Low VOC coating composition

Information

  • Patent Application
  • 20010031362
  • Publication Number
    20010031362
  • Date Filed
    May 22, 2001
    23 years ago
  • Date Published
    October 18, 2001
    23 years ago
Abstract
A water based, low VOC coating includes an aqueous dispersion of an amine terminated epoxy resin and an organosilane curing agent of the formula: R1—(CH2)x—Si—(R3)n—(R2)3−n; wherein R1 is an epoxide, an isocyanate, or an acrylic; R2 is an alkoxy group, acetoxy group, or an oximino group; R3 is a C1—C6 alkyl group; X is an integer from 2-10; and n is 0 to 2.
Description


FILED OF THE INVENTION

[0002] This invention relates generally to coatings. More specifically, the invention relates to a flexible, chemically resistant epoxy based coating composition. Most specifically, the invention relates to an aqueous based epoxy coating composition having a low concentration of VOCs therein.



BACKGROUND OF THE INVENTION

[0003] Epoxy based coatings generally have high resistance to chemical attack, and good flexibility which makes them very useful in a variety of industrial applications. Initially, many epoxy based coatings were prepared from organic solvent based systems. Such compositions generally have long pot life and fast dry times; but they contain high levels of organic solvents which are expensive and subject to governmental regulation. As a consequence, the industry has looked to use coating compositions which have low concentrations of volatile organic compounds (VOCs). Water based coatings are very attractive for this reason, but have generally been found to have short pot life, slow cures and marginal chemical resistance. In addition, water based epoxy coatings are difficult to prepare and use, since they do not wet a substrate very well, and usually require the addition of surface tension lowering additives such as silicones to improve flow and coating appearance. Such additives often cause intercoat adhesion problems.



DETAILED DESCRIPTION OF THE INVENTION

[0004] The present invention is directed to water based, low VOC epoxy coatings which have long pot life, fast dry time and very good chemical and water resistance once cured. The coatings of the present invention are also easy to mix and have good application properties.


[0005] The coatings of the present invention are formed from a first component which comprises a water based dispersion of an amine terminated epoxy resin. By water based dispersion is meant a multi-phase mixture of water and organic compounds, and may comprise an emulsion, a colloid, or a microgel, all of which are known in the art. The invention may be practiced with any amine terminated epoxy resin that is chemically stable under the conditions set forth herein. One particularly preferred group of resins are those which are disclosed in U.S. Pat. No. 5,369,152; although, other such resins will be readily apparent to one of skill in the art.


[0006] The second major component of the composition of the present invention comprises a curing agent which is an organosilane of the general structural formula: R1—(CH2)x—Si—(R3)n—(R2)3−n; wherein R1 is an epoxide, an isocyanate, or an acrylic; R2 is an alkoxy group, acetoxy group, or an oximino group; R3 is a C1—C6 alkyl group; X is an integer from 2-10; and n is 0 to 2.


[0007] R1 can be an alkyl group, a cycloalkyl group, or an aryl group which contains an epoxy group, an isocyanate group, an acrylic group or a methacrylic group.


[0008] There are a number of curing agents which will be readily apparent to one of skill in the art. Among some of the most preferred curing agents are gamma-glycidoxypropyl trimethoxysilane; and beta (3,4-epoxycyclohexyl) ethyltrimethoxy silane. Some other preferred curing agents are gamma-methacryloxypropyl trimethoxy silane; and gamma-isocyanatopropyl triethoxysilane.


[0009] In a typical composition, an aqueous dispersion of the amine terminated epoxy resin will further include an organic co-solvent in an amount, by weight, of 0 to 80% of the dispersion. This solvent preferably comprises a water compatible solvent such as a glycol ether or an alcohol. The dispersion may further include a pigment, which is typically present in an amount of 0 to 60% by weight of the dispersion.


[0010] The curing agent may further include an organic co-solvent in an amount of 0 to 90% by weight. This co-solvent is again preferably a water compatible solvent such as a glycol ether, an alcohol or the like. The curing agent can also be a non-water compatible solvent including ketones such as methylamylketone and alcohols such as n-butanol. The curing agent may also include 0 to 50% by weight of a pigment, and 0 to 10% of a surfactant. Additionally, it has been found that it may be necessary to increase the amount of water in the mixture of aqueous dispersion and the curing agent in the composition in order to reduce the viscosity of the composition for a desired application or mechanism of application such as spraying.


[0011] A variety of formulations may be prepared in accord with the foregoing. It is believed that the curing of the coatings takes place in four stages. The first stage involves evaporation of the water and any organic co-solvent. The second stage involves coalescence or aggregation of the dispersed, amine terminated resin particles. The third stage of the curing involves a reaction of the organo-functional end of the silane with the amine hydrogen of the resin. A fourth stage of the reaction involves a further cross-linking wherein the alkoxysilane groups condense with either another alkoxysilane or with a substrate, on which the coating is disposed.


[0012] The Examples include five illustrative formulations made in accord with the principles of the present invention. In these formulations, the amine terminated resin component is set forth as component A, and the curing agent as component B. In the following formulations, amine terminated resins are commercially available products sold by the Reichold Chemical Company under the trademark EPOTUF. Other materials include glycol ether co-solvents available from the Arco Chemical Company under the name ARCOSOLVE and from the Dow Chemical Company under the name DOWANOL. The compositions also include pigments and water as indicated.







EXAMPLE 1

[0013]

1











Formulation #1








Component A
Component B










Material
Lbs
Material
Lbs





Epotuf 37-681
188.3
Epoxy Silane
70


Arcosolve PTB
 37.7
Arcosolve PTB
10


Dowanol PPh
 11.3

80


Raven 410
 20.1


Wollastokup 10ES
316.8



-Mix and Grind-


Epotuf 37-681
228.2


Arcosolve PTB
 27.3


Water
 27.7



857.5











EXAMPLE 2

[0014]

2











Formulation #2








Component A
Component B










Material
Lbs
Material
Lbs





Epotuf 37-680
160.7
Epoxy Silane
40


Arcosolve PTB
 21.9
Methacryl Silane
30


Dowanol PPh
 8.8
Arcosolve PTB
20


Strontium Chromate
 94.3

90


Ti-Pure R-900
169.7


Wollastokup 10ES
221.5



-Mix and Grind-


Epotuf 37-680
162.9


Arcosolve PTB
 26.6


Water
154.7



1021.1 











EXAMPLE 3

[0015]

3











Formulation #3












Component A

Component B













Material
Lbs
Material
Lbs







Epotuf 37-680
160.0 
Epoxy Silane
28.0



Arcosolve PTB
10.0
Ektosolve EB
 5.0



Dowanol PPh
 5.0

33.0



Water
50.0




225.0 












EXAMPLE 4

[0016]

4











Formulation #4








Component A
Component B










Material
Lbs
Material
Lbs





Epotuf 37-681
148.0
Epoxy Silane
52


Arcosolve PTB
 20.0
Ektosolve EB
10


Dowanol PPh
 8.1

62


Ektosolve EB
 5.0


Yellow Iron Oxide
 71.0


Black Iron Oxide
 16.0


Wollastokup 10ES
290.0



-Mix and Grind-


Epotuf 37-681
150.0


Arcosolve PTB
 16.0


Water
216.0



935.0











EXAMPLE 5

[0017]

5











Formulation #5








Component A
Component B










Material
Lbs
Material
Lbs





Epotuf 37-680
159.0
Epoxy Silane
60


Arcosolve PTB
 2.0
Ektosolve EB
20


Dowanol PPh
 9.6

80


Red Iron Oxide
 81.0


Wollastokup 10ES
268.0



-Mix and Grind-


Epotuf 37-680
193.0


Arcosolve PTB
 48.0


Water
 15.0



806.0










[0018] A typical composition of the present invention, as set forth in the examples, has a usable service temperature range of approximately −65 to 350° F.; a minimum pencil hardness of 2 H; impact resistance of 80 in/lb Gardner; flexibility of 180° measured by a conical mandrel; good sealant compatibility and good chemical resistance. A typical material cures at 77° F. and 50% relative humidity to a dust free state within thirty minutes, and is dry to tape or overcoat at two hours, and reaches a full cure in seven days.


[0019] It will be understood that in accord with the present invention, numerous other formulations may be readily implemented by one of skill in the art. It is the following claims, including all equivalents, which define the scope of the invention.


Claims
  • 1. A water based, low VOC coating composition comprising: (a) an aqueous dispersion of an amine terminated epoxy resin; and (b) an organosilane curing agent of the formula: R1—(CH2)x—Si—(R3)n−N—(R2)3−n; wherein R1 is an epoxide, an isocyanate, or an acrylic; R2 is an alkoxy group, acetoxy group, or an oximino group; R3 is a C1—C6 alkyl group; X is an integer from 2-10; and n is 0 to 2.
  • 2. A composition as in claim 1, wherein said aqueous dispersion of an amine terminated epoxy resin comprises an aqueous based microgel of said resin.
  • 3. A composition as in claim 1, wherein said aqueous dispersion of an amine terminated epoxy resin comprises an aqueous emulsion of said resin.
  • 4. A composition as in claim 1, wherein said organosilane curing agent comprises an epoxy silane.
  • 5. A composition as in claim 1, wherein said organosilane curing agent is selected from the group consisting of gamma-glycidoxypropyl trimethoxysilane; beta-(3,4-epoxycyclohexyl)-ethyltrimethoxy silane; gamma-methacryloxypropyl trimethoxysilane; gamma-isocyanatopropyl triethoxysilane; and combinations thereof.
  • 6. A composition as in claim 1, wherein said aqueous dispersion further includes an organic co-solvent therein in an amount of up to 80% by weight.
  • 7. A composition as in claim 1, wherein said organosilane curing agent further includes up to 50% by weight of water therein.
  • 8. A composition as in claim 1, wherein said organosilane curing agent further includes 0-90% by weight of a co-solvent therein; 0-50% by weight of a pigment therein; and 0-10% by weight of a surfactant therein.
  • 9. A coated article, said article coated with a composition comprising: (a) an aqueous dispersion of an amine terminated epoxy resin; and (b) an organosilane curing agent of the formula: R1—(CH2)x—Si—(R3)n—(R2)3−n; wherein R1 is an epoxide, an isocyanate, or an acrylic; R2 is an alkoxy group, acetoxy group, or an oximino group; R3 is a C1—C6 alkyl group; X is an integer from 2-10; and n is 0 to 2.
  • 10. A coated article as in claim 9, wherein said aqueous dispersion of an amine terminated epoxy resin comprises an aqueous based microgel of said resin.
  • 11. A coated article as in claim 9, wherein said aqueous dispersion of an amine terminated epoxy resin comprises an aqueous emulsion of said resin.
  • 12. A coated article as in claim 9, wherein said organosilane curing agent comprises an epoxy silane.
  • 13. A coated article as in claim 9, wherein said organosilane curing agent is selected from the group consisting of gamma-glycidoxypropyl trimethoxysiane; beta-(3,4-epoxycyclohexyl)-ethyltrimethoxy silane; gamma-methacryloxypropyl trimethoxysilane; gamma-isocyanatopropyl triethoxysilane; and combinations thereof.
  • 14. A coated article as in claim 9, wherein said aqueous dispersion further includes an organic co-solvent therein in an amount of up to 80% by weight.
  • 15. A coated article as in claim 9, wherein said organosilane curing agent further includes up to 50% by weight of water therein.
  • 16. A coated article as in claim 9, wherein said organosilane curing agent further includes 0-90% by weight of a co-solvent therein; 0-50% by weight of a pigment therein; and 0-10% by weight of a surfactant therein.
  • 17. A method for making a water based, low VOC coating composition, said method comprising the steps of: combining a first component comprising a water based dispersion of amine terminated epoxy resin and a curing agent comprising an organosilane having the structure R1—(CH2)x—Si—(R3)n—(R2)3−n; wherein R1is an epoxide, an isocyanate, or an acrylic; R2 is an alkoxy group, acetoxy group, or an oximino group; R3 is a C1—C6 alkyl group; X is an integer from 2-10; and n is 0 to 2.
  • 18. A method as in claim 17, wherein the aqueous dispersion of an amine terminated epoxy resin comprises an aqueous based microgel of said resin.
  • 19. A method as in claim 17, wherein the aqueous dispersion of an amine terminated epoxy resin comprises an aqueous emulsion of said resin.
  • 20. A method as in claim 17, wherein the organosilane curing agent comprises an epoxy silane.
  • 21. A method as in claim 17, wherein the organosilane curing agent is selected from the group consisting of gamma-glycidoxypropyl trimethoxysilane; beta-(3,4-epoxycyclohexyl)-ethyl trimethoxysilane; gamma-methacryloxypropyl trimethoxysilane; gamma-isocyanatopropyl triethoxysilane; and combinations thereof.
  • 22. A method as in claim 17, wherein the aqueous dispersion further includes an organic co-solvent therein in an amount of up to 80% by weight.
  • 23. A method as in claim 17, wherein the organosilane curing agent further includes up to 50% by weight of water therein.
  • 24. A method as in claim 17, wherein the organosilane curing agent further includes 0-90% by weight of a co-solvent therein; 0-50% by weight of a pigment therein; and 0-10% by weight of a surfactant therein.
RELATED APPLICATION

[0001] This application claims priority of U.S. Provisional Application Serial No. 60/070,929 filed Dec. 24, 1997.

Provisional Applications (1)
Number Date Country
60070929 Dec 1997 US
Continuations (1)
Number Date Country
Parent 09207738 Dec 1998 US
Child 09863048 May 2001 US