Embodiments described herein may relate generally to a switch for an input device, and may more specifically relate to a low travel switch assembly for a keyboard or other input device.
Many electronic devices (e.g., desktop computers, laptop computers, mobile devices, and the like) include a keyboard as one of its input devices. There are several types of keyboards that are typically included in electronic devices. These types are mainly differentiated by the switch technology that they employ. One of the most common keyboard types is the dome-switch keyboard. A dome-switch keyboard includes at least a key cap, a layered electrical membrane, and an elastic dome disposed between the key cap and the layered electrical membrane. When the key cap is depressed from its original position, an uppermost portion of the elastic dome moves or displaces downward (from its original position) and contacts the layered electrical membrane to cause a switching operation or event. When the key cap is subsequently released, the uppermost portion of the elastic dome returns to its original position, and forces the key cap to also move back to its original position.
In addition to facilitating a switching event, a typical elastic dome also provides tactile feedback to a user depressing the key cap. A typical elastic dome provides this tactile feedback by behaving in a certain manner (e.g., by changing shape, buckling, unbuckling, etc.) when it is depressed and released over a range of distances. This behavior is typically characterized by a force-displacement curve that defines the amount of force required to move the key cap (while resting over the elastic dome) a certain distance from its natural position.
It is often desirable to make electronic devices and keyboards smaller. To accomplish this, some components of the device may need to be made smaller. Moreover, certain movable components of the device may also have less space to move, which may make it difficult for them to perform their intended functions. For example, a typical key cap is designed to move a certain maximum distance when it is depressed. The total distance from the key cap's natural (undepressed) position to its farthest (depressed) position is often referred to as the “travel” or “travel amount.” When a device is made smaller, this travel may need to be smaller. However, a smaller travel requires a smaller or restricted range of movement of a corresponding elastic dome, which may interfere with the elastic dome's ability to operate according to its intended force-displacement characteristics and to provide suitable tactile feedback to a user.
A low travel switch assembly and systems and methods for using the same are provided.
In some embodiments, a low travel dome is provided that includes a domed surface having upper and lower portions, and a set of tuning members integrated within the domed surface between the upper and lower portions. The tuning members may be operative to control a force-displacement curve characteristic of the low travel dome. Further, the domed surface may define the tuning members and at least one region separating the tuning members.
In some embodiments, a method for manufacturing a low travel dome by selectively removing a set of predefined portions of the dome-shaped surface to tune the dome-shaped surface to operate according to a predefined force-displacement curve characteristic.
In some embodiments, a switch assembly is provided that includes a key cap, a support structure residing under the key cap, a domed surface disposed beneath the key cap and having a set of openings formed thereon, and an electrical membrane situated below the domed surface and operative to trigger a switch event. The set of openings may be operative to maintain the switch assembly in position when the electrical membrane is not triggering the switch event, and control the switch assembly to behave according to a predefined force-displacement curve.
The above and other aspects and advantages of the invention will become more apparent upon consideration of the following detailed description, taken in conjunction with accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
A low travel switch assembly and systems and methods for using the same are described with reference to
As shown in
In addition to facilitating a switching event when a key cap is depressed, a dome of a dome-switch may also serve other purposes. As an example, the dome may cause the key cap to return to its natural state or position after the key cap is released from depression. As another example, the dome may provide tactical feedback to a user when the user depresses the key cap. The physical attributes (e.g., elasticity, size, shape, and the like) of the dome may determine the level of tactical feedback it provides. In particular, the physical attributes may define a relationship between the amount of force required to move the key cap (e.g., when the key cap rests over the dome) over a range of distances. This relationship may be expressed by a force-displacement curve, and the dome may operate according to this curve.
The amount of force required to move the key cap may vary depending on how far the key cap has moved from its natural position, and a user may experience the tactile feedback as a result of this variance. For example, the force required to move an uppermost portion of the dome from its natural or initial position to a first distance (e.g., right up to the point before the dome collapses or buckles) may be a force F1.
The force required to continue to move the uppermost portion past this first distance may be less than force F1. This is because the dome may buckle or collapse when the uppermost portion moves past the first distance, which may lessen the force required to continue to move the uppermost portion.
The force required to move the uppermost portion to a point when the dome is just completely buckled or collapsed may be a force F2. The force required to continue to move the uppermost portion until the key cap reaches its farthest or most depressed point may then increase. A user may thus experience a certain tactile feedback due to the force-displacement characteristics of the dome.
It should be appreciated that the tactile feedback can be quantified when the force-displacement characteristics of a dome are known. More particularly, the tactile feedback is a function of the ratio (e.g., click ratio) of the force required to move the uppermost portion of the dome from its natural position to a distance right before the dome begins to buckle or collapse (e.g., force F1) to the force required to move the uppermost portion from its natural position to a distance when the dome is just completely buckled or collapsed (e.g., force F2).
Because a dome's tactile feedback is tied to the force-displacement characteristics of the dome, it should also be appreciated that force-displacement characteristics of a dome can be determined when an optimal or suitable tactile feedback is predefined. For example, a dome may provide optimal tactile feedback when the click ratio is about 50%. This click ratio may be used to determine force-displacement characteristics (e.g., force F1 and force F2) required to provide the optimal tactile feedback. Accordingly, because the physical attributes of the dome correspond to the force-displacement characteristics, the dome may be specifically constructed in order to meet these characteristics.
As described above, it is often desirable to make electronic devices and keyboards smaller. To accomplish this, some components of a device may need to be made smaller. Moreover, certain movable components of the device may also have less space to move, which may make it difficult for them to perform their intended functions. For example, the travel of the key caps of a keyboard will have to be smaller. However, a smaller travel requires a smaller or restricted range of movement of a corresponding dome, which may interfere with the dome's ability to operate according to its intended force-displacement characteristics and to provide suitable tactile feedback to a user.
Since the physical attributes of the dome are associated with the dome's tactile feedback, they may be adjusted, modified, manipulated, or otherwise tuned to compensate for the smaller travel, while also providing the predefined tactile feedback.
Certain physical attributes of a dome may be adjusted, modified, manipulated, or otherwise tuned to compensate for a specified travel, while also providing predefined tactile feedback. That is, certain physical attributes of a dome may be tuned such that the dome operates according to predetermined force-displacement curve characteristics. In some embodiments, the height, thickness, and diameter of the dome may be tuned. In some embodiments, a surface of the dome may be adjusted or modified to tune the structural integrity of the surface.
The physical attributes of low travel dome 100 may be tuned in any suitable manner. In some embodiments, tuning members 152, 154, 156, and 158 may be cutouts or openings of domed surface 102 that may be integrated or formed in domed surface 102. That is, predefined portions (e.g., of a predefined size and shape) of domed surface 102 may be removed in order to control or tune low travel dome 100 such that it operates according to predetermined force-displacement curve characteristics.
Tuning members 152, 154, 156, and 158 may be spaced from one another such that one or more portions of domed surface 102 may extend from lower portion 110 of domed surface 102 to uppermost portion 140 of domed surface 102. For example, tuning members 152, 154, 156, and 158 may be evenly spaced from one another such that wall or arm portions 132, 134, 136, and 138 of domed surface 102 may form a cross-shaped (or X-shaped) portion 130 that may span from portion 110 to uppermost portion 140.
As shown in
Although
Generally, it should be appreciated that the dome 100 shown in
The beams may be configured to collapse or displace when a sufficient force is exerted on the dome. Thus, the beams may travel downward according to a particular force-displacement curve; modifying the size, shape, thickness and other physical characteristics may likewise modify the force-displacement curve. Thus, the beams may be tuned in a fashion to provide a downward motion at a first force and an upward motion or travel at a second force. Thus, the beams may snap downward when the force exerted on a keycap (and thus on the dome) exceeds a first threshold, and may be restored to an initial or default position when the exerted force is less than a second threshold. The first and second thresholds may be chosen such that the second threshold is less than the first threshold, thus providing hysteresis to the dome 100.
It should be appreciated that the force curve for the dome 100 may be adjusted not only by adjusting certain characteristics of the beams and/or arm portions 132, 134, 136, 138, but also by modifying the size and shape of the tuning members 152, 154, 156, 158. For example, the tuning members may be made larger or smaller, may have different areas and/or cross-sections, and the like. Such adjustments to the tuning members 152, 154, 156, 158 may also modify the force-displacement curve of the dome 100.
In some embodiments, each one of arm portions 132, 134, 136, and 138 of low travel dome 100 may be tuned such that low travel dome 100 may operate according to predetermined force-displacement curve characteristics. In particular, each one of arm portions 132, 134, 136, and 138 may be tuned to have a thickness al (e.g., as shown in
In some embodiments, the hardness of the material of low travel dome 100 may tuned such that low travel dome 100 may operate according to predetermined force-displacement curve characteristics. In particular, the hardness of the material of low travel dome 100 may be tuned to be greater than a predefined hardness such that cross-shaped portion 130 may not buckle as easily as if the material were softer.
Although
Regardless of how low travel dome 100 is tuned, when an external force is applied (for example, on or through key cap 200 of
In some embodiments, membrane 500 may be a part of a printed circuit board (“PCB”) that may interact with low travel dome 100. As described above with respect to
Top layer 510 may couple to or include a corresponding conductive pad (not shown), and bottom layer 520 may couple to or include a corresponding conductive pad (not shown). In some embodiments, each of these conductive pads may be in the form of a conductive gel. The gel-like nature of the conductive pads may provide improved tactile feedback to a user when, for example, the user depresses key cap 200. The conductive pad associated with top layer 510 may include corresponding conductive traces on an underside of top layer 510, and the conductive pad associated with bottom layer 520 may include conductive traces on an upper side of bottom layer 520. These conductive pads and corresponding conductive traces may be composed of any suitable material (e.g., metal, such as silver or copper, conductive gels, nanowire, and so on).
As shown in
In some embodiments, key cap 200, low travel dome 100, and membrane 500 may be included in a surface-mountable package, which may facilitate assembly of, for example, an electronic device or keyboard, and may also provide reliability to the various components.
Although
As described above, low travel dome 100 may be tuned in any suitable manner such that low travel dome 100 (and thus, key cap 200) may operate according to predetermined force-displacement curve characteristics.
The force required to depress key cap 200 from its natural position 220 (e.g., the position of key cap 200 prior to any force being applied thereto, as shown in
When key cap 200 displaces to position 230 (e.g., VIa millimeters), low travel dome 100 may no longer be able to resist the pressure, and may begin to buckle (e.g., cross-shaped portion 130 may begin to buckle). The force that is subsequently required to displace key cap 200 from position 230 (e.g., VIa millimeters) to a position 240 (e.g., VIb millimeters) may gradually decrease.
When key cap 200 displaces to position 240 (e.g., VIb millimeters), an underside of upper portion 140 of low travel dome 100 may contact membrane 500 to cause or trigger a switch event or operation. In some embodiments, the underside may contact membrane 500 slightly prior to or slightly after key cap 200 displaces to position 240. When contact surface 107 contacts membrane 500, membrane 500 may provide a counter force in the +Y-direction, which may increase the force required to continue to displace key cap 200 beyond position 240. The force required to displace key cap 200 to position 240 may be referred to as the draw or return force.
When key cap 200 displaces to position 240, low travel dome 100 may also be complete in its buckling. In some embodiments, upper portion 140 may continue to displace in the −Y-direction, but cross-shaped portion 130 of low travel dome 100 may be substantially buckled. The force that is subsequently required to displace key cap 200 from position 240 (e.g., VIb millimeters) to position 250 (e.g., VIc millimeters) may gradually increase. Position 250 may be the maximum displacement position of key cap 200 (e.g., a bottom-out position). When the force (e.g., external force A) is removed from key cap 200, elastomeric dome 100 may then unbuckle and return to its natural position, and key cap may also return to natural position 220.
In some embodiments, the size or height of contact portion 210 may be defined to determine the maximum displacement position 250 or travel of key cap 200 in the −Y-direction. For example, the travel of key cap 200 may be defined to be about 0.75 millimeter, 1.0 millimeter, or 1.25 millimeters.
In addition to a cushioning effect provided by the gel-like conductive pads of top and bottom layers 510 and 520 to low travel dome 100 and key cap 100, in some embodiments, through-hole 552 may also provide a cushioning effect. As shown in
In some embodiments, key cap 200 may or may not include contact portion 210. When key cap 200 does not include contact portion 210, for example, underside 204 of key cap 200 may not be sufficient to press onto upper portion 140 of cross-shaped portion 130. Thus, in these embodiments, low travel dome 100 may include a force concentrator nub that may contact underside 204 when a force is applied to cap surface 202 in the −Y-direction.
At operation 1304, the process may include providing a dome-shaped surface. For example, operation 1304 may include providing a dome-shaped surface, such as domed surface 102 prior to any tuning members being integrated therewith.
At operation 1306, the process may include selectively removing a plurality of predefined portions of the dome-shaped surface to tune the dome-shaped surface to operate according to a predefined force-displacement curve characteristic. For example, operation 1306 may include forming openings or cutouts 152, 154, 156, and 158 at the plurality of predefined portions of the dome-shaped surface, each of the openings having a predefined shape, such as an L-shape or a pie shape. In some embodiments, operation 1306 may include forming a remaining portion of the dome-shaped surface that may appear to be cross-shaped. Moreover, in some embodiments, operation 1306 may include die cutting or stamping of the dome-shaped surface to create cutouts 152, 154, 156, and 158.
As shown in the embodiment of
By employing a dome 1400 having a generally square or rectangular profile, the usable area for the dome under a square keycap may be maximized. Thus, the length of the beams 1412, 1416 may be increased when compared to a dome that is circular in profile. This may allow the dome 1400 to operate in accordance with a force-displacement curve that may be difficult to achieve if the beams are constrained to be shorter due to a circular dome shape. For example, the deflection of the beams (in either an upward or downward direction) may occur across a shorter period, once the necessary force threshold is reached. This may provide a crisper feeling, or may provide a more sudden depression or rebound of an associated key. Further, fine-tuning of a force-displacement curve for the dome 1400 may be simplified since the length of the beams 1412, 1416 is increased.
While there have been described a low travel switch assembly and systems and methods for using the same, it is to be understood that many changes may be made therein without departing from the spirit and scope of the invention. Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements. It is also to be understood that various directional and orientational terms such as “up and “down,” “front” and “back,” “top” and “bottom,” “left” and “right,” “length” and “width,” and the like are used herein only for convenience, and that no fixed or absolute directional or orientational limitations are intended by the use of these words. For example, the devices of this invention can have any desired orientation. If reoriented, different directional or orientational terms may need to be used in their description, but that will not alter their fundamental nature as within the scope and spirit of this invention. Moreover, an electronic device constructed in accordance with the principles of the invention may be of any suitable three-dimensional shape, including, but not limited to, a sphere, cone, octahedron, or combination thereof.
Therefore, those skilled in the art will appreciate that the invention can be practiced by other than the described embodiments, which are presented for purposes of illustration rather than of limitation.
This application is a nonprovisional patent application and claims the benefit of U.S. Provisional Patent Application No. 61/827,708, filed May 27, 2013 and titled “Low Travel Switch Assembly,” the disclosure of which is hereby incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61827708 | May 2013 | US |