Low voltage charge pump with regulation

Information

  • Patent Grant
  • 7586362
  • Patent Number
    7,586,362
  • Date Filed
    Wednesday, December 12, 2007
    17 years ago
  • Date Issued
    Tuesday, September 8, 2009
    15 years ago
Abstract
Techniques of providing a low output voltage, high current capability charge pump are given. The charge pump has multiple capacitors along with switching circuitry. In an initialization phase, the first plate of each of the capacitors is connected to receive a regulator voltage and the second plate of each capacitor is connected to ground. In a transfer phase, the capacitors are connected in series, where, for each capacitor after the first, the second plate is connected to the first plate of the preceding capacitor in the series. The output voltage of the pump is from the first plate of the last capacitor in the series. Regulation circuitry generates the regulator voltage from a reference voltage to have a value responsive to the output voltage level of the pump.
Description
FIELD OF THE INVENTION

This invention pertains generally to the field of charge pumps and more particularly to a charge pump with relative low output voltage, high power efficiency and higher current requirements.


BACKGROUND

Charge pumps use a switching process to provide a DC output voltage larger than its DC input voltage. In general, a charge pump will have a capacitor coupled to switches between an input and an output. During one clock half cycle, the charging half cycle, the capacitor couples in parallel to the input so as to charge up to the input voltage. During a second clock cycle, the transfer half cycle, the charged capacitor couples in series with the input voltage so as to provide an output voltage twice the level of the input voltage. This process is illustrated in FIGS. 1a and 1b. In FIG. 1a, the capacitor 5 is arranged in parallel with the input voltage VIN to illustrate the charging half cycle. In FIG. 1b, the charged capacitor 5 is arranged in series with the input voltage to illustrate the transfer half cycle. As seen in FIG. 1b, the positive terminal of the charged capacitor 5 will thus be 2*VIN with respect to ground.


Charge pumps are used in many contexts. For example, they are used as peripheral circuits on flash and other non-volatile memories to generate many of the needed operating voltages, such as programming or erase voltages, from a lower power supply voltage. A number of charge pump designs, such as conventional Dickson-type pumps, are know in the art. But given the common reliance upon charge pumps, there is an on going need for improvements in pump design, particularly with respect to trying to reduce the amount of layout area and the current consumption requirements of pumps.


SUMMARY OF THE INVENTION

A charge pump for generating an output voltage is described. The charge pump has multiple capacitors along with switching circuitry. The capacitors are alternately connectable in a first, or initialization, phase and a second, or transfer, phase. In the first phase, the first plate of each of the capacitors is connected to receive a regulator voltage and the second plate of each capacitor is connected to ground. In the second phase, the capacitors are connected in series, where for each capacitor after the first the second plate is connected to the first plate of the preceding capacitor in the series. The output voltage of the pump is from the first plate of the last capacitor in the series. Regulation circuitry generates the regulator voltage from a reference voltage to have a value responsive to the output voltage level of the pump.


Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.





BRIEF DESCRIPTION OF THE DRAWINGS

The various aspects and features of the present invention may be better understood by examining the following figures, in which:



FIG. 1
a is a simplified circuit diagram of the charging half cycle in a generic charge pump.



FIG. 1
b is a simplified circuit diagram of the transfer half cycle in a generic charge pump.



FIG. 2 is a top-level block diagram for a regulated charge pump.



FIGS. 3A and 3B show the initialization and transfer modes of a first charge pump embodiment.



FIGS. 4A and 4B show the initialization and transfer modes of an alternate charge pump embodiment.





DETAILED DESCRIPTION

The charge pump presented here particularly suitable for applications where high efficiency, minimal layout area requirements, and high current ability are preferred. The exemplary embodiments are suitable to provide outputs in the range of 3V to 6.5 V, with high output current capability, while requiring less layout area and current consumption than is found in the prior art. As example of an application for the described designs is for use as peripheral circuitry on a non-volatile memory circuit.


More information on prior art charge pumps, such Dickenson type pumps and charge pumps generally, can be found, for example, in “Charge Pump Circuit Design” by Pan and Samaddar, McGraw-Hill, 2006, or “Charge Pumps: An Overview”, Pylarinos and Rogers, Department of Electrical and Computer Engineering University of Toronto, available on the webpage “www.eecg.toronto.edu/˜kphang/ece1371/chargepumps.pdf”. Further information on various other charge pump aspects and designs can be found in U.S. Pat. Nos. 5,436,587; 6,370,075; 6,922,096; and 7,135,910; and application Ser. Nos. 10/842,910 filed on May 10, 2004; 11/295,906 filed on Dec. 6, 2005; 11/303,387 filed on Dec. 16, 2005; 11/497,465 filed on Jul. 31, 2006; 11/523,875 filed on Sep. 19, 2006; and 11/845,903 and 11/845,939, both filed Aug. 28, 2007.



FIG. 2 is a top-level block diagram of a typical charge pump arrangement. The designs described here differ from the prior art in details of how the pump section 201. As shown in FIG. 2, the pump 201 has as inputs a clock signal and a voltage Vreg and provides an output Vout. The high (Vdd) and low (ground) connections are not explicitly shown. The voltage Vreg is provided by the regulator 203, which has as inputs a reference voltage Vref from an external voltage source and the output voltage Vout. The regulator block 203 regulates the value of Vreg such that the desired value of Vout can be obtained. The pump section 201 will typically have cross-coupled elements, such at described below for the exemplary embodiments. (A charge pump is typically taken to refer to both the pump portion 201 and the regulator 203, when a regulator is included, although is some usages “charge pump” refers to just the pump section 201.)


Vref is a fixed reference value, such as provided by band-gap generator (not shown) with a voltage of, say, 1.2 volts, or other external voltage supply source. Clock_High is a clock (not shown) input to the Pump 201. The “1” voltage level of Clock_High (φ) should preferably be high enough to minimize the drop across the switches used for charge transfer.



FIGS. 3A, 3B and 4A, 4B, show a pair of exemplary embodiments. In both cases, a number of capacitors (N, taken as N=3 for this discussion) are connected in series in the transfer phase or mode, while in the initialization phase or mode each capacitor is connected between the low voltage level (typically ground) and the regulator voltage. The regulator voltage is provided from a regulator circuit based on feedback and can be used to control the pre-charge on each of the internal stage node.



FIGS. 3A and 3B respectively show the initialization phase and the transfer phase of a first embodiment of a charge pump. The number of stages, N, shown in the examples is N=3, as this is convenient, but it will be understood that other numbers can be used as appropriate. For the initialization phase of FIG. 3A, the “bottom” plate of each capacitor (C1311, C2313, C3315) is set to 0V, while the “top” plate is reset to a level based on the regulated voltage Vreg. The regulator 303 will supply Vreg, where the switches to effect this based on the clock signal CLK are only shown schematically. Both the switches and the regulator circuitry can be implemented by the standard techniques known in the art.


The second operating phase, or transfer phase, is shown is shown in FIG. 3B. The N stages are now connected in series between the Vdd level from the voltage supply and the output node to supply the output. This output is also supplied to the regulator 303, so that regulation feedback can be used to control the pre-charge level on the internal stage nodes (as described with respect to FIG. 3A), while the clock can run constantly at the Vdd level. The output is then boosted to Vout=N*K*Vreg+Vdd, K is a factor based upon charge sharing efficiency in operation. This is the ideal level ignoring any drops across the switches (again only indicated schematically). Preferably, the switches are driven by a level to minimize any drops from them. By using a regulating voltage to pre-charge the top plate during the initialization phase, rather than just applying Vdd to the top plate, a regulated output can be obtained while achieving the high power efficiency and high current requirements of the series arrangement of FIG. 3B.



FIGS. 4A and 4B respectively show the initialization phase and the transfer phase of an alternate embodiment of a charge pump. The various elements are labeled similarly, and function similarly, to those of FIGS. 3A and 3B. The principle distinction is that the regulation feedback can now be used to control the pre-charge level on the internal stage nodes as well as the clock amplitudes. In the transfer phase of FIG. 4B, the capacitors are now connected in series between Vreg, rather than Vdd, and the output node. Consequently, the output voltage is now (ideally) boosted up to Vout=N*K*Vreg+Vreg. This allows all of the out voltage to be regulated by the feedback from the regulator circuit 403.


Although the arrangements of FIGS. 3A, 3B and 4A, 4B are described for the case of generating a positive voltage output, a similar arrangement can be used to generate negative voltages. More specifically, this could be effected by, roughly speaking, turning “upside down”the embodiments of FIGS. 3A, 3B and 4A, 4B with respect to their various connections and using a corresponding negative regulation voltage.


Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Consequently, various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as encompassed by the following claims.

Claims
  • 1. A charge pump circuit to generate an output voltage, including: a plurality of capacitors, each having a first plate and a second plate;switching circuitry, whereby the capacitors are alternately connectable in a first phase, in which the first plate of each of the capacitors is connected to receive a regulator voltage and the second plate of each of the capacitors is connected to ground, and in a second phase, in which the capacitors are connected in series such that for each capacitor after the first in the series the second plate is connected to the first plate of the preceding capacitor in the series and the first plate of the last capacitor in the series is connected to supply the output voltage of the charge pump circuit; andregulation circuitry connectable to receive a reference voltage and the output voltage from charge pump and to generate from the reference voltage said regulator voltage, wherein the regulator voltage value is responsive to the value of the output voltage.
  • 2. The charge pump circuit of claim 1, wherein, during the second phase, the second plate of the first capacitor in the series is connected by the switching circuitry to receive a voltage from a voltage supply.
  • 3. The charge pump circuit of claim 1, wherein, during the second phase, the second plate of the first capacitor in the series is connected by the switching circuitry to receive the regulator voltage.
  • 4. The charge pump circuit of claim 1, wherein the charge pump circuit is formed on a non-volatile memory circuit as a peripheral circuitry element.
  • 5. A method of generating an output voltage, comprising: providing a plurality of capacitors, each having a first plate and a second plate;alternately connecting the capacitors in a first phase and a second phase, where the first phase includes: connecting the first plate of each of the capacitors to receive a regulator voltage; andconnecting the second plate of each of the capacitors to ground;and the second phase includes: connecting the capacitors in series such that for each capacitor after the first in the series the second plate is connected to the first plate of the preceding capacitor in the series; andsupplying the output voltage from the first plate of the last capacitor in the series;generating said regulation voltage from a reference voltage wherein the regulator voltage value is responsive to the value of the output voltage.
  • 6. The method of claims 5, the second phase further comprising: connecting the first capacitor in the series to receive a voltage from a voltage supply.
  • 7. The method of claims 5, the second phase further comprising: connecting the first capacitor in the series to receive the regulator voltage.
US Referenced Citations (74)
Number Name Date Kind
3697860 Baker Oct 1972 A
4511811 Gupta Apr 1985 A
4583157 Kirsch et al. Apr 1986 A
4636748 Latham Jan 1987 A
4736121 Cini et al. Apr 1988 A
4888738 Wong et al. Dec 1989 A
5392205 Zavaleta Feb 1995 A
5436587 Cernea Jul 1995 A
5508971 Cernea et al. Apr 1996 A
5563779 Cave et al. Oct 1996 A
5563825 Cernea et al. Oct 1996 A
5568424 Cernea et al. Oct 1996 A
5592420 Cernea et al. Jan 1997 A
5596532 Cernea et al. Jan 1997 A
5621685 Cernea et al. Apr 1997 A
5625544 Kowshik et al. Apr 1997 A
5693570 Cernea et al. Dec 1997 A
5969565 Naganawa Oct 1999 A
5973546 Le et al. Oct 1999 A
6018264 Jin Jan 2000 A
6023187 Camacho et al. Feb 2000 A
6026002 Viehmann Feb 2000 A
6134145 Wong Oct 2000 A
6154088 Chevallier et al. Nov 2000 A
6198645 Kotowski et al. Mar 2001 B1
6249898 Koh et al. Jun 2001 B1
6314025 Wong Nov 2001 B1
6329869 Matano Dec 2001 B1
6344959 Milazzo Feb 2002 B1
6344984 Miyazaki Feb 2002 B1
6370075 Haeberli et al. Apr 2002 B1
6404274 Hosono et al. Jun 2002 B1
6424570 Le et al. Jul 2002 B1
6445243 Myono Sep 2002 B2
6486728 Kleveland Nov 2002 B2
6518830 Gariboldi et al. Feb 2003 B2
6525949 Johnson et al. Feb 2003 B1
6531792 Oshio Mar 2003 B2
6556465 Wong et al. Apr 2003 B2
6577535 Pasternak Jun 2003 B2
6606267 Wong Aug 2003 B2
6724241 Bedarida et al. Apr 2004 B1
6734718 Pan May 2004 B1
6760262 Haeberli et al. Jul 2004 B2
6798274 Tanimoto Sep 2004 B2
6834001 Myono Dec 2004 B2
6859091 Nicholson et al. Feb 2005 B1
6891764 Li May 2005 B2
6922096 Cernea Jul 2005 B2
6944058 Wong Sep 2005 B2
6975135 Bui Dec 2005 B1
6990031 Hashimoto et al. Jan 2006 B2
7023260 Thorp et al. Apr 2006 B2
7030683 Pan et al. Apr 2006 B2
7113023 Cernea Sep 2006 B2
7116155 Pan Oct 2006 B2
7120051 Gorobets Oct 2006 B2
7135910 Cernea Nov 2006 B2
7227780 Komori et al. Jun 2007 B2
7239192 Tailliet Jul 2007 B2
7276960 Peschke Oct 2007 B2
7397677 Collins et al. Jul 2008 B1
20050248386 Pan et al. Nov 2005 A1
20060114053 Sohara et al. Jun 2006 A1
20070001745 Yen Jan 2007 A1
20070126494 Pan Jun 2007 A1
20070139099 Pan Jun 2007 A1
20070139100 Pan Jun 2007 A1
20070229149 Pan et al. Oct 2007 A1
20080024096 Pan Jan 2008 A1
20080157852 Pan Jul 2008 A1
20080157859 Pan Jul 2008 A1
20080239802 Thorpe Oct 2008 A1
20080239856 Thorpe Oct 2008 A1
Foreign Referenced Citations (1)
Number Date Country
WO 0106336 Jan 2001 WO
Related Publications (1)
Number Date Country
20090153230 A1 Jun 2009 US