The invention relates generally to the field of unidirectional electronic valves, and more particularly to a low voltage drop unidirectional electronic valve operating as a near ideal diode.
Solar power for large scale use, and/or for feeding into a power grid, is typically supplied by an array of serially connected solar panels. Each solar panel exhibits a positive terminal, and a return, or negative terminal. Solar panels generate electricity in the presence of an appropriate amount of sunlight, and thus one solar panel in the array may be in a dark condition, while others may be generating electricity. The dark condition may be caused by, among others, a flying object or bird, a cloud covering, or accumulated dirt. Electricity must be bypassed around the dark solar panel so that the output of the array is not blocked. Similarly, in the event of a failure of a single solar panel in the array, electricity must be bypassed around the failed solar panel so as to avoid failure of the entire array.
In operation, a dark solar panel 10 will exhibit a voltage reversal between the positive terminal and return terminal as a result of the current being driven into the return terminal from the positive terminal of the preceding solar panel 10. This voltage reversal rises to turn on the parallel connected bypass diode 20, thereby passing current around the dark solar panel 10.
The arrangement of
Power sources, not necessarily solar panel sources, are often combined by an ORing diode, as shown in
There is thus a long felt need for a low voltage drop unidirectional electronic valve, preferably adaptable for use as one of a solar panel bypass element and an ORing diode.
Accordingly, it is a principal object of the present invention to overcome the disadvantages of prior art unidirectional electronic valves. This is provided in certain embodiments by an electronically controlled switch comprising a pair of reverse serially connected field effect transistors arranged to block current flow when the electronically controlled switch is open and unidirectionally pass current when the electronically controlled switch is closed responsive to a control circuit. Power for the switch and the control circuit is taken from a voltage reversal, and held by a capacitor. Preferably, the electronically controlled switch comprises a pair of field effect transistors (FETs), further preferably metal oxide silicon FETs (MOSFETs), further preferably n-channel MOSFETS, connected so that their internal body diodes do not present a through path for electricity in either direction between the return terminal and positive terminal. The pair of MOSFETS, in cooperation with the control circuit, represents a near ideal diode.
Responsive to the voltage reversal, the electronically controlled switch is closed, thereby enabling unidirectional current flow with a minimal voltage drop, preferably less than 0.1 volts. Periodically, the electronically controlled switch is opened thereby allowing the voltage reversal to rise thereby refreshing the circuit.
Additional features and advantages of the invention will become apparent from the following drawings and description.
For a better understanding of the invention and to show how the same may be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. In the accompanying drawings:
The present embodiments enable a low voltage drop unidirectional electronic valve comprising a pair of reverse serially connected field effect transistors arranged to block current flow when the electronically controlled switch is open and unidirectionally pass current when the electronically controlled switch is closed. Periodically, the electronically controlled switch is opened thereby refreshing the circuit.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
First terminal 170 of each low voltage drop unidirectional electronic valve 110 is connected to a first end of respective electronically controlled switch 120, the anode of diode 130 and the return terminal of a respective solar panel 10. Second terminal 180 of each low voltage drop unidirectional electronic valve 110 is connected to a second end of respective electronically controlled switch 120 and the positive terminal of a respective solar panel 10. The cathode of diode 130 is connected to a first end of capacitor 140, an input of control circuit 150 and the input of refresh circuit 160. The output of refresh circuit 160 is connected to an input of control circuit 150, and the output of control circuit 150 is connected to the control input of electronically controlled switch 120. A second end of capacitor 140 is connected to a common point.
In normal operation of solar panel 10 the potential of the positive terminal is greater than the potential of the return terminal. In the event that control circuit 150 senses that the potential at the return terminal of the respective solar panel 10, connected to first terminal 170, is greater than the potential at the positive terminal of the respective solar panel 10, connected to second terminal 180, by at least a predetermined amount, control circuit 150 acts to close the respective electronically controlled switch 120. Current then flows via electronically controlled switch 120, which preferably exhibits a voltage drop of less than 0.1 volts. Periodically, refresh circuit 160 acts to open electronically controlled switch 120, and in the event that respective solar panel 10 is not operative, the potential of the return terminal of the solar panel 10 begins to rise in relation to the positive terminal until it again exceeds the predetermined amount described above. Power for the operation of control circuit 150, electronically controlled switch 120 and refresh circuit 160 is provided by the combination of diode 130 and capacitor 140.
UVLO circuit 200 comprises: a first resistor 202, a second resistor 204 and a MOSFET 206. A first end of UVLO circuit 200, coincident with a first end of first resistor 202, is connected to the cathode of diode 130 and to a first end of capacitor 140 and is denoted Vdd. A second end of capacitor 140 is connected to a common point. A second end of first resistor 202 is connected to the source of MOSFET 206, implemented as a P-channel MOSFET, denoted hereinafter as a PMOSFET, and the drain of MOSFET 206 is connected to a first end of second resistor 204. A second end of UVLO circuit 200, coincident with a second end of second resistor 204, is connected to the common point. UVLO circuit 200 is thus implemented as a voltage divider controlled by a MOSFET connected between the resistors of the voltage divider.
The second end of resistor 202, representing the voltage divided point of UVLO circuit 200, is connected to the gate of the input to amplifier 210. When MOSFET 206 is conducting, voltage is dropped across first resistor 202 thereby turning on amplifier 210, particularly by the gate of the first MOSFET of amplifier 210, implemented as a PMOSFET, being at a lower potential than the source thereof connected to Vdd.
Amplifier 210 amplifies the voltage drop across first resistor 202 and drives the gates of MOSFETs 240, 245, implemented as N-channel MOSFETs, denoted hereinafter as NMOSFETs, to nearly the potential of Vdd, which is operative to turn on MOSFETs 240, 245. The output of amplifier 210 further is connected to the gate of MOSFET 206, thus shutting off MOSFET 206 when electronically controlled switch 230 is closed. UVLO circuit 200 is thus inactive when electronically controlled switch 230 is closed.
Slowing capacitor 220 is connected at a first end to the common point and at a second end to first terminal 170 and is operative to prevent a rapid change in voltage across first terminal 170 in reference to the common point, thereby protecting the integrity of UVLO circuit 200 and amplifier 210.
Electronically controlled switch 230 is constituted of a pair of reverse serially connected field effect field transistors, preferably MOSFETs, and more particularly as NMOSFETs 240, 245. The sources of MOSFETs 240, 245 are connected together and the drains represent the respective terminals of electronically controlled switch 230. In particular, the drain of NMOSFET 240 is connected to second terminal 180, and the source of NMOSFET 240 is connected to the common point, a first end of slowing capacitor 220, and the source of NMOSFET 245. The drain of NMOSFET 245 is connected to first terminal 170 and to the second end of slowing capacitor 220. Advantageously, the reverse serial arrangement of NMOSFET 240 and NMOSFET 245 does not present a path via the inherent body diodes from first terminal 170 to/from second terminal 180 when electronically controlled switch 230 is open.
Refresh circuit 260, implemented with a slow oscillator of 10 Hz, and a 1 microsecond delay line, provides a refresh pulse of about 10 microseconds every 100 milliseconds. The output of refresh circuit 260, constituted of an NMOSFET, is connected to the gates of NMOSFETs 240, 245, and is arranged so that the refresh pulse connects the gates of NMOSFETs 240, 245 to the common point. The refresh pulse is thus operative to open electronically controlled switch 230 and enable UVLO circuit 200 via MOSFET 206.
In operation, when current attempts to enter via terminal 170, and exit via terminal 180, when electronically controlled switch 230 is open, the potential of terminal 170 will rise in respect to the common point, charging both slowing capacitor 220 and capacitor 140 via diode 130. MOSFET 206 is closed, thereby creating a resistor ladder between resistors 202, 204 and energizing amplifier 210 to close electronically controlled switch 230 by driving the gates of NMOSFET 240, 245 towards Vdd, and the voltage drop across low voltage drop unidirectional electronic valve 110 then drops below 0.1 volts. MOSFET 206 is then opened preventing current drain of the charge stored on capacitor 140.
Periodically, refresh circuit 260 opens electronically controlled switch 230, and enables UVLO circuit 200 by closing MOSFET 206. This causes the voltage at first terminal 170 to increase as current again attempts to enter via first terminal 170, thereby recharging capacitor 140 and ultimately again closing electronically controlled switch 230 via amplifier 210.
Comparing circuit 300 comprises a comparator 310 and a NMOSFET 320. The source of NMOSFET 320 is connected to the common point, and the drain of NMOSFET 320 is connected to the gates of NMOSFET 240, 245. Power for comparator 310 is provided from Vdd. The non-inverting input of comparator 310 is connected to second terminal 180 and the inverting input of comparator 310 is connected to first terminal 170.
In operation, when solar panel 10 of
In stage 1020, power is obtained from the voltage reversal. In stage 1030, electronically controlled switch 230 is closed, thereby enabling current flow with a low voltage drop, preferably less than 0. 1 volts. Electronically controlled switch 230 comprises a pair of reverse serially connected field effect transistors, preferably FETs, further preferably MOSFETs, as described above in relation to
At the beginning of operation, the electric potential of second terminal 180 is positive in relation to the potential of first terminal 170, indicative of proper operation of solar panel 10. Solar panel 10 ceases to operate, and the potential difference reverses to the operating point of UVLO circuit 200, as indicated by negative step 400. Responsive to the closing of electronically controlled switch 230, the potential difference becomes more positive than preferably −0.1 volt, equivalent to the voltage drop across electronically controlled switch 230 when fully closed.
Periodically, refresh pulses 410 are exhibited, in which the potential difference falls to a predetermined voltage, and then again responsive to the closing of electronically controlled switch 230, the potential difference becomes more positive than preferably −0.1 volt.
Thus, the present embodiments enable an electronically controlled switch comprising a pair of reverse serially connected field effect transistors arranged to block current flow when the electronically controlled switch is open and unidirectionally pass current when the electronically controlled switch is closed responsive to a control circuit. Power for the switch and the control circuit is taken from a voltage reversal, and held by a capacitor. Preferably, the electronically controlled switch comprises a pair of field effect transistors (FETs), further preferably metal oxide silicon FETs (MOSFETs), further preferably n-channel MOSFETS, connected so that their internal body diodes do not present a through path for electricity in either direction between the return terminal and positive terminal. The pair of MOSFETS, in cooperation with the control circuit, represents a near ideal diode.
Responsive to the voltage reversal, the electronically controlled switch is closed, thereby enabling unidirectional current flow with a minimal voltage drop, preferably less than 0.1 volts. Periodically, the electronically controlled switch is opened thereby allowing the voltage reversal to rise thereby refreshing the circuit.
The above has been described in relation to a bypass diode for a solar panel, however this is not meant to be limiting in any way. In one embodiment a diode in accordance with the teaching of the invention is used as an ORing diode, thereby avoiding the wasted energy of the diode drop.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as are commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods are described herein.
All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the patent specification, including definitions, will prevail. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The terms “include”, “comprise” and “have” and their conjugates as used herein mean “including but not necessarily limited to”.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined by the appended claims and includes both combinations and sub-combinations of the various features described hereinabove as well as variations and modifications thereof, which would occur to persons skilled in the art upon reading the foregoing description.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/022,515 filed Jan. 22, 2008, of the same title, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61022515 | Jan 2008 | US |