This invention pertains generally to the field of charge pumps and more particularly to a charge pump with relative low output voltage, high power efficiency and higher current requirements.
Charge pumps use a switching process to provide a DC output voltage larger than its DC input voltage. In general, a charge pump will have a capacitor coupled to switches between an input and an output. During one clock half cycle, the charging half cycle, the capacitor couples in parallel to the input so as to charge up to the input voltage. During a second clock cycle, the transfer half cycle, the charged capacitor couples in series with the input voltage so as to provide an output voltage twice the level of the input voltage. This process is illustrated in
Charge pumps are used in many contexts. For example, they are used as peripheral circuits on flash and other non-volatile memories to generate many of the needed operating voltages, such as programming or erase voltages, from a lower power supply voltage. A number of charge pump designs, such as conventional Dickson-type pumps, are know in the art. But given the common reliance upon charge pumps, there is an on going need for improvements in pump design, particularly with respect to trying to reduce the amount of layout area and the current consumption requirements of pumps.
A charge pump for generating an output voltage is described. The charge pump has multiple capacitors along with switching circuitry. The capacitors are alternately connectable in a first, or initialization, phase and a second, or transfer, phase. In the first phase, the first plate of each of the capacitors is connected to receive a regulator voltage and the second plate of each capacitor is connected to ground. In the second phase, the capacitors are connected in series, where for each capacitor after the first the second plate is connected to the first plate of the preceding capacitor in the series. The output voltage of the pump is from the first plate of the last capacitor in the series. Regulation circuitry generates the regulator voltage from a reference voltage to have a value responsive to the output voltage level of the pump.
Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
The various aspects and features of the present invention may be better understood by examining the following figures, in which:
a is a simplified circuit diagram of the charging half cycle in a generic charge pump.
b is a simplified circuit diagram of the transfer half cycle in a generic charge pump.
The charge pump presented here particularly suitable for applications where high efficiency, minimal layout area requirements, and high current ability are preferred. The exemplary embodiments are suitable to provide outputs in the range of 3V to 6.5 V, with high output current capability, while requiring less layout area and current consumption than is found in the prior art. As example of an application for the described designs is for use as peripheral circuitry on a non-volatile memory circuit.
More information on prior art charge pumps, such Dickenson type pumps and charge pumps generally, can be found, for example, in “Charge Pump Circuit Design” by Pan and Samaddar, McGraw-Hill, 2006, or “Charge Pumps: An Overview”, Pylarinos and Rogers, Department of Electrical and Computer Engineering University of Toronto, available on the webpage “www.eecg.toronto.edu/˜kphang/ece1371/chargepumps.pdf”. Further information on various other charge pump aspects and designs can be found in U.S. Pat. Nos. 5,436,587; 6,370,075; 6,922,096; and 7,135,910; and application Ser. Nos. 10/842,910 filed on May 10, 2004; 11/295,906 filed on Dec. 6, 2005; 11/303,387 filed on Dec. 16, 2005; 11/497,465 filed on Jul. 31, 2006; 11/523,875 filed on Sep. 19, 2006; and 11/845,903 and 11/845,939, both filed Aug. 28, 2007.
Vref is a fixed reference value, such as provided by band-gap generator (not shown) with a voltage of, say, 1.2 volts, or other external voltage supply source. Clock_High is a clock (not shown) input to the Pump 201. The “1” voltage level of Clock_High (φ) should preferably be high enough to minimize the drop across the switches used for charge transfer.
The second operating phase, or transfer phase, is shown is shown in
Although the arrangements of
Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Consequently, various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as encompassed by the following claims.