. No. 15/914,780, filed Mar. 7, 2018 and titled “Low-Travel Key Mechanisms Using Butterfly Hinges,” which is a continuation patent application of U.S. patent application Ser. No. 15/342,715, filed Nov. 3, 2016 and titled “Low-Travel Key Mechanisms Using Butterfly Hinges,” now U.S. Pat. No. 9,916,945, which is a continuation patent application of U.S. patent application Ser. No. 14/499,209, filed Sep. 28, 2014 and titled “Low-Travel Key Mechanisms Using Butterfly Hinges,” now U.S. Pat. No. 9,502,193, which is a nonprovisional patent application of and claims the benefit to U.S. Provisional Patent Application No. 61/884,180, filed Sep. 30, 2013 and titled “Low-Travel Key Mechanisms Using Butterfly Hinges,” the disclosure of which is hereby incorporated herein by reference in its entirety. U.S. patent application Ser. No. 14/499,209 is also a continuation-in-part patent application of U.S. patent application Ser. No. 14/058,448, filed Oct. 21, 2013 and titled “Low-Travel Key Mechanisms Using Butterfly Hinges,” which is a nonprovisional patent application of and claims the benefit to U.S. Provisional Patent Application No. 61/720,373, filed Oct. 30, 2012, and titled “Low-Travel Key Mechanisms Using Butterfly Hinges,” the disclosures of which are hereby incorporated herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3657492 | Arndt et al. | Apr 1972 | A |
3818153 | Arvai | Jun 1974 | A |
3917917 | Murata | Nov 1975 | A |
3978297 | Lynn et al. | Aug 1976 | A |
4095066 | Harris | Jun 1978 | A |
4319099 | Asher | Mar 1982 | A |
4349712 | Michalski | Sep 1982 | A |
4484042 | Matsui | Nov 1984 | A |
4596905 | Fowler | Jun 1986 | A |
4598181 | Selby | Jul 1986 | A |
4670084 | Durand et al. | Jun 1987 | A |
4755645 | Naoki et al. | Jul 1988 | A |
4937408 | Hattori et al. | Jun 1990 | A |
4987275 | Miller et al. | Jan 1991 | A |
5021638 | Nopper et al. | Jun 1991 | A |
5092459 | Uljanic et al. | Mar 1992 | A |
5136131 | Komaki | Aug 1992 | A |
5278372 | Takagi et al. | Jan 1994 | A |
5280146 | Inagaki et al. | Jan 1994 | A |
5340955 | Calvillo et al. | Aug 1994 | A |
5382762 | Mochizuki | Jan 1995 | A |
5397867 | Demeo | Mar 1995 | A |
5408060 | Muurinen | Apr 1995 | A |
5421659 | Liang | Jun 1995 | A |
5422447 | Spence | Jun 1995 | A |
5457297 | Chen | Oct 1995 | A |
5477430 | LaRose et al. | Dec 1995 | A |
5481074 | English | Jan 1996 | A |
5504283 | Kako et al. | Apr 1996 | A |
5512719 | Okada et al. | Apr 1996 | A |
5625532 | Sellers | Apr 1997 | A |
5657860 | Koike | Aug 1997 | A |
5746308 | Lin | May 1998 | A |
5767468 | Tsai | Jun 1998 | A |
5769210 | Tsai | Jun 1998 | A |
5804780 | Bartha | Sep 1998 | A |
5813521 | Koike | Sep 1998 | A |
5828015 | Coulon | Oct 1998 | A |
5847337 | Chen | Dec 1998 | A |
5874700 | Hochgesang | Feb 1999 | A |
5875013 | Takahara | Feb 1999 | A |
5876106 | Kordecki et al. | Mar 1999 | A |
5878872 | Tsai | Mar 1999 | A |
5881866 | Miyajima et al. | Mar 1999 | A |
5898147 | Domzalsi et al. | Apr 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5935691 | Tsai | Aug 1999 | A |
5960942 | Thornton | Oct 1999 | A |
5986227 | Hon | Nov 1999 | A |
6020565 | Pan | Feb 2000 | A |
6060676 | Pan | May 2000 | A |
6068416 | Kumamoto et al. | May 2000 | A |
6215420 | Harrison et al. | Apr 2001 | B1 |
6257782 | Maruyama et al. | Jul 2001 | B1 |
6259046 | Iwama et al. | Jul 2001 | B1 |
6377685 | Krishnan | Apr 2002 | B1 |
6388219 | Hsu et al. | May 2002 | B2 |
6423918 | King et al. | Jul 2002 | B1 |
6455794 | Sato | Sep 2002 | B2 |
6482032 | Szu et al. | Nov 2002 | B1 |
6530283 | Okada et al. | Mar 2003 | B2 |
6538801 | Jacobson et al. | Mar 2003 | B2 |
6542355 | Huang | Apr 2003 | B1 |
6552287 | Janniere | Apr 2003 | B2 |
6556112 | Van Zeeland et al. | Apr 2003 | B1 |
6559399 | Hsu et al. | May 2003 | B2 |
6560612 | Yamada et al. | May 2003 | B1 |
6572289 | Lo et al. | Jun 2003 | B2 |
6573463 | Ono | Jun 2003 | B2 |
6585435 | Fang | Jul 2003 | B2 |
6624369 | Ito et al. | Sep 2003 | B2 |
6648530 | Kamei et al. | Nov 2003 | B2 |
6706986 | Hsu | Mar 2004 | B2 |
6738050 | Comiskey et al. | May 2004 | B2 |
6750414 | Sullivan | Jun 2004 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6762381 | Kunthady et al. | Jul 2004 | B2 |
6765503 | Chan et al. | Jul 2004 | B1 |
6788450 | Kawai et al. | Sep 2004 | B2 |
6797906 | Ohashi | Sep 2004 | B2 |
6850227 | Takahashi et al. | Feb 2005 | B2 |
6860660 | Hochgesang et al. | Mar 2005 | B2 |
6911608 | Levy | Jun 2005 | B2 |
6926418 | Oestergaard et al. | Aug 2005 | B2 |
6940030 | Takeda et al. | Sep 2005 | B2 |
6977352 | Oosawa | Dec 2005 | B2 |
6979792 | Tsai | Dec 2005 | B1 |
6987466 | Welch et al. | Jan 2006 | B1 |
6987503 | Inoue | Jan 2006 | B2 |
7012206 | Oikawa | Mar 2006 | B2 |
7030330 | Suda | Apr 2006 | B2 |
7038832 | Kanbe | May 2006 | B2 |
7126499 | Lin et al. | Oct 2006 | B2 |
7129930 | Cathey et al. | Oct 2006 | B1 |
7134205 | Bruennel | Nov 2006 | B2 |
7146701 | Mahoney et al. | Dec 2006 | B2 |
7151236 | Ducruet et al. | Dec 2006 | B2 |
7151237 | Mahoney et al. | Dec 2006 | B2 |
7154059 | Chou | Dec 2006 | B2 |
7166813 | Soma | Jan 2007 | B2 |
7172303 | Shipman et al. | Feb 2007 | B2 |
7189932 | Kim | Mar 2007 | B2 |
7256766 | Albert et al. | Aug 2007 | B2 |
7283119 | Kishi | Oct 2007 | B2 |
7301113 | Nishimura et al. | Nov 2007 | B2 |
7312414 | Yatsu | Dec 2007 | B2 |
7312790 | Sato et al. | Dec 2007 | B2 |
7378607 | Koyano et al. | May 2008 | B2 |
7385806 | Liao | Jun 2008 | B2 |
7391555 | Albert et al. | Jun 2008 | B2 |
7414213 | Hwang | Aug 2008 | B2 |
7429707 | Yanai et al. | Sep 2008 | B2 |
7432460 | Clegg | Oct 2008 | B2 |
7510342 | Lane et al. | Mar 2009 | B2 |
7531764 | Lev et al. | May 2009 | B1 |
7541554 | Hou | Jun 2009 | B2 |
7589292 | Jung et al. | Sep 2009 | B2 |
7639187 | Caballero et al. | Dec 2009 | B2 |
7639571 | Ishii et al. | Dec 2009 | B2 |
7651231 | Chou et al. | Jan 2010 | B2 |
7674992 | Hutchison et al. | Mar 2010 | B2 |
7679010 | Wingett | Mar 2010 | B2 |
7724415 | Yamaguchi | May 2010 | B2 |
7781690 | Ishii | Aug 2010 | B2 |
7813774 | Perez-Noguera | Oct 2010 | B2 |
7842895 | Lee | Nov 2010 | B2 |
7847204 | Tsai | Dec 2010 | B2 |
7851819 | Shi | Dec 2010 | B2 |
7866866 | Wahlstrom | Jan 2011 | B2 |
7893376 | Chen | Feb 2011 | B2 |
7923653 | Ohsumi | Apr 2011 | B2 |
7944437 | Imamura | May 2011 | B2 |
7947915 | Lee et al. | May 2011 | B2 |
7999748 | Ligtenberg et al. | Aug 2011 | B2 |
8063325 | Sung et al. | Nov 2011 | B2 |
8077096 | Chiang et al. | Dec 2011 | B2 |
8080744 | Yeh et al. | Dec 2011 | B2 |
8098228 | Shimodaira et al. | Jan 2012 | B2 |
8109650 | Chang et al. | Feb 2012 | B2 |
8119945 | Lin | Feb 2012 | B2 |
8124903 | Tatehata et al. | Feb 2012 | B2 |
8134094 | Tsao et al. | Mar 2012 | B2 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8156172 | Muehl et al. | Apr 2012 | B2 |
8178808 | Strittmatter | May 2012 | B2 |
8184021 | Chou | May 2012 | B2 |
8212160 | Tsao | Jul 2012 | B2 |
8212162 | Zhou | Jul 2012 | B2 |
8218301 | Lee | Jul 2012 | B2 |
8232958 | Tolbert | Jul 2012 | B2 |
8246228 | Ko et al. | Aug 2012 | B2 |
8253052 | Chen | Aug 2012 | B2 |
8263887 | Chen et al. | Sep 2012 | B2 |
8289280 | Travis | Oct 2012 | B2 |
8299382 | Takemae et al. | Oct 2012 | B2 |
8317384 | Chung et al. | Nov 2012 | B2 |
8319129 | Nishino | Nov 2012 | B2 |
8319298 | Hsu | Nov 2012 | B2 |
8325141 | Marsden | Dec 2012 | B2 |
8330725 | Mahowald et al. | Dec 2012 | B2 |
8354629 | Lin | Jan 2013 | B2 |
8378857 | Pance | Feb 2013 | B2 |
8383972 | Liu | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8404990 | Lutgring et al. | Mar 2013 | B2 |
8431849 | Chen | Apr 2013 | B2 |
8436265 | Koike et al. | May 2013 | B2 |
8451146 | Mahowald et al. | May 2013 | B2 |
8462514 | Myers et al. | Jun 2013 | B2 |
8480285 | Tan et al. | Jul 2013 | B2 |
8500348 | Dumont et al. | Aug 2013 | B2 |
8502094 | Chen | Aug 2013 | B2 |
8542194 | Akens et al. | Sep 2013 | B2 |
8548528 | Kim et al. | Oct 2013 | B2 |
8564544 | Jobs et al. | Oct 2013 | B2 |
8569639 | Strittmatter | Oct 2013 | B2 |
8575632 | Kuramoto et al. | Nov 2013 | B2 |
8581127 | Jhuang et al. | Nov 2013 | B2 |
8592699 | Kessler et al. | Nov 2013 | B2 |
8592702 | Tsai | Nov 2013 | B2 |
8592703 | Johnson et al. | Nov 2013 | B2 |
8604370 | Chao | Dec 2013 | B2 |
8629362 | Knighton et al. | Jan 2014 | B1 |
8642904 | Chiba et al. | Feb 2014 | B2 |
8651720 | Sherman et al. | Feb 2014 | B2 |
8659882 | Liang et al. | Feb 2014 | B2 |
8695211 | Hyuga et al. | Apr 2014 | B2 |
8731618 | Jarvis et al. | May 2014 | B2 |
8748767 | Ozias et al. | Jun 2014 | B2 |
8759705 | Funakoshi et al. | Jun 2014 | B2 |
8760405 | Nam | Jun 2014 | B2 |
8779308 | Takemae et al. | Jul 2014 | B2 |
8786548 | Oh et al. | Jul 2014 | B2 |
8791378 | Lan | Jul 2014 | B2 |
8835784 | Hirota | Sep 2014 | B2 |
8847711 | Yang et al. | Sep 2014 | B2 |
8853580 | Chen | Oct 2014 | B2 |
8854312 | Meierling | Oct 2014 | B2 |
8870477 | Merminod et al. | Oct 2014 | B2 |
8884174 | Chou et al. | Nov 2014 | B2 |
8888305 | Chen | Nov 2014 | B2 |
8921473 | Hyman | Dec 2014 | B1 |
8922476 | Stewart et al. | Dec 2014 | B2 |
8943427 | Heo et al. | Jan 2015 | B2 |
8976117 | Krahenbuhl et al. | Mar 2015 | B2 |
8994641 | Stewart et al. | Mar 2015 | B2 |
9007297 | Stewart et al. | Apr 2015 | B2 |
9012795 | Niu et al. | Apr 2015 | B2 |
9024214 | Niu et al. | May 2015 | B2 |
9029723 | Pegg | May 2015 | B2 |
9063627 | Yairi et al. | Jun 2015 | B2 |
9064642 | Welch et al. | Jun 2015 | B2 |
9086733 | Pance | Jul 2015 | B2 |
9087663 | Los | Jul 2015 | B2 |
9093229 | Leong et al. | Jul 2015 | B2 |
9213416 | Chen | Dec 2015 | B2 |
9223352 | Smith et al. | Dec 2015 | B2 |
9234486 | Das et al. | Jan 2016 | B2 |
9235236 | Nam | Jan 2016 | B2 |
9274654 | Slobodin et al. | Mar 2016 | B2 |
9275810 | Pance et al. | Mar 2016 | B2 |
9300033 | Han et al. | Mar 2016 | B2 |
9305496 | Kimura | Apr 2016 | B2 |
9405369 | Modarres et al. | Aug 2016 | B2 |
9412533 | Hendren et al. | Aug 2016 | B2 |
9443672 | Martisauskas | Sep 2016 | B2 |
9448628 | Tan et al. | Sep 2016 | B2 |
9448631 | Winter et al. | Sep 2016 | B2 |
9449772 | Leong et al. | Sep 2016 | B2 |
9471185 | Guard | Oct 2016 | B2 |
9477382 | Hicks et al. | Oct 2016 | B2 |
9502193 | Niu et al. | Nov 2016 | B2 |
9612674 | Degner et al. | Apr 2017 | B2 |
9640347 | Kwan et al. | May 2017 | B2 |
9704665 | Brock et al. | Jul 2017 | B2 |
9704670 | Leong et al. | Jul 2017 | B2 |
9710069 | Leong et al. | Jul 2017 | B2 |
9715978 | Hendren | Jul 2017 | B2 |
9734965 | Verdú Martinez et al. | Aug 2017 | B2 |
9761389 | Leong et al. | Sep 2017 | B2 |
9793066 | Brock et al. | Oct 2017 | B1 |
20020079211 | Katayama et al. | Jun 2002 | A1 |
20020093436 | Lien | Jul 2002 | A1 |
20020113770 | Jacobson et al. | Aug 2002 | A1 |
20020149835 | Kanbe | Oct 2002 | A1 |
20030169232 | Ito | Sep 2003 | A1 |
20040004559 | Rast | Jan 2004 | A1 |
20040225965 | Garside et al. | Nov 2004 | A1 |
20050035950 | Daniels | Feb 2005 | A1 |
20050071771 | Nag Asawa et al. | Mar 2005 | A1 |
20050253801 | Kobayashi | Nov 2005 | A1 |
20060011458 | Purcocks | Jan 2006 | A1 |
20060020469 | Rast | Jan 2006 | A1 |
20060120790 | Chang | Jun 2006 | A1 |
20060181511 | Woolley | Aug 2006 | A1 |
20060243987 | Lai | Nov 2006 | A1 |
20070200823 | Bytheway et al. | Aug 2007 | A1 |
20070285393 | Ishakov | Dec 2007 | A1 |
20080131184 | Brown et al. | Jun 2008 | A1 |
20080136782 | Mundt et al. | Jun 2008 | A1 |
20080202824 | Phillip et al. | Aug 2008 | A1 |
20080251370 | Aoki | Oct 2008 | A1 |
20090046053 | Shigehiro et al. | Feb 2009 | A1 |
20090103964 | Takagi et al. | Apr 2009 | A1 |
20090128496 | Huang | May 2009 | A1 |
20090262085 | Wassingbo et al. | Oct 2009 | A1 |
20090267892 | Faubert | Oct 2009 | A1 |
20090295736 | Laurent et al. | Dec 2009 | A1 |
20090322568 | Yoshida | Dec 2009 | A1 |
20100045705 | Vertegaal et al. | Feb 2010 | A1 |
20100066568 | Lee | Mar 2010 | A1 |
20100109921 | Annerfors | May 2010 | A1 |
20100156796 | Kim et al. | Jun 2010 | A1 |
20100253630 | Homma et al. | Oct 2010 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110043384 | Cheng | Feb 2011 | A1 |
20110056817 | Wu | Mar 2011 | A1 |
20110056836 | Tatebe et al. | Mar 2011 | A1 |
20110205179 | Braun | Aug 2011 | A1 |
20110261031 | Muto | Oct 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110284355 | Yang | Nov 2011 | A1 |
20120012446 | Hwa | Jan 2012 | A1 |
20120032972 | Hwang | Feb 2012 | A1 |
20120090973 | Liu | Apr 2012 | A1 |
20120098751 | Liu | Apr 2012 | A1 |
20120186965 | Zieder | Jul 2012 | A1 |
20120286701 | Yang et al. | Nov 2012 | A1 |
20120298496 | Zhang | Nov 2012 | A1 |
20120313856 | Hsieh | Dec 2012 | A1 |
20130043115 | Yang et al. | Feb 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130093684 | Wang et al. | Apr 2013 | A1 |
20130093733 | Yoshida | Apr 2013 | A1 |
20130100030 | Los et al. | Apr 2013 | A1 |
20130120265 | Horii et al. | May 2013 | A1 |
20130161170 | Fan et al. | Jun 2013 | A1 |
20130215079 | Johnson et al. | Aug 2013 | A1 |
20130242601 | Broer et al. | Sep 2013 | A1 |
20130270090 | Lee | Oct 2013 | A1 |
20140015777 | Park et al. | Jan 2014 | A1 |
20140027259 | Kawana et al. | Jan 2014 | A1 |
20140071654 | Chien | Mar 2014 | A1 |
20140082490 | Jung et al. | Mar 2014 | A1 |
20140090967 | Inagaki | Apr 2014 | A1 |
20140098042 | Kuo et al. | Apr 2014 | A1 |
20140116865 | Leong et al. | May 2014 | A1 |
20140151211 | Zhang | Jun 2014 | A1 |
20140184496 | Gribetz et al. | Jul 2014 | A1 |
20140191973 | Zellers et al. | Jul 2014 | A1 |
20140218851 | Klein et al. | Aug 2014 | A1 |
20140252881 | Dinh et al. | Sep 2014 | A1 |
20140291133 | Fu et al. | Oct 2014 | A1 |
20140375141 | Nakajima | Dec 2014 | A1 |
20150083561 | Han et al. | Mar 2015 | A1 |
20150090571 | Leong et al. | Apr 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150287553 | Welch et al. | Oct 2015 | A1 |
20150309538 | Zhang | Oct 2015 | A1 |
20150378391 | Huitema et al. | Dec 2015 | A1 |
20160049266 | Stringer et al. | Feb 2016 | A1 |
20160093452 | Zercoe et al. | Mar 2016 | A1 |
20160189890 | Leong et al. | Jun 2016 | A1 |
20160189891 | Zercoe et al. | Jun 2016 | A1 |
20160259375 | Andre et al. | Sep 2016 | A1 |
20160329166 | Hou et al. | Nov 2016 | A1 |
20160336124 | Leong et al. | Nov 2016 | A1 |
20160336127 | Leong et al. | Nov 2016 | A1 |
20160336128 | Leong et al. | Nov 2016 | A1 |
20160343523 | Hendren et al. | Nov 2016 | A1 |
20160351360 | Knopf et al. | Dec 2016 | A1 |
20160378234 | Ligtenberg et al. | Dec 2016 | A1 |
20160379775 | Leong et al. | Dec 2016 | A1 |
20170004937 | Leong et al. | Jan 2017 | A1 |
20170004939 | Kwan et al. | Jan 2017 | A1 |
20170011869 | Knopf et al. | Jan 2017 | A1 |
20170090106 | Cao et al. | Mar 2017 | A1 |
20170301487 | Leong et al. | Oct 2017 | A1 |
20170315624 | Leong et al. | Nov 2017 | A1 |
20180029339 | Niu et al. | Feb 2018 | A1 |
20180040441 | Wu et al. | Feb 2018 | A1 |
20180074694 | Lehmann et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2155620 | Feb 1994 | CN |
2394309 | Aug 2000 | CN |
1533128 | Sep 2004 | CN |
1542497 | Nov 2004 | CN |
2672832 | Jan 2005 | CN |
1624842 | Jun 2005 | CN |
1812030 | Aug 2006 | CN |
1838036 | Sep 2006 | CN |
1855332 | Nov 2006 | CN |
1 01 051 569 | Oct 2007 | CN |
200961844 | Oct 2007 | CN |
200986871 | Dec 2007 | CN |
101146137 | Mar 2008 | CN |
201054315 | Apr 2008 | CN |
201084602 | Jul 2008 | CN |
201123174 | Sep 2008 | CN |
201149829 | Nov 2008 | CN |
101315841 | Dec 2008 | CN |
201210457 | Mar 2009 | CN |
101438228 | May 2009 | CN |
101465226 | Jun 2009 | CN |
101494130 | Jul 2009 | CN |
101502082 | Aug 2009 | CN |
201298481 | Aug 2009 | CN |
101546667 | Sep 2009 | CN |
101572195 | Nov 2009 | CN |
101800281 | Aug 2010 | CN |
101807482 | Aug 2010 | CN |
101868773 | Oct 2010 | CN |
201655616 | Nov 2010 | CN |
102110542 | Jun 2011 | CN |
102119430 | Jul 2011 | CN |
201904256 | Jul 2011 | CN |
102163084 | Aug 2011 | CN |
201927524 | Aug 2011 | CN |
201945951 | Aug 2011 | CN |
201945952 | Aug 2011 | CN |
201956238 | Aug 2011 | CN |
102197452 | Sep 2011 | CN |
202008941 | Oct 2011 | CN |
202040690 | Nov 2011 | CN |
102280292 | Dec 2011 | CN |
102338348 | Feb 2012 | CN |
102375550 | Mar 2012 | CN |
202205161 | Apr 2012 | CN |
102496509 | Jun 2012 | CN |
102622089 | Aug 2012 | CN |
102629526 | Aug 2012 | CN |
102629527 | Aug 2012 | CN |
202372927 | Aug 2012 | CN |
102679239 | Sep 2012 | CN |
102683072 | Sep 2012 | CN |
202434387 | Sep 2012 | CN |
202523582 | Nov 2012 | CN |
102832068 | Dec 2012 | CN |
102955573 | Mar 2013 | CN |
102956386 | Mar 2013 | CN |
102969183 | Mar 2013 | CN |
103000417 | Mar 2013 | CN |
103165327 | Jun 2013 | CN |
103180979 | Jun 2013 | CN |
203012648 | Jun 2013 | CN |
203135988 | Aug 2013 | CN |
103377841 | Oct 2013 | CN |
103489986 | Jan 2014 | CN |
203414880 | Jan 2014 | CN |
103681056 | Mar 2014 | CN |
103699181 | Apr 2014 | CN |
203520312 | Apr 2014 | CN |
203588895 | May 2014 | CN |
103839715 | Jun 2014 | CN |
103839720 | Jun 2014 | CN |
103839722 | Jun 2014 | CN |
103903891 | Jul 2014 | CN |
103956290 | Jul 2014 | CN |
203733685 | Jul 2014 | CN |
104021968 | Sep 2014 | CN |
204102769 | Jan 2015 | CN |
204117915 | Jan 2015 | CN |
104517769 | Apr 2015 | CN |
204632641 | Sep 2015 | CN |
105097341 | Nov 2015 | CN |
2530176 | Jan 1977 | DE |
3002772 | Jul 1981 | DE |
29704100 | Apr 1997 | DE |
202008001970 | May 2008 | DE |
0441993 | Aug 1991 | EP |
1835272 | Sep 2007 | EP |
1928008 | Jun 2008 | EP |
2202606 | Jun 2010 | EP |
2426688 | Mar 2012 | EP |
2439760 | Apr 2012 | EP |
2463798 | Jun 2012 | EP |
2664979 | Nov 2013 | EP |
2147420 | Mar 1973 | FR |
2911000 | Jul 2008 | FR |
2950193 | Mar 2011 | FR |
1361459 | Jul 1974 | GB |
S50115562 | Sep 1975 | JP |
S60055477 | Mar 1985 | JP |
S61172422 | Oct 1986 | JP |
S62072429 | Apr 1987 | JP |
S63182024 | Nov 1988 | JP |
H0422024 | Feb 1992 | JP |
H0520963 | Mar 1993 | JP |
H0524512 | Mar 1993 | JP |
H05342944 | Dec 1993 | JP |
H09204148 | Aug 1997 | JP |
H10312726 | Nov 1998 | JP |
H11194882 | Jul 1999 | JP |
2000010709 | Jan 2000 | JP |
2000057871 | Feb 2000 | JP |
2000339097 | Dec 2000 | JP |
2001100889 | Apr 2001 | JP |
2002260478 | Sep 2002 | JP |
2002298689 | Oct 2002 | JP |
2003114751 | Apr 2003 | JP |
2003522998 | Jul 2003 | JP |
2005108041 | Apr 2005 | JP |
2006164929 | Jun 2006 | JP |
2006185906 | Jul 2006 | JP |
2006521664 | Sep 2006 | JP |
2006269439 | Oct 2006 | JP |
2006277013 | Oct 2006 | JP |
2006344609 | Dec 2006 | JP |
2007115633 | May 2007 | JP |
2007514247 | May 2007 | JP |
2007156983 | Jun 2007 | JP |
2008021428 | Jan 2008 | JP |
2008041431 | Feb 2008 | JP |
2008100129 | May 2008 | JP |
2008191850 | Aug 2008 | JP |
2008533559 | Aug 2008 | JP |
2008293922 | Dec 2008 | JP |
2009099503 | May 2009 | JP |
2009181894 | Aug 2009 | JP |
2010061956 | Mar 2010 | JP |
2010244088 | Oct 2010 | JP |
2010244302 | Oct 2010 | JP |
2011018484 | Jan 2011 | JP |
2011065126 | Mar 2011 | JP |
2011150804 | Aug 2011 | JP |
2011165630 | Aug 2011 | JP |
2011524066 | Aug 2011 | JP |
2011187297 | Sep 2011 | JP |
2012022473 | Feb 2012 | JP |
2012043705 | Mar 2012 | JP |
2012063630 | Mar 2012 | JP |
2012098873 | May 2012 | JP |
2012134064 | Jul 2012 | JP |
2012186067 | Sep 2012 | JP |
2012230256 | Nov 2012 | JP |
2014017179 | Jan 2014 | JP |
2014026807 | Feb 2014 | JP |
2014216190 | Nov 2014 | JP |
2014220039 | Nov 2014 | JP |
2016053778 | Apr 2016 | JP |
1019990007394 | Jan 1999 | KR |
1020020001668 | Jan 2002 | KR |
100454203 | Oct 2004 | KR |
1020060083032 | Jul 2006 | KR |
20080064116 | Jul 2008 | KR |
1020080066164 | Jul 2008 | KR |
2020110006385 | Jun 2011 | KR |
1020120062797 | Jun 2012 | KR |
1020130040131 | Apr 2013 | KR |
20150024201 | Mar 2015 | KR |
M302109 | Dec 2006 | TW |
200703396 | Jan 2007 | TW |
M334397 | Jun 2008 | TW |
201108284 | Mar 2011 | TW |
201108286 | Mar 2011 | TW |
M407429 | Jul 2011 | TW |
201246251 | Nov 2012 | TW |
201403646 | Jan 2014 | TW |
9744946 | Nov 1997 | WO |
2005057320 | Jun 2005 | WO |
2006022313 | Mar 2006 | WO |
2007049253 | May 2007 | WO |
2008045833 | Apr 2008 | WO |
2009005026 | Jan 2009 | WO |
2012011282 | Jan 2012 | WO |
2012027978 | Mar 2012 | WO |
2013096478 | Jun 2013 | WO |
2014175446 | Oct 2014 | WO |
Entry |
---|
International Search Report, PCT/US2013/066009, 4 pages, dated Dec. 12, 2013. |
International Search Report, PCT/US2014/052237, dated Apr. 30, 2015, 5 pages. |
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions”, http://www.wearable.technology/our-technologies, at least as early as Jan. 6, 2016, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190180955 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61884180 | Sep 2013 | US | |
61720373 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15914780 | Mar 2018 | US |
Child | 16275160 | US | |
Parent | 15342715 | Nov 2016 | US |
Child | 15914780 | US | |
Parent | 14499209 | Sep 2014 | US |
Child | 15342715 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14058448 | Oct 2013 | US |
Child | 14499209 | US |