This invention generally relates to the field of electrostatic discharge (ESD) protection circuitry, and more specifically, for ESD protection for silicon-on-insulator (SOI) technologies.
Integrated circuits (IC's) and other semiconductor devices are extremely sensitive to the high voltages that may be generated by contact with an ESD event. As such, electrostatic discharge (ESD) protection circuitry is essential for integrated circuits. An ESD event commonly results from the discharge of a high voltage potential (typically, several kilovolts) and leads to pulses of high current (several amperes) of a short duration (typically, 100 nanoseconds). An ESD event is generated within an IC, illustratively, by human contact with the leads of the IC or by electrically charged machinery being discharged in other leads of an IC. During installation of integrated circuits into products, these electrostatic discharges may destroy the IC's and thus require expensive repairs on the products, which could have been avoided by providing a mechanism for dissipation of the electrostatic discharge to which the IC may have been subjected.
The ESD problem has been especially pronounced in silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) field effect technologies, which require new considerations and approaches for ESD protection. An SOI technique involves embedding an insulation layer, such as silicon dioxide (SiO2), having a thickness of approximately 100-400 nanometers (nm) between a semiconductor device region (e.g., active region of a transistor) and the substrate.
However, the thermal properties of the extremely thin active silicon film layer are poor in terms of thermal conductivity. Specifically, silicon dioxide (SiO2) has a very poor thermal conductivity compared to silicon. As a consequence, the active device region is thermally isolated from the substrate disposed below the insulating layer. Therefore, when an ESD event occurs, heat generated at the ESD device (e.g., an SCR) can not be dissipated by the substrate. Accordingly, during an ESD event, an active area of the ESD device is subject to excessive heat, which may cause damage to the ESD device.
Furthermore low voltage ESD current conduction is also required in order to protect very thin gate oxides. Such thin gate oxides typically have a thickness of 0.8 to 2.4 nanometers, and are typically used in advanced SOI processes, since SOI has significant advantages for high speed IC applications. In addition to providing ESD protection for the very thin gate oxides, it is also desirable that the trigger voltage be very low and that any trigger overshoot is limited as much as possible. Therefore, there is a need in the art to limit power dissipation across the active region of an SOI ESD protection device, as well as providing very fast triggering capabilities for the SOI protection device during an ESD event.
The disadvantages heretofore associated with the prior art are overcome by the present invention of a silicon-on-insulator (SOI) electrostatic discharge (ESD) protection device that can protect very sensitive thin gate oxides by limiting the power dissipation during the ESD event, which is best achieved by reducing the voltage drop across the active (protection) device during an ESD event. In one embodiment the invention provides very low triggering and holding voltages. Furthermore, the silicon-on-insulator (SOI) protection device of the present invention has low impedance and low power dissipation characteristics that reduce voltage build-up, and accordingly, enable designers to fabricate more area efficient protection devices.
In one embodiment, the present invention includes an electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit (IC) having protected circuitry, where the ESD protection circuit comprises a silicon controlled rectifier (SCR) for shunting ESD current away from the protected circuitry. The ESD protection circuit comprises a substrate, a first type first conductive region (e.g., an N-well), and an adjacent second type second conductive region (e.g., P-well) formed over the substrate, where the N-well and P-well define a junction therebetween. An insulator layer is formed over the substrate and electrically isolates the N-well and P-well from the substrate.
At least one first type first diffusion region is formed in the second type second conductive region and is adapted for coupling to a first terminal. At least one second type second diffusion region is formed in the first type first conductive region and is adapted for coupling to a second terminal. In yet another embodiment, at least one second type trigger tap region is disposed in the second type second conductive region, where the at least one second type trigger tap is adapted to trigger the SCR, and/or at least one first type trigger tap region is disposed in the first type first conductive regions, where the at least one first trigger tap is adapted to trigger the SCR.
In another embodiment of the present invention, the SCR comprises a substrate, a first type first conductive region and an adjacent second type second conductive region is formed over the substrate and defines a junction therebetween. An insulator layer is formed over the substrate and electrically isolates the first type and second type conductive regions from the substrate. A first type first diffusion region is formed in the second type second conductive region and is coupled to a first terminal, and a second type second diffusion region is formed in the first type first conductive regions and is coupled to a second terminal of the protected circuitry.
The SCR further includes an integrated trigger device, where the integrated trigger device comprises a first type first terminal region formed in the second type second conductive region and is coupled to the second terminal, and defining a first type channel therebetween the first type first diffusion region. A gate region is coupled to the first type first diffusion region, and is disposed over the first type channel.
The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, when possible, to designate identical elements that are common to the figures.
The process steps and structures described below do not form a complete process flow for manufacturing integrated circuits (ICs). The present invention can be practiced in conjunction with silicon-on-insulator (SOI) integrated circuit fabrication techniques currently used in the art, and only so much of the commonly practiced process steps are included as are necessary for an understanding of the present invention. The figures representing cross-sections and layouts of portions of an IC during fabrication are not drawn to scale, but instead are drawn so as to illustrate the important features of the invention. Furthermore, where possible, the figures illustratively include a schematic diagram of the circuitry (e.g., an SCR circuit) as related to the P and N-type doped regions of the integrated circuit.
The present invention is described with reference to SOI CMOS devices. However, those of ordinary skill in the art will appreciate that selecting different dopant types and adjusting concentrations allows the invention to be applied to NMOS, PMOS, and other processes that are susceptible to damage caused by ESD.
The embodiments shown and discussed herein illustrate different ESD protection structures. The structures are described in terms of having various components, such as a P-well, N-well, high doped P+ regions, high doped N+ regions, P and N trigger tap regions, among other components forming the ESD protection devices and circuits. It will be appreciated by those skilled in the art that such well regions, high doped regions, and trigger tap regions may also be illustratively described herein as conductive regions (e.g., well regions) and diffusion regions (e.g., N+ cathode and P+ anode regions) where appropriate, and each associated conductive, diffusion, and trigger tap region is associated with a particular type of doping (e.g., N or P type dopants), as conventionally known in the art.
Referring to the schematic diagram of
In particular, the anode 122 is coupled to an emitter 108 of the PNP transistor Qp 132, and optionally coupled to one side of an N-well resistance Rn 142. The resistor Rn 142 represents the N-well resistance in a base of the PNP transistor Qp 132 of the SCR 102, which is discussed in further detail below.
The collector of the PNP transistor Qp 132 is connected to a first node 134, which is also connected to the base of the NPN transistor Qn 131, as well as to one side of a resistor Rp 141, and to the trigger 105 (discussed below). A second node 136 includes the base of the PNP transistor Qp 132, the other side of the resistor Rn 142, and the collector of a NPN transistor Qn 131. The other side of resistor Rp 141 is connected to a third node 124, which is coupled to ground 126. The resistor Rp 141 represents a substrate resistance in a base of a transistor Qp 131 of the SCR 102, which is discussed in further detail below. Furthermore, the emitter of the PNP transistor Qp 131 is also connected to the grounded third node 124, which functions as the cathode of the SCR device 102. It is noted that the first node 134 and second node 136 represent first and second triggering gates G1 and G2 of the SCR 102.
Optionally, a number of serially connected diodes 128 (e.g., two diodes drawn in phantom) may be coupled in a forward conductive direction from the anode 122 to the emitter 108 of the PNP transistor Qp 132. The serially connected diodes 128 (typically 1-4 diodes) may be provided to increase the holding voltage of the SCR 102, as may be required to fulfill latch-up specifications.
The triggering device 105 in the schematic diagram 1A is an external, on-chip, trigger device, as opposed to a triggering device integrated with the SCR 102. In one embodiment, the triggering device 105 includes a grounded-gate NMOS transistor 106, where the gate 129 is connected to the source 127, while the drain 125 of the NMOS transistor 106 is coupled to the pad 148. Specifically, the gate 129 is connected to the source 127 to turn off any MOS current, and the source 127 and the gate 129 of the NMOS transistor 206 are coupled to the base of the NPN transistor Qn 131 at the first node (first gate G1) 136 of the SCR 102. For a detailed understanding of utilizing a grounded-gate trigger device to trigger an SCR 102, the reader is directed to commonly assigned U.S. Pat. No. 6,791,122, the contents of which is hereby incorporated by reference in its entirety.
The schematic diagram of
Furthermore, a person skilled in the art for which this invention pertains will appreciate that a PMOS triggered SCR ESD protection device may be utilized. Moreover, a person skilled in the art will recognize that a NMOS or PMOS transistor with drain-bulk-gate coupling, two cascoded NMOS or PMOS transistors, or other external on-chip triggering devices 205 may used as part of the ESD protection device 100, as discussed above.
Referring to
The SOI-SCR 100 structure is generally fabricated by forming the buried insulative layer (e.g., SiO2, hereinafter buried oxide (BOX) layer) 210 over the P-subtrate 202, over which a thin layer 215 of undoped silicon (e.g., monocrystaline, uniform silicon) is formed. In one embodiment, the BOX layer 210 is formed by implanting and annealing oxygen atoms in a wafer to form the silicon dioxide layer 210 therein. The thickness (tBOX) of the BOX layer 210 is typically in a range of approximately 100 to 400 nanometers (nm).
In one embodiment, isolation techniques, such as shallow trench isolation (STI) 216 is provided by locally etching trenches into the silicon film layer 215 until the BOX layer 210 is reached. In particular, trenches are etched in specific areas, an insulator material (e.g., silicon dioxide (SiO2)) is illustratively deposited, and the surface is then planarized. The portion of the silicon layer 215 not filled by the STI insulator material is utilized to deploy an active region in which the active transistors and devices are formed. Typically, shallow trench isolation (STI) 216 is used to separate regions that will receive high doping. It is noted that the high doped regions may also be separated by deep trench isolation (DTI), partial trench isolation (PTI), among other isolation techniques that are beneficial to the SCR operation.
Ion implanting is then provided to the undoped silicon regions to form the P-well 206 and N-well 204 doped regions using conventional masking techniques known in the art. Referring to
N+ and P+ implanting and annealing steps are also conducted after the STI region and well region formations to form the high-doped N+ and P+ regions, respectively. The implantations are performed through separate photo masks for the N+ and P+ to allow the dopands to penetrate only into the dedicated regions of the IC. The regions denoted P+ and N+ are regions having higher doping levels than the N-well and P-well regions 204 and 206. In the exemplary SCR 102 embodiment of the present invention, at least one P+ region 208 is provided in the N-well 204 to form the anode 122, and at least one N+ region 212 is provided in the P-well 206 to form the cathode 124 of the SCR 102.
Additionally, referring to
Referring to
The P+ regions 226 forming the first gate G1 are disposed in close proximity to the N+ region 212 (e.g., along the axis of the N+ stripe region 212). The P+ regions 226 are also aligned with the N+ regions 212. By disposing the P+ regions 226 in close proximity to the N+ region 212, the base resistance from the first gate G1 to the intrinsic base node of the NPN transistor Qn 131 is reduced. A P-well spacing 244 is defined by the P-well material 206 formed between the P+ region 226 and the N+ region, and is preferably minimal in size. The P+ region 226 of the first gate G1, combined with the adjacent P-well spacing 244 and the N+ regions 212 together form a diode, which is forward biased when a positive voltage appears on the P+ region 226. In particular, the triggering device 105 acts as a current source at the base of the NPN transistor Qn 131, by injecting majority carriers (holes) into the P-type base material, which forward biases the base-emitter (P-well spacing/region 244/206 and N+ 212) of the NPN transistor Qn 131. Furthermore, for normal circuit operation (i.e. no ESD event), the close proximity of the P+ regions 226 (first gate G1) to the SCR 102 and the N+ emitter regions 212 of the SCR 102 is advantageous as will be described in further detail hereafter.
The N+ regions 224, and 2242 (second gate G2) are formed in a similar manner as discussed above with respect to the P+ regions 226. That is, the N+ regions 224 are positioned proximate and in-line (e.g., axially in-line) with the P+anode region 208 of the SCR 102, such that N-well spacings 2461 and 2462 are respectively defined therebetween each end of the P+ anode region 208 and adjacent N+ regions 2241 and 2242. It is noted that in one embodiment, the second gate G2 is typically utilized to couple a PMOS trigger device 105 to the SCR 102.
Referring to
Referring to
The illustrative schematic diagram in
The N-well 204 has an intrinsic resistance, which is observed as the well or as the base resistance Rn 142 of the PNP transistor Qp 132. Likewise, the P-well 206 has an intrinsic resistance, which is observed as the base resistance Rp 141 of the NPN transistor Qn 131. For either N-well or P-well, the associated well resistance values depend on the doping levels, as well as the length and cross sectional area of the N-well 204 and of the P-well 206. Typically, the well resistance Rn 142 and Rp 141 have resistance values in a range of 500 to 5000 ohms for a silicon material.
It is noted that in
It is noted that the silicon film layer 215 has a thickness “tSFL,” and each of the high-doped regions (i.e., N+ region 212, and P+ regions 208) has a depth having a value “Xj”, which is defined by the underlying semiconductor technology. In one embodiment, the depth Xj is in the range of 0.1 to 0.3 microns. The thickness tSFL of the silicon film layer 215, as well as the depth of the N+ and P+ junction Xj may vary from process type to process type. Accordingly, there may be SOI process versions where the N+ and/or P+ junctions will reach through to the BOX layer 210, without forming a metallurgical PN junction. Further, in instances where the N+ and/or P+ regions do not reach the BOX layer 210 (as shown in
In either case, the prior art SCRs will not work anymore. In particular, those SCR types relying on coupling through the N-well and/or P-well regions 252/254 under the highly doped P+ and N+ regions 208/212 will not be functional, since the lowly doped regions are either non-existent or depleted. This disadvantage of the prior art is avoided with the present SOI-SCR invention by implementing the trigger taps lateral and in-line (e.g., axially in-line) with the P+ anode stripe region 208 and N+ cathode stripe region 212, thereby ensuring the coupling into the lowly doped N-well and P-well regions 204 and 206 (i.e., the base regions for the PNP and NPN bipolar transistors 132 and 131). It is noted that another distinction between the present invention and prior art SCR devices is that the N-well and P-well regions 204 and 206 can be formed adjacent to each other in the same active area region.
Additionally, the distance from the silicided anode 211A to the anode edge 213A has a length “Aj”. Likewise, the distance from the silicided cathode 211C to the cathode edge 213C has a length “Cj”. The lengths Aj and Cj are maintained within a particular range to reduce the possible detrimental impact of mechanical stress during the formation of the silicide 218, which could later lead to increased leakage currents. In particular, the physical lengths Aj and Cj are proportionally based on the height Xj of the P+ and N+ doped regions 208 and 212. The lengths Aj and Cj are in the range of two to five times the depth of the doped regions, where Aj and Cj are approximately equal. That is, Aj and Cj have values approximately in the range of 2Xj to 5 Xj (not shown to scale in
It is noted that the layout shown and described in
One objective of the present invention is to increase the speed in which the SCR 102 turns on. Decreasing the turn on time of the SCR 102 is realized by a reduction in the size of the respective base regions of the transistors Qn 131 and Op 132 in the SCR 102. The dimensions Wp and Wn in
The SCR turn on time (SCRTon) is proportionally related to the combined base widths of each SCR transistor Qn 131 and Qp 132. In particular, the turn on time Ton1 for the NPN transistor Qn 131 is proportionally related to the square of the base width Wp of the NPN transistor Qn 131. Likewise, the turn on time Ton2 for the PNP transistor Qp 132 is proportional to the square of the base width Wn of the PNP transistor Qp 132. As such, the turn on time of the SCRTon=((Ton1)2+(Ton2)2)1/2.
Specifically, the reduction of the widths Wn and Wp of the transistor bases increases the trigger speed. Furthermore, the reduced widths Wn and Wp increase the overall gain of the transistors Qn 131 and Qp 132 in the SCR 102 by decreasing the hole-electron recombination effect. The increased transistor current gains β help ensure that enough current is provided to forward bias the bases of each transistor Qn 131 and Qp 132, and thereby quickly and reliably activate the SCR 102.
During an ESD event, the trigger current is provided by an external trigger device 105 (e.g., NMOS device), and is injected illustratively into the first gate G1 (P+ regions 226) of the SCR 102. That is, the trigger current is injected as a base current into the base of the NPN transistor Qn 131. Specifically, the external triggering current is provided from the source of the NMOS trigger device 105, which goes into breakdown, and subsequently into snapback. The NMOS trigger device 105 ensures a low trigger voltage of the ESD protection element, since the trigger voltage is determined by the drain-source breakdown voltage (e.g., 3.5 volts) of the NMOS transistor 106, and not by the intrinsically high breakdown voltage of the SOI-SCR 102 (in the range of 10 to 20V). As discussed above, the inventive trigger device 105 and SCR 102 are respectively depicted as having an NMOS triggering device in
Thus, the SOI-SCR 102 of the present invention has a low triggering voltage and holding voltage, since the holding voltage of the SCR 102 is inversely proportional to the gains β of Qn 131 and of Qp 132. Since the heat power dissipation is directly translated by the product of the current by the voltage (P=IV), the low holding voltage of the SOI-SCR 102 advantageously minimizes power dissipation during and ESD event. Moreover, the low triggering voltage and the low voltage at high current insures the voltage drop between the pad 148 and ground 126 doesn't exceed the critical voltage (breakdown) of the circuit elements or circuit devices to be protected.
The cross-sectional layout of the second embodiment shown in
The P+ region 208 forms the anode of the SCR, while the N+ region 212 forms the cathode of the SOI-SCR 300. The N-well 204, P-well 206, and respective high doped regions 208 and 212 together form the active region 302 of the SOI-SCR 300. The P+ anode region 208 is adapted for coupling to a pad 148, while the N+ cathode region 212 is adapted for coupling to ground 126.
Furthermore, a PN junction 207 between the N-well 204 and P-well 206 is also represented by the diode DR (drawn in phantom), which has a depletion layer 308 that also grows as a function of the junction biasing. For any of the diodes DF1, DF2, and DR, in an instance where the PN junction is forward biased (e.g., diodes DF1 and DF2), the width of the depletion layers are determined by the built-in potential, and are relatively narrow and vary slightly as a function of the external forward biasing. In instances where reverse biasing occurs, such as the reverse biasing of the diode DR region of the P and N-wells, the width of the depletion layer grows as a function of the applied reverse bias.
In particular, the compact dimensions Wn and Wp (e.g., approximately 0.3 micrometers) of the SOI-SCR 300, and the very low doping concentrations of the N-well 204 and P-well 206 (e.g., approximately 2×10−7 cm3) lead gradually to a complete depletion area as the voltage potential across the anode and cathode increases. As shown in
Referring to
It is noted that the SOI-SCR of the present embodiment triggers at a voltage as low as between 1.5 to 3 volts, as opposed to approximately 15 volts for a triggered SCR having the same N-well and P-well doping concentrations. It is also noted that the operation of the “punched through” SOI-SCR 300 of the present invention operates differently than a conventional SCR device. Specifically, a conventional SCR, without the buried insulated layer 210, operates in a bi-polar transistor mode before triggering. In particular, the PNP and NPN bi-polar transistors representing the SCR conduct and provide feed-back (i.e., current gain) to each other in a conventional manner known in the art. Once the conventional SCR triggers, the PNP and NPN bi-polar transistor mode of operation ceases, and the SCR conducts the current to ground in the PIN diode mode of operation as discussed above. That is, the forward biasing of the P+ anode and N-well, the N+ cathode and P-well, as well as the reverse biasing of the N-well and P-well regions of the SCR deplete the free carriers, such that a PIN diode is formed between the P+ anode region and the N+ cathode regions.
By contrast, the SOI-SCR 300 of the present invention immediately goes into the depletion and “punch-through” mode of operation prior to triggering, and acts as a PIN diode after triggering of the SCR, as discussed above. Thus, the “punch-through” SOI-SCR 300 of the present invention triggers much faster than a conventional SCR, since the “punched-through” SOI-SCR does not operate in the bi-polar transistor mode prior to triggering.
The SOI-SCR 400 comprises a P-substrate 202, a buried oxide (BOX) layer 210 disposed over the P-substrate 202, and an N-well 204 and P-well 206 formed over the buried oxide layer 210. It is noted that the buried oxide layer 210 has a thickness in a range of approximately 100 to 400 nanometers.
Deep trench isolation (DTI) and shallow trench isolation (STI) is illustratively provided to define (i.e., isolate) the active area 402 of the SCR 400. In one embodiment, DTI regions 4181 and 4182 extend down to the buried oxide layer 210. STI regions 2161 and 2162 are respectively formed over the DTI regions 4181 and 4182, thereby defining the outer boundaries of the active region 402 of the SCR 400. STI regions 4161 and 4162 are respectively formed in the N-well 204 and P-well 206, such that an N-channel 444 and a P-channel 446 are respectively formed beneath the STI regions 4161 and 4162. Specifically, the STI trench regions 4161 and 4162 do not entirely reach through to the buried oxide layer 210. Accordingly, a thin region of silicon remains under the STI regions 4161 and 4162, termed “partial trench isolation.” In one embodiment, the thin regions (i.e., N-channel 444 and P-channel 446) have local doping concentrations slightly greater than the respective N-well and P-well doping concentrations, but less than the doping concentrations of the N+ and P+ regions. In one embodiment, the N-channel 444 and P-channel 446 have a doping concentration in a range of approximately 1×1017 to 5×1018 cm3.
A doped N+ region 424 forming a second gate G2 is formed between STI regions 2161 and 4161 in the N-well 204. Furthermore, the P+ region 426, which forms the first gate G1 of the SCR 400, is formed in the P-well 206 between the STI regions 4162 and 2162. The P+ anode region 208 and N+ cathode region 212 are respectively formed in the N-well 204 and P-well 206 adjacent to STI regions 4161 and 4162. The base width Wn of the PNP transistor Qp is measured from the edge of the P+ region 208 to the junction 207, while the base width Wp of the NPN transistor Qn is measured from the edge of the N+ region 212 to the junction 207 between the N-well 204 and P-well 206.
Each of the N+ and P+ regions is provided with a silicide metallization layer 218, as discussed above with respect to FIGS. 2A-C and 3. Furthermore, a plurality of metal contacts 221 are formed over the silicide layer 218, as also discussed above with respect to the first and second embodiments.
The layout of this third embodiment of
Referring to
In this fourth embodiment of
Referring to
A P+ anode region 508 is formed in the N-well 204, and forms the anode 122 of the SOI-SCR 500. A first N+ (cathode) 5121 region and a second N+ (drain) region 5122 are formed in the P-well 206, such that a channel 550 is formed therebetween. It is noted that the channel 550 functions as an NMOS channel of an NMOS device. It is further noted that in both the P+ region 508 and N+ regions 5121 and 5122 do not necessarily extend all the way down to the buried oxide layer 210 as discussed above.
The distance Wn between the edge 513A of the P+ region 508 and the junction 207, as well as the distance Wp between the edge 513S of the first N+ region 5121 and the junction 207, define the base widths of the PNP transistor and NPN transistor, as discussed above. The base widths Wn and Wp are formed as close as possible using minimal design rules.
The first N+ region 5121 forms the cathode 124 of the SCR 500. Furthermore, the first and second N+ regions 5121 and 5122 also respectively form a source and drain of the integrally formed NMOS trigger device 505. Specifically, a gate 530 is formed over the first and second N+ regions 5121 and 5122 and the channel (NMOS channel) 550 formed therebetween. It is noted that the gate 530 is formed over a thin silicon dioxide layer 532, as conventionally known in the art.
Each of the high doped P+ and N+ regions 508, 5121, and 5122 comprise a silicide layer 218 and a respective contact 221A, 221C, and 521D disposed thereover, as discussed above with respect to
Referring to
Furthermore, at least one N+ region 524 defining a second gate G2 is formed in the N-well 204, proximate and in-line (e.g., axially in-line) with the P+ anode region 508. Moreover, the width of the N+ second gate G2 region 524 is substantially the same as the width of the P+ anode region 508. In this fourth embodiment, two N+ second gate regions 5241 and 5242 are formed proximate and in-line (e.g., axially in-line) at each end of the P+ anode region 508, however such configuration should not be considered as being limiting.
It is noted that silicide blocking is provided along the junction 207 between the N-well 204 and P-well 206. That is, silicide blocking is provided on the surface over the area between the P+ anode region 508 and the first N+ cathode (source) region 5121, as well as between the first and second P+ and N+ gate regions 524 and 526, as shown by the rectangular portion 560 (drawn in phantom). Furthermore, silicide blocking is also provided between the P+ first gate regions 5261 and 5262 and the end portions of the first and second N+ (cathode and drain) regions 5121 and 5122, as well as the N+ second gate regions 5241 and 5242 and the end portions of the P+ anode region 508, as shown by the rectangular portions 5621 and 5622 (drawn in phantom). As noted above, silicide blocking is provided to prevent shorting between the high doped regions.
In the embodiment of
During normal circuit operation of the IC, the SOI-SCR 500 is turned off, and the SOI-SCR 500 does not interfere (i.e., shunt current to ground) with the functional operations of the IC circuitry. During an ESD event occurring at the pad 148, the second N+ region 5122 forming the drain of the GGNMOS trigger device 505 and the P-well 206 are reversed biased. That is, the P-well 206 and N+ region 5122 form a reverse biased diode, as represented by diode DR (drawn in phantom) in
Thus, the fourth embodiment of the SOI-SCR 500 provides ESD protection faster than a bulk SCR not having the buried insulator layer 210 because of the faster and lower voltage triggering of the integrated NMOS. Moreover, the integrated NMOS can drive a significant amount of current, which increase the total the current capability of the ESD protection. It is further noted that the integrated NMOS may also serve as a backup protection device, which initially receives the ESD current prior to the turn-on of the SCR. That is, the exemplary integrated NMOS is not only used to trigger the SCR, but can shunt the initial ESD current while the SCR turns on.
Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 10/825,780, filed Apr. 15, 2004, which claims the benefit of U.S. Provisional Application Ser. No. 60/463,461, filed Apr. 16, 2003, the contents of which are incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60463461 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10825780 | Apr 2004 | US |
Child | 11125561 | May 2005 | US |