Lower complexity layered modulation signal processor

Information

  • Patent Grant
  • 7512189
  • Patent Number
    7,512,189
  • Date Filed
    Friday, October 10, 2003
    21 years ago
  • Date Issued
    Tuesday, March 31, 2009
    15 years ago
Abstract
A method and apparatus for transmitting and receiving a coded signal having an upper layer signal and a lower layer signal is disclosed. The method comprises the steps of combining the upper layer signal and the lower layer signal, encoding the combined upper layer signal and lower layer signal, delaying the upper layer signal, modulating the delayed upper layer signal, modulating the lower layer signal, transmitting the delayed upper layer signal and transmitting the lower layer signal. The apparatus comprises an encoder, for encoding a combined upper layer signal and lower layer signal, a delay, communicatively coupled to the encoder, for delaying the upper layer signal, a first modulator, for modulating the delayed upper layer signal, a second modulator, for modulating the lower layer signal, a transmitter, communicatively coupled to the first modulator, for transmitting the delayed upper layer signal, and a second transmitter, communicatively coupled to the second modulator.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to systems and methods for transmitting and receiving data, and in particular to a system and method for transmitting and receiving data with lower complexity equipment.


2. Description of the Related Art


Digital signal communication systems have been used in various fields, including digital TV signal transmission, either terrestrial or satellite. As digital signal communication systems and services evolve, there is a burgeoning demand for increased data throughput and added services. However, it is more difficult to implement either improvement in old systems or new services when it is necessary to replace existing legacy hardware, such as transmitters and receivers. New systems and services are at an advantage when they can utilize existing legacy hardware. In the realm of wireless communications, this principle is further highlighted by the limited availability of electromagnetic spectrum. Thus, it is not possible (or at least not practical) to merely transmit enhanced or additional data at a new frequency.


The conventional method of increasing spectral capacity is to move to a higher-order modulation, such as from quadrature phase shift keying (QPSK) to eight phase shift keying (8PSK) or sixteen quadrature amplitude modulation (16QAM). Unfortunately, QPSK receivers cannot demodulate conventional 8PSK or 16QAM signals. As a result, legacy customers with QPSK receivers must upgrade their receivers in order to continue to receive any signals transmitted utilizing 8PSK or 16QAM modulation.


It is advantageous for systems and methods of transmitting signals to accommodate enhanced and increased data throughput without requiring additional frequency. It is also advantageous for enhanced and increased throughput signals for new receivers to be backwards compatible with legacy receivers. There is further advantage for systems and methods which allow transmission signals to be upgraded from a source separate from the legacy transmitter.


It has been proposed that a layered modulation signal, transmitting non-coherently upper as well as lower layer signals, be employed to meet these needs. Such layered modulation systems allow higher information throughput with backwards compatibility. However, even when backward compatibility is not required (such as with an entirely new system), layered modulation can still be advantageous because it requires a TWTA peak power significantly lower than that for conventional 8PSK or 16QAM modulation formats for a given throughput.


However, a significant roadblock associated with implementing a layered modulation is the requirement for the use of a separate forward error correction (FEC) routine and implementing circuitry for each layer. This requirement increases the complexity of the associated transmission and reception systems and also increases the overall cost. What is needed is a system and method for transmitting and receiving such signals without need for multiple encoders/decoders. The present invention satisfies this need.


SUMMARY OF THE INVENTION

To address the requirements described above, the present invention discloses a method and apparatus for transmitting and receiving a coded signal having an upper layer signal and a lower layer signal. The method comprises the steps of combining the upper layer signal and the lower layer signal, encoding the combined upper layer signal and lower layer signal, delaying the upper layer signal, modulating the delayed upper layer signal, modulating the lower layer signal, transmitting the delayed upper layer signal and transmitting the lower layer signal. The apparatus comprises an encoder, for encoding a combined upper layer signal and lower layer signal, a delay element, communicatively coupled to the encoder, for delaying the upper layer signal, a first modulator, for modulating the delayed upper layer signal, a second modulator, for modulating the lower layer signal, a transmitter, communicatively coupled to the first modulator, for transmitting the delayed upper layer signal, and a second transmitter, communicatively coupled to the second modulator, for transmitting the lower layer signal.





BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference numbers represent corresponding parts throughout:



FIG. 1 is a diagram illustrating an overview of a single satellite video distribution system;



FIG. 2 is a block diagram showing a typical uplink configuration for a single satellite transponder;



FIG. 3A is a diagram of a representative data stream;



FIG. 3B is a diagram of a representative data packet;



FIG. 4 is a block diagram showing one embodiment of the modulator;



FIG. 5 is a block diagram of an integrated receiver/decoder;



FIGS. 6A-6C are diagrams illustrating the basic relationship of signal layers in a layered modulation transmission;



FIGS. 7A-7C are diagrams illustrating a signal constellation of a second transmission layer over the first transmission layer after first layer demodulation;



FIG. 8 is a diagram showing a system for transmitting and receiving layered modulation signals;



FIG. 9 is a block diagram depicting one embodiment of an enhanced receiver/decoder capable of receiving layered modulation signals;



FIG. 10A is a block diagram of one embodiment of the enhanced tuner/modulator and FEC decoder;



FIG. 10B depicts another embodiment of the enhanced tuner/modulator wherein layer subtraction is performed on the received layered signal;



FIGS. 11A and 11B depict the relative power levels of examples of embodiments of the present invention;



FIGS. 12A and 12B are flow charts describing exemplary operations that can be used to transmit and receive layered modulation signals;



FIG. 13 presents a block diagram of salient elements of a representative transmitter and receiver that can perform the operations described in FIGS. 12A and 12B;



FIGS. 14A and 14B are diagrams showing the timing relationship of the UL and LL signals;



FIGS. 15A and 15B depict illustrative process steps that can be used to practice another embodiment of the invention;



FIG. 16 presents a block diagram of salient elements of a alternative transmitter and receiver that can perform the operations described in FIGS. 12A and 12B; and



FIG. 17 is a diagram showing representative data streams resulting from the processes described in FIGS. 15A and 15B.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the following description, reference is made to the accompanying drawings which form a part hereof, and which is shown, by way of illustration, several embodiments of the present invention. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.


Video Distribution System


FIG. 1 is a diagram illustrating an overview of a single satellite video distribution system 100. The video distribution system 100 comprises a control center 102 in communication with an uplink center 104 via a ground or other link 114 and with a subscriber receiver station 110 via a public switched telephone network (PSTN) or other link 120. The control center 102 provides program material (e.g. video programs, audio programs and data) to the uplink center 104 and coordinates with the subscriber receiver stations 110 to offer such services as pay-per-view (PPV) program services, including billing and associated decryption of video programs.


The uplink center 104 receives program material and program control information from the control center 102, and using an uplink antenna 106 and transmitter 105, transmits the program material and program control information to the satellite 108. The satellite receives and processes this information, and transmits the video programs and control information to the subscriber receiver station 110 via downlink 118 using transmitter or transponder 107. The subscriber receiving station 110 receives this information using outdoor unit (ODU) 112, which includes a subscriber antenna and a low noise block converter (LNB).


In one embodiment, the subscriber receiving station antenna is an 18-inch, slightly oval-shaped Ku-band antenna. The slight oval shape is due to the 22.5 degree offset feed of the LNB (low noise block converter) which is used to receive signals reflected from the subscriber antenna. The offset feed positions the LNB out of the way so it does not block any surface area of the antenna. This minimizes attenuation of the incoming microwave signal.


The video distribution system 100 can comprise a plurality of satellites 108 in order to provide wider terrestrial coverage, additional channels, or additional bandwidth per channel. In one embodiment of the invention, each satellite comprises 16 transponders which are utilized to receive and transmit program material and other control data from the uplink center 104 and provide it to the subscriber receiving stations 110. Using data compression and multiplexing techniques the with respect to channel capabilities, two satellites 108 working together can receive and broadcast over 150 conventional (non-HDTV) audio and video channels via 32 transponders.


While the invention disclosed herein will be described with reference to a satellite-based video distribution system 100, the present invention may also be practiced with terrestrial-based transmission of program information, via broadcasting, cable, or other means. Further, the different functions collectively allocated among the control center 102 and the uplink center 104 as described above can be reallocated as desired without departing from the intended scope of the present invention.


Although the foregoing has been described with respect to an embodiment in which the program material delivered to the subscriber 122 is video (and audio) program material (such as a movie), the foregoing method can be used to deliver program material comprising purely audio information or other data as well.


Uplink Configuration


FIG. 2 is a block diagram showing a typical uplink configuration for a single satellite 108 transponder, showing how video program material is uplinked to the satellite 108 by the control center 102 and the uplink center 104. FIG. 2 shows three video channels (which could be augmented respectively with one or more audio channels for high fidelity music, soundtrack information, or a secondary audio program for transmitting foreign languages), a data channel from a program guide subsystem 206 and computer data information from a computer data source 208.


The video channels are provided by a program source of video material 200A-200C [collectively referred to hereinafter as video source(s) 200]. The data from each video program source 200 is provided to an encoder 202A-202C [collectively referred to hereinafter as encoder(s) 202]. Each of the encoders accepts a program time stamp (PTS) from the controller 216. The PTS is a wrap-around binary time stamp that is used to assure that the video information is properly synchronized with the audio information after encoding and decoding. A PTS time stamp is sent with each I-frame of the MPEG encoded data.


In one embodiment of the present invention, each encoder 202 is a second generation Motion Picture Experts Group (MPEG-2) encoder, but other decoders implementing other coding techniques can be used. The data channel can be subjected to a similar compression scheme by an encoder (not shown), but such compression is usually either unnecessary, or performed by computer programs in the computer data source (for example, photographic data is typically compressed into *.TIF files or *.JPG files before transmission). After encoding by the encoders 202, the signals are converted into data packets by a packetizer 204A-204F [collectively referred to hereinafter as packetizer(s) 204] associated with each source 200.


The data packets are assembled using a reference from the system clock 214 (SCR), and from the conditional access manager 210, which provides the SCID to the packetizers 204 for use in generating the data packets. These data packets are then multiplexed into serial data and transmitted.


Broadcast Data Stream Format and Protocol


FIG. 3A is a diagram of a representative data stream. The first packet segment 302 comprises information from video channel 1 (data coming from, for example, the first video program source 200A). The next packet segment 304 comprises computer data information that was obtained from the computer data source 208. The next packet segment 306 comprises information from video channel 5 (from one of the video program sources 200). The next packet segment 308 comprises program guide information such as the information provided by the program guide subsystem 206. As shown in FIG. 3A, null packets 310 created by the null packet module 310 may be inserted into the data stream as desired.


The data stream therefore comprises a series of packets from any one of the data sources in an order determined by the controller 216. The data stream is encrypted by the encryption module 218, modulated by the modulator 220 (typically using a QPSK modulation scheme), and provided to the transmitter 222, which broadcasts the modulated data stream on a frequency bandwidth to the satellite via the antenna 106. The receiver 500 receives these signals, and using the SCID, reassembles the packets to regenerate the program material for each of the channels.



FIG. 3B is a diagram of a data packet. Each data packet (e.g. 302-316) is 147 bytes long, and comprises a number of packet segments. The first packet segment 320 comprises two bytes of information containing the SCID and flags. The SCID is a unique 12-bit number that uniquely identifies the data packet's data channel. The flags include 4 bits that are used to control other features. The second packet segment 322 is made up of a 4-bit packet type indicator and a 4 bit continuity counter. The packet type identifies the packet as one of the four data types (video, audio, data, or null). When combined with the SCID, the packet type determines how the data packet will be used. The continuity counter increments once for each packet type and SCID. The next packet segment 324 comprises 127 bytes of payload data, which in the cases of packets 302 or 306, represents a portion of the video program provided by the video program source 200. The final packet segment 326, is data required to perform forward error correction.



FIG. 4 is a block diagram showing one embodiment of the modulator 220. The modulator 220 optionally comprises a forward error correction (FEC) encoder 404 which accepts the first signal symbols 402 and adds redundant information used to reduce transmission errors. The coded symbols 405 are modulated by modulator 406 according to the first carrier 408 to produce the upper layer modulated signal 410. Second symbols 420 are likewise provided to the optional second FEC encoder 422 to produce the coded second symbols 422. The coded second symbols 422 are provided to second modulator 414, which modulates the coded second signals according to the second carrier 416 to produce a lower layer modulated signal 418. The upper layer modulated signal 410 and the lower layer modulated signal 418 are therefore uncorrelated. The upper layer signal 410, however, must be a sufficiently greater amplitude signal than the lower layer signal 418, to maintain the signal constellations shown in FIG. 6 and FIG. 7.


Integrated Receiver/Decoder


FIG. 5 is a block diagram of an integrated receiver/decoder (IRD) 500 (also hereinafter alternatively referred to as receiver 500). The receiver 500 comprises a tuner/demodulator 504 communicatively coupled to an ODU 112 having one or more LNBs 502. The LNB 502 converts the 12.2- to 12.7 GHz downlink 118 signal from the satellites 108 to, e.g., a 950-1450 MHz signal required by the IRD's 500 tuner/demodulator 504. The LNB 502 may provide either a dual or a single output. The single-output LNB 502 has only one RF connector, while the dual output LNB 502 has two RF output connectors and can be used to feed a second tuner 504, a second receiver 500, or some other form of distribution system.


The tuner/demodulator 504 isolates a single, digitally modulated 24 MHz transponder, and converts the modulated data to a digital data stream. Further details regarding the demodulation of the received signal follow.


The digital data stream is then supplied to a forward error correction (FEC) decoder 506. This allows the IRD 500 to reassemble the data transmitted by the uplink center 104 (which applied the forward error correction to the desired signal before transmission to the subscriber receiving station 110) verifying that the correct data signal was received, and correcting errors, if any. The error-corrected data may be fed from the FEC decoder module 506 to the transport module 508 via an 8-bit parallel interface.


The transport module 508 performs many of the data processing functions performed by the IRD 500. The transport module 508 processes data received from the FEC decoder module 506 and provides the processed data to the video MPEG decoder 514 and the audio MPEG decoder 517. In one embodiment of the present invention, the transport module, video MPEG decoder and audio MPEG decoder are all implemented on integrated circuits. This design promotes both space and power efficiency, and increases the security of the functions performed within the transport module 508. The transport module 508 also provides a passage for communications between the microcontroller 510 and the video and audio MPEG decoders 514, 517. As set forth more fully hereinafter, the transport module also works with the conditional access module (CAM) 512 to determine whether the subscriber receiving station 110 is permitted to access certain program material. Data from the transport module can also be supplied to external communication module 526.


The CAM 512 functions in association with other elements to decode an encrypted signal from the transport module 508. The CAM 512 may also be used for tracking and billing these services. In one embodiment of the present invention, the CAM 512 functions as a smart card, having contacts cooperatively interacting with contacts in the IRD 500 to pass information. In order to implement the processing performed in the CAM 512, the IRD 500, and specifically the transport module 508 provides a clock signal to the CAM 512.


Video data is processed by the MPEG video decoder 514. Using the video random access memory (RAM) 536, the MPEG video decoder 514 decodes the compressed video data and sends it to an encoder or video processor 516, which in turn converts the digital video information received from the video MPEG module 514 into an output signal usable by a display or other output device. By way of example, processor 516 may comprise a National TV Standards Committee (NTSC) or Advanced Television Systems Committee (ATSC) encoder. In one embodiment of the invention, both S-Video and ordinary video (NTSC or ATSC) signals are provided. Other outputs may also be utilized, and are advantageous if high definition programming is processed.


Audio data is likewise decoded by the MPEG audio decoder 517. The decoded audio data may then be sent to a digital-to-analog (D/A) converter 518. In one embodiment of the present invention, the D/A converter 518 is a dual D/A converter, one channel for the right and left channels. If desired, additional channels can be added for use in surround sound processing or secondary audio programs (SAPs). In one embodiment of the invention, the dual D/A converter 518 itself separates the left and right channel information, as well as any additional channel information. Other audio formats may be supported. For example, other audio formats such as multi-channel DOLBY DIGITAL AC-3.


A description of the processes performed in the encoding and decoding of video streams, particularly with respect to MPEG and JPEG encoding/decoding can be found in Chapter 8 of “Digital Television Fundamentals,” by Michael Robin and Michel Poulin, McGraw-Hill, 1998, which is hereby incorporated by reference herein.


The microcontroller 510 receives and processes command signals from the remote control 524, an IRD 500 keyboard interface, and/or another input device. The microcontroller receives commands for performing its operations from a processor programming memory, which permanently stores such instructions for performing such commands. The processor programming memory may comprise a read-only memory (ROM) 538, an electronically erasable programmable read-only memory (EEPROM) 522 or similar memory device. The microcontroller 510 also controls the other digital devices of the IRD 500 via address and data lines (denoted “A” and “D” respectively, in FIG. 5).


The modem 540 connects to the customer's phone line via the PSTN port 120. The modem can be used to call the program provider and transmit customer purchase information for billing purposes, and/or other information. The modem 540 is controlled by the microprocessor 510. The modem 540 can output data to other I/O port types including standard parallel and serial computer I/O ports.


The present invention also comprises a local storage unit such as the video storage device 532 for storing video and/or audio data obtained from the transport module 508. The video storage device 532 can be a hard disk drive, a read/writable compact disc or DVD, a solid state RAM, or any other storage medium. In one embodiment of the present invention, the video storage device 532 is a hard disk drive with specialized parallel read/write capability so that data may be read from the video storage device 532 and written to the device 532 at the same time. To accomplish this feat, additional buffer memory accessible by the video storage 532 or its controller may be used. Optionally, a video storage processor 530 can be used to manage the storage and retrieval of the video data from the video storage device 532. The video storage processor 530 may also comprise memory for buffering data passing into and out of the video storage device 532. Alternatively or in combination with the foregoing, a plurality of video storage devices 532 can be used. Also alternatively or in combination with the foregoing, the microcontroller 510 can also perform the operations required to store and/or retrieve video and other data in the video storage device 532.


The video processing module 516 input can be directly supplied as a video output to a viewing device such as a video or computer monitor. In addition, the video and/or audio outputs can be supplied to an RF modulator 534 to produce an RF output and/or 8 vestigial side band (VSB) suitable as an input signal to a conventional television tuner. This allows the receiver 500 to operate with televisions without a video output.


Each of the satellites 108 comprises a transponder, which accepts program information from the uplink center 104, and relays this information to the subscriber receiving station 110. Known multiplexing techniques are used so that multiple channels can be provided to the user. These multiplexing techniques include, by way of example, various statistical or other time domain multiplexing techniques and polarization multiplexing. In one embodiment of the invention, a single transponder operating at a single frequency band carries a plurality of channels identified by respective service channel identification (SCID).


Preferably, the IRD 500 also receives and stores a program guide in a memory available to the microcontroller 510. Typically, the program guide is received in one or more data packets in the data stream from the satellite 108. The program guide can be accessed and searched by the execution of suitable operation steps implemented by the microcontroller 510 and stored in the processor ROM 538. The program guide may include data to map viewer channel numbers to satellite transponders and service channel identifications (SCIDs), and also provide TV program listing information to the subscriber 122 identifying program events.


The functionality implemented in the IRD 500 depicted in FIG. 5 can be implemented by one or more hardware modules, one or more software modules defining instructions performed by a processor, or a combination of both.


The present invention provides for the modulation of signals at different power levels, and advantageously, for the signals to be non-coherent from each layer. In addition, independent modulation and coding of the signals may be performed. Backwards compatibility with legacy receivers, such as a quadrature phase shift keying (QPSK) receiver is enabled and new services are provided to new receivers. A typical new receiver of the present invention uses two demodulators and one remodulator as will be described in detail hereafter.


In a typical backwards-compatible embodiment of the present invention, the legacy QPSK signal is boosted in power to a higher transmission (and reception) level. This creates a power “room” in which a new lower layer signal may operate. The legacy receiver will not be able to distinguish the new lower layer signal, from additive white Gaussian noise, and thus, operates in the usual manner. The optimal selection of the layer power levels is based on accommodating the legacy equipment, as well as the desired new throughput and services.


The new lower layer signal is provided with a sufficient carrier to thermal noise ratio in order to function properly. The new lower layer signal and the boosted legacy signal are non-coherent with respect to one other. Therefore, the new lower layer signal can be implemented from a different TWTA and even from a different satellite. The new lower layer signal format is also independent of the legacy format, e.g., it may be QPSK or 8PSK, using the conventional concatenated FEC code or using a new advanced code such as a turbo code, or a low-density parity check (LDPC) code. The lower layer signal may even be an analog signal.


The combined layered signal is demodulated and decoded by first demodulating the upper layer to remove the upper carrier. The stabilized layered signal may then have the upper layer FEC decoded and the output upper layer symbols communicated to the upper layer transport. The upper layer symbols are also employed in a remodulator to generate an idealized upper layer signal. The idealized upper layer signal is then subtracted from the stable layered signal to reveal the lower layer signal. The lower layer signal is then demodulated and FEC decoded and communicated to the lower layer transport.


Signals, systems and methods using the present invention may be used to supplement a pre-existing transmission compatible with legacy receiving hardware in a backwards-compatible application or as part of a preplanned layered modulation architecture providing one or more additional layers at a present or at a later date.


Layered Signals


FIGS. 6A-6C illustrate the basic relationship of signal layers in a layered modulation transmission. FIG. 6A illustrates a first layer signal constellation 600 of a transmission signal showing the signal points or symbols 602. This signal constellation seen in FIG. 6B illustrates the second layer signal constellation of symbols 204 over the first layer signal constellation 200 where the layers are coherent. FIG. 6C illustrates a second signal layer 606 of a second transmission layer over the first layer constellation where the layers may be non-coherent. The second layer 606 rotates about the first layer constellation 602 due to the relative modulating frequencies of the two layers in a non-coherent transmission. Both the first and second layers rotate about the origin due to the first layer modulation frequency as described by path 608.



FIGS. 7A-7C are diagrams illustrating a signal constellation of a second transmission layer over the first transmission layer after first layer demodulation. FIG. 7A shows the constellation 700 before the first carrier recovery loop (CRL) and FIG. 7B shows the constellation 704 after CRL. In this case, the signal points of the second layer are actually rings 702. FIG. 7C depicts a phase distribution of the received signal with respect to nodes 602.


Relative modulating frequencies cause the second layer constellation to rotate around the nodes of the first layer constellation. After the second layer CRL this rotation is eliminated. The radius of the second layer constellation is determined by its power level. The thickness of the rings 702 is determined by the carrier to noise ratio (CNR) of the second layer. As the two layers are non-coherent, the second layer may also be used to transmit analog or digital signals.



FIG. 8 is a diagram showing a system for transmitting and receiving layered modulation signals. Separate transmitters 107A, 107B, as may be located on any suitable platform, such as satellites 108A, 108B, are used to non-coherently transmit different layers of a signal of the present invention. Uplink signals are typically transmitted to each satellite 108A, 108B from one or more transmitters 105 via an antenna 106. The layered signals 808A, 808B (downlink signals) are received at receiver antennas 112A, 112B, such as satellite dishes, each with a low noise block (LNB) 812A, 812B where they are then coupled to integrated receiver/decoders (IRDs) 500, 802. Because the signal layers may be transmitted non-coherently, separate transmission layers may be added at any time using different satellites 108A, 108B or other suitable platforms, such as ground based or high altitude platforms. Thus, any composite signal, including new additional signal layers will be backwards compatible with legacy receivers 500, which will disregard the new signal layers. To ensure that the signals do not interfere, the combined signal and noise level for the lower layer must be at or below the allowed noise floor for the upper layer.


Layered modulation applications include backwards compatible and non-backwards compatible applications. “Backwards compatible” in this sense, describes systems in which legacy receivers 500 are not rendered obsolete by the additional signal layer(s). Instead, even if the legacy receivers 500 are incapable of decoding the additional signal layer(s), they are capable of receiving the layered modulated signal and decoding the original signal layer. In these applications, the pre-existing system architecture is accommodated by the architecture of the additional signal layers. “Non-backwards compatible” describes a system architecture which makes use of layered modulation, but the modulation scheme employed is such that pre-existing equipment is incapable of receiving and decoding the information on additional signal layer(s).


The pre-existing legacy IRDs 500 decode and make use of data only from the layer (or layers) they were designed to receive, unaffected by the additional layers. However, as will be described hereafter, the legacy signals may be modified to optimally implement the new layers. The present invention may be applied to existing direct satellite services which are broadcast to individual users in order to enable additional features and services with new receivers without adversely affecting legacy receivers and without requiring additional signal bandwidth.


Demodulator and Decoder


FIG. 9 is a block diagram depicting one embodiment of an enhanced IRD 802 capable of receiving layered modulation signals. The enhanced IRD 802 includes a feedback path 902 in which the FEC decoded symbols are fed back to an enhanced modified tuner/demodulator 904 and transport module 908.



FIG. 10A is a block diagram of one embodiment of the enhanced tuner/modulator 904 and FEC decoder 506. FIG. 10A depicts reception where layer subtraction is performed on a signal where the upper carrier has been demodulated. The upper layer of the received combined signal 1016 from the LNB 502, which may contain legacy modulation format, is provided to and processed by an upper layer demodulator 1004 to produce the stable demodulated signal 1020. The demodulated signal 1020 is fed to a communicatively coupled FEC decoder 1002 which decodes the upper layer to produce the upper layer symbols which are output to an upper layer transport. The upper layer symbols are also used to generate an idealized upper layer signal. The upper layer symbols may be produced from the decoder 1002 after Viterbi decode (BER<10−3 or so) or after Reed-Solomon (RS) decode (BER<10−9 or so), in typical decoding operations known to those skilled in the art. The upper layer symbols are provided via feedback path 902 frown the upper layer decoder 1002 to a re-encoder/remodulator 1006 which effectively produces an idealized upper layer signal. The idealized upper level signal is subtracted from the demodulated upper layer signal 1020.


In order for the subtraction to leave a clean small lower layer signal, the upper layer signal must be precisely reproduced. The modulated signal may have been distorted, for example, by traveling wave tube amplifier (TWTA) non-linearity or other non-linear or linear distortions in the transmission channel. The distortion effects are estimated from the received signal after the fact or from TWTA characteristics which may be downloaded into the IRD in AM-AM and/or AM-PM maps 1018, used to eliminate the distortion.


A subtractor 1012 then subtracts the idealized upper layer signal from the stable demodulated signal 1020. This leaves the lower-power second layer signal. The subtractor 1012 may include a buffer or delay function to retain the stable demodulated signal 1020 while the idealized upper layer signal is being constructed. The second layer signal is demodulated by the lower level demodulator 1010 and FEC decoded by decoder 1008 according to its signal format to produce the lower layer symbols, which are provided to the transport module 908.



FIG. 10B depicts another embodiment wherein layer subtraction is performed on the received layered signal. In this case, the upper layer demodulator 1004 produces the upper carrier signal 1022 (as well as the stable demodulated signal output 1020). An upper carrier signal 1022 is provided to the remodulator 1006. The remodulator 1006 provides the remodulated signal to the non-linear distortion mapper 1018 which effectively produces an idealized upper layer signal. Unlike the embodiment shown in FIG. 10A, in this embodiment, the idealized upper layer signal includes the upper layer carrier for subtraction from the received combined signal 1016.


Other equivalent methods of layer subtraction will occur to those skilled in the art and the present invention should not be limited to the examples provided here. Furthermore, those skilled in the art will understand that the present invention is not limited to two layers; additional layers may be included. Idealized upper layers are produced through remodulation from their respective layer symbols and subtracted. Subtraction may be performed on either the received combined signal or a demodulated signal. Finally, it is not necessary for all signal layers to be digital transmissions; the lowest layer may be an analog transmission.


The following analysis describes the exemplary two layer demodulation and decoding. It will be apparent to those skilled in the art that additional layers may be demodulated and decoded in a similar manner. The incoming combined signal is represented as:








s
UL



(
t
)


=



f
U



(


M
U



exp


(


j






ω
U


t

+

θ
U


)







m
=

-








S
Um



p


(

t
-
mT

)





)


+


f
L



(


M
L



exp


(


j






ω
L


t

+

θ
L


)







m
=

-








S
Lm



p


(

t
-
mT
+

Δ






T
m



)





)


+

n


(
t
)








where, MU is the magnitude of the upper layer QPSK signal and ML is the magnitude of the lower layer QPSK signal and ML<<MU. The signal frequencies and phase for the upper and lower layer signals are ωu, θU and ωU, θU, respectively. The symbol timing misalignment between the upper and lower layers is ΔTm. p(t−mT) represents the time shifted version of the pulse shaping filter p(t) 414 employed in signal modulation. QPSK symbols SUm and SLm are elements of







{


exp


(

j



n





π

2


)


,

n
=
0

,
1
,
2
,
3

}

.





ƒU(•) and ƒL(•) denote the distortion function of the TWATAs for the respective signals.


Ignoring ƒU(•) and ƒL(•) and noise n(t), the following represents the output of the demodulator 1004 to the FEC decoder 1002 after removing the upper carrier:








s
UL




(
t
)


=



M
U






m
=

-








S
Um



p


(

t
-
mT

)





+


M
L


exp


{



j


(


ω
L

-

ω
U


)



t

+

θ
L

-

θ
U


}






m
=

-








S
Lm



p


(

t
-
mT
+

Δ






T
m



)











Because of the magnitude of difference between MU and ML, the upper layer decoder 1002 disregards the ML component of the s′UL(t).


After subtracting the upper layer from sUL(t) in the subtractor 1012, the following remains:








s
L



(
t
)


=


M
L


exp


{



j


(


ω
L

-

ω
U


)



t

+

θ
L

-

θ
U


}






m
=

-








S
Lm



p


(

t
-
mT
+

Δ






T
m



)










Any distortion effects, such as TWTA nonlinearity effects are estimated for signal subtraction. In a typical embodiment of the present invention, the upper and lower layer frequencies are substantially equal. Significant improvements in system efficiency can be obtained by using a frequency offset between layers.


Using the present invention, two-layered backward compatible modulation with QPSK doubles a current 6/7 rate capacity by adding a TWTA approximately 6.2 dB above existing TWTA power. New QPSK signals may be transmitted from a separate transmitter, for example, from a different satellite. In addition, there is no need for linear traveling wave tube amplifiers (TWTAs) as with 16QAM. Also, no phase error penalty is imposed on higher order modulations such as 8PSK and 16QAM.


BACKWARD COMPATIBLE APPLICATIONS


FIG. 11A depicts the relative power levels 1100 of example embodiments of the present invention. FIG. 11A is not drawn to scale. This embodiment doubles the pre-existing rate 6/7 capacity by using a TWTA 6.2 dB above a pre-existing TWTA equivalent isotropic radiated power (EIRP) and second TWTA 2 dB below the pre-existing TWTA power. This embodiment uses upper and lower QPSK layers which are non-coherent. A code rate of 6/7 is also used for both layers. In this embodiment the signal of the legacy OPSK signal 1102 is used to generate the upper layer 1104 and a new QPSK layer is the lower layer 1110. The CNR of the legacy QPSK signal 1102 is approximately 7 dB. In the present invention, the legacy QPSK signal 1102 is boosted in power by approximately 6.2 dB bringing the new power level to approximately 13.2 dB as the upper layer 1104. The noise floor 1106 of the upper layer is approximately 6.2 dB. The new lower QPSK layer 1110 has a CNR of approximately 5 dB. The total signal and noise of the lower layer iskept at or below the tolerable noise floor 1106 of the upper layer. The power boosted upper layer 1104 of the present invention is also very robust, making it resistant to rain fade. It should be noted that the invention may be extended to multiple layers with mixed modulations, coding and code rates.


In an alternate embodiment of this backwards compatible application, a code rate of 2/3 may be used for both the upper and lower layers 1104, 1110. In this case, the CNR of the legacy QPSK signal 1102 (with a code rate of 2/3) is approximately 5.8 dB. The legacy signal 1102 is boosted by approximately 5.3 dB to approximately 11.1 dB (4.1 dB above the legacy QPSK signal 1102 with a code rate of 2/3) to form the upper QPSK layer 1104. The new lower QPSK layer 1110 has a CNR of approximately 3.8 dB. The total signal and noise of the lower layer 1110 is kept at or below approximately 5.3 dB, the tolerable noise floor 1106 of the upper QPSK layer. In this case, overall capacity is improved by 1.55 and the effective rate for legacy IRDs will be 7/9 of that before implementing the layered modulation.


In a further embodiment of a backwards compatible application of the present invention the code rates between the upper and lower layers 1104, 1110 may be mixed. For example, the legacy QPSK signal 502 may be boosted by approximately 5.3 dB to approximately 12.3 dB with the code rate unchanged at 6/7 to create the upper QPSK layer 1104. The new lower QPSK layer 1110 may use a code rate of 2/3 with a CNR of approximately 3.8 dB. In this case, the total capacity relative to the legacy signal 1102 is approximately 1.78, In addition, the legacy IRDs will suffer no rate decrease.


Non-Backward Compatible Applications

As previously discussed the present invention may also be used in “non-backward compatible” applications. In a first example embodiment, two QPSK layers 1104, 1110 are used each at a code rate of 2/3. The upper QPSK layer 504 has a CNR of approximatley 4.1 dB above its noise floor 1106 and the lower QPSK layer 1110 also has a CNR of approximately 4.1 dB. The total code and noise level of the lower QPSK layer 1110 is approximately 5.5 dB. The total CNR of the upper QPSK signal 1104 is approximately 9.4 dB, merely 2.4 dB above the legacy QPSK signal rate 6/7. The capacity is approximately 1.74 compared to the legacy rate 6/7.



FIG. 11B depicts the relative power levels of an alternate embodiment wherein both the upper and lower layers 1104, 1110 are below the legacy signal level 1102. The two QPSK layers 1104, 1110 use a code rate of 1/2. In this case, the upper QPSK layer 1104 is approximately 2.0 dB above its noise floor 1106 of approximately 4.1 dB. The lower QPSK layer has a CNR of approximately 2.0 dB and a total code and noise level at or below 4.1 dB. The capacity of this embodiment is approximately 1.31 compared to the legacy rate 6/7.


Lower Complexity Layered Modulation/Demodulation

Referring again to the enhanced tuner/modulator 904 and decoder 506 illustrated in FIG. 10A, it is noted that the decoder 506 includes an upper layer FEC deccoder 1002 and a lower level decoder 1008. When the upper and lower layer signals (UL+LL) 1016 enter the IRD 802, the upper layer signal (UL) is demodulated by upper layer demodulator 1004 and decoded by the upper layer decoder 1002. To extract the lower layer (LL) signals, the upper layer (UL) symbols are then re-encoded, and the signalis remodulated by remodulator 1006. A signalprocessor module 1018 then alters the UL signal by introducing effects that are produced by the satellite transponder amplifier and re-normalizes the amplitude, thus creating a reconstituted, idealized UL signal. This reconstituted UL signal is subtracted from the composite UL+LL signal by subtractor 1012, yielding the LL signal. The LL signal is then decoded using a demodulator 1010 and decoder 1008, preferably optimized for the LL signal.


Advanced coders, such as turbo coders and LDPC coders, are newly developed or rediscovered, highly efficient forward error correcting codes. They can provide quasi error free operation at lower carrier to noise ratios than other FEC codes.


However, advanced coders provide improved C/N performance at the expense of additional processing. This, in turn, means that the advanced decoder requires more resources on the receiveer/processor ASIC, thereby increasing the cost of the chip. Furthermore, as shown in FIG. 10A, two decoders are required to demodulate the transmitted signal—one for the UL signal and one for the LL signal. The signal processing requirements and the overall receiver chip complexity can be significantly reduced if this decoder redundancy is eliminated.


The present invention takes advantage of the fact that UL and LL signals are decoded using a serial path, wherein the UL is decoded from the composite UL+LL signal, then the LL signal is decoded from the (UL+LL)−UL signal. In one embodiment the decoder operates first on the extracted UL signal and then on the LL signal. By staggering the processing times and other factors the operation of the decoder can be scheduled for first the UL, then the LL, aqnd so on.


Consider, for example, a single, high data rate channel providing 50 Mbits/s (a value well within the state of the art). The demodulator and decoder for this channel can, by design, sustain a continuous rate of 50 Mbits/s. Now consider two layers: a UL with a data rate of about 30 Mbits/s and a LL with a data rate of about 20 Mbits/s. If these two layers were a single signal, a single decoder would be used to handle the full 50 Mbit/s data rate. The issue becomes one of scheduling the operation of the decoder for the UL or LL, not whether the decoder could handle the aggregate data rate. Several different embodiments that offer further savings are identified and described below.



FIGS. 12A and 12B are flow chargs describing exemplary operations that can be used to transmit and receive layered modulation signals. FIG. 12A describes exemplary transmission operations while FIG. 12B describes exemplary reception operations. FIGS. 12A and 12B will be discussed in further reference to FIG. 13 and FIG. 14. FIG. 13 presents a block diagram of salient elements of a representative transmitter and receiver that can perform the operations descirbed in FIGS. 12A and 12B, while FIG. 14 presents a diagram showing the timing relationship of the UL and LL signals.


Referring first to FIG. 12A, the upper layer signal and lower layer signal are combined to form an input signal 1301, as shown in block 1202. In block 1204, the combined upper layer and lower layer signals are encoded. This can be acomplished, for example, using the encoder 1302 shown in FIG. 13. Next, symbols are assigned to the encoded upper and lower layer signals. This can be accomplished by the UL symbol assignor 1304 and the LL symbol assignor 1306. The UL signal, in the form of UL symbols, is then delayed by delay element 1308. This is shown in block 1206. As will become clear, the upper layer signal is delayed by an amount of time necessary for a receiver of the transmitted coded signal to remodulate and re-encode a demodulated upper layer signal so that the lower layer signal can be incoherently demodulated.


The upper layer signal is then mapped to the desired constellation and modulated by mapper/modulator 1310. Similarly, the lower layer signal is mapped and modulated by mapper modulator 1312. This is shown in blocks 1208 and 1210. The modulated upper layer and lower layer signals are uplinked from the uplink center 104 via uplink transmitters 1314, 1316, uplink 116, and downlinked to an IRD 500 at the receiving station 110 via downlink transponder 1318 and downlink 118.



FIG. 12B presents exemplary steps that can be used to receive, demodulate, and decode the transmitted signal. The transmitted signal is demodulated to produce the upper layer signal, as shown in block 1212. This can be performed by the upper layer demodulator 1320 shown in FIG. 13. The input signal is then delayed, as shown in block 1214. This can be performed by the delay element 1330. The delayed input signal is then demodulated to produce the lower layer signal, as shown in block 1216.


The input signal is demodulated by extracting the lower layer signal from the upper layer signal with differencer 1328. The upper layer signal is reconstituted by re-encoding and remodulating the upper layer signal demodulated and decoded by the upper layer demodulator 1320 and decoder 1324. This is accomplished by the encoder 1326, and the modulator 1327.


Delay element 1330 delays the lower layer signal in an amount approximately equivalent to the amount that the upper layer signal was delayed by block 1308. The use of delay elements 1308 and 1330 accounts for the time required to re-encode, remodulate the upper layer signal and extract the lower layer signal.



FIG. 14A is a diagram showing the relative timing of the upper layer signal and the lower layer signal. Blocks 1401 of the combined upper layer signal at succeeding periods of time (denoted






(


denoted









U
1






L
1





,




U
2






L
2




,





,




U
N






L
N





)





are encoded according to a coding period T to produce data stream 1402. The upper layer signal U1, U2, . . . , UN is delayed before being modulated, uplinked, and downlinked, so the received data stream becomes










U
0






L
1




,




U
1






L
2




,





,





U

N
-
1







L
N




.






The upper layer signal is then demodulated, producing data stream 1406. This upper layer signal is decoded, re-encoded, and modulated by the decoder 1324, encoder 1326 and modulator 1327, and provided to the differencer 1328 to extract the lower level signal. Since the lower layer signal is delayed by delay element 1330, the timing relationship of the demodulated upper and lower level signals is as shown in data stream 1408, with the upper and lower level signals once again in a proper timing relationship.


Since the decoded upper layer signal is used to demodulate and decode the lower layer as well, the above operations require that the upper layer signal must be decodable in its own right from the encoded combined upper and lower layer signals. To achieve this, timing data such as initialization blocks (IB) having known, predetermined lower layer data can be inserted into at least some of the signal blocks










U
1






L
1




,




U
2






L
2




,





,





U
N






L
N




.






These IBs can be inserted periodically or aperiodically. The lower layer demodulator 1332 can also search for these blocks for timing and synchronization purposes as well.


The inclusion of IBs decreases the throughput by a small amount. For example, if the IBs include a 10 K block of data and the data is transmitted at a 25 MHz rate, each block would be approximately 0.5 milliseconds in length, transmitted every 25 milliseconds. This indicates that including the IBs results in a 2% reduction in throughput.



FIG. 14B is a diagram presenting the timing relationship of the UL and LL signals in another embodiment of the present invention. In this embodiment, the majority of the blocks 1401 are as was described in FIG. 14A. However, some of portion of the upper layer signal and the lower layer signal are separately encoded, producing separate blocks 1418, 1420 of data. Separately encoded data blocks having timing data in the form of IBs can be inserted from time-to-time in the data stream 1410, either periodically or aperiodically. Since the upper layer signal is separately encoded from the lower layer signal, the upper layer signal is decodable by itself, and does not require known lower layer data to be inserted in the IBs as was the case with the embodiment illustrated in FIG. 14A. In one embodiment, for uniformity in block timing, the IB codeword length is ½ that of the codeword described in FIG. 14A. Since the codeword for the upper layer data and the lower layer data is smaller than was the case in the embodiment illustrated in FIG. 14A, this embodiment can result in slightly greater errors, but the code rate may be reduced to account for the smaller codeword, if desired. Unlike the embodiment shown in FIG. 14A, this embodiment assures that both the upper layer signal and the lower layer signal carry payload to maximize spectral throughput.



FIGS. 15A and 15B are diagrams showing illustrative process steps that can be used to practice another embodiment of the invention. FIGS. 15A and 15B are discussed in concert with FIGS. 16 and 17. FIG. 16 presents a block diagram of salient elements of a representative transmitter and receiver that can perform the operations described in FIGS. 15A and 15B. In this embodiment, the upper layer signal and the lower layer signal are separately and multiplexingly encoded, as shown in block 1502. This can be accomplished by using multiplexer 1604 to apply the upper layer signal and the lower layer signal to a single encoder such as encoder 1302 shown in FIG. 16. As before, upper layer and lower layer symbols are assigned, and the upper layer, and the upper layer signal and the lower layer signal is mapped and modulated, as shown in blocks 1504 and 1506. This can be accomplished, for example, by mapper/modulators 1310 and 1312. The result is transmitted, as shown in blocks 1508 and 1510. This can be accomplished by uplink transmitters 1314 and downlink transponder 1318.


Turning to FIG. 15B, the received coded input signal is demodulated to produce a coded upper layer signal and a coded lower layer signal. This is shown in blocks 1512 and 1514. These demodulation steps can be performed, for example, by demodulators 1320 and 1322. The coded upper layer signal and the coded lower layer signal are then multiplexingly decoded, as shown in block 1516. This can be performed, for example, by alternatively using the switch 1602 or multiplexer to apply the demodulated coded signals to the decoder 1324.


In this embodiment, the same code can be used for the upper and lower layer signals, and a single decoder 1324 in the IRD 500 is multiplexed between the upper layer and lower layer signals, preferably with a ½ duty cycle. Also, this embodiment includes buffer storage for decoding in the amount of ¾ of a block for upper layer 4-bit symbols, and one block for lower layer symbols.


This process is illustrated in FIG. 17, which shows representative data streams from the foregoing processes. Data stream 1702 shows the upper and lower layer signals arriving at the receiver. The upper and lower layer signals arrive in separate blocks 1704 and 1708, each of which were separately encoded by the encoder 1302. The upper layer signal is simply demodulated, resulting in data stream 1710. The upper layer signal is then decoded. Since the upper layer signal was separately encoded, this is possible to achieve with the upper layer signal alone. The decoded upper layer signal is then remodulated and re-encoded, resulting in data stream 1712. The result is used to demodulate the lower layer, with the results shown in data stream 1714. The demodulated upper and lower layers are at this point, interleaved with one another, and are provided to the decoder 1324. The results can be de-interleaved by a de-interleaver and can be applied to a Reed-Solomon or similar decoder as well.


The layered modulation (LM) technique described above typically requires the use of satellite transponders 108A, 108B having greater power output than those associated with ordinary modulation techniques. Typically, the upper signal layer 402 must be modulated by a carrier of substantially higher power than the lower signal layer 420. Also, backwards compatible (BWC) applications typically require more power than non-BWC applications for the upper signal layer 402.


CONCLUSION

This concludes the description of the preferred embodiments of the present invention. The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. For example, it is noted that the uplink configurations depicted and described in the foregoing disclosure can be implemented by one or more hardware modules, one or more software modules defining instructions performed by a processor, or a combination of both.


It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. A method of transmitting a coded signal having an upper layer signal and a lower layer signal, comprising the steps of: combining the upper layer signal and the lower layer signal;encoding the combined upper layer signal and lower layer signal;assigning first symbols to the upper layer signal portion of the encoded combined upper layer signal and the lower layer signal;assigning second symbols to the lower layer signal portion of the encoded combined upper layer signal and the lower layer signal;delaying the first symbols;mapping and modulating the delayed first symbols;mapping and modulating the second symbols;transmitting the delayed mapped and modulated first symbols; andtransmitting the mapped and modulated second symbols.
  • 2. The method of claim 1, wherein the step of encoding the combined upper layer signal and lower layer signal further comprises the step of inserting timing data into the encoded combined upper layer signal and lower layer signal, the timing data including predetermined lower layer signal data.
  • 3. The method of claim 2, wherein the timing data includes blocks of initialization data.
  • 4. The method of claim 2, wherein the timing data is inserted periodically.
  • 5. The method of claim 1, wherein the step of encoding the combined upper layer signal and lower layer signal further comprises the step of inserting timing data into at least a portion of the upper layer signal and into the lower layer signal.
  • 6. The method of claim 5, wherein the timing data includes blocks of initialization data.
  • 7. The method of claim 5, wherein the timing data is inserted periodically.
  • 8. The method of claim 1, wherein the upper layer signal is delayed by an amount of time necessary for a receiver of the transmitted coded signal to remodulate and re-encode a demodulated upper layer signal.
  • 9. An apparatus for transmitting a coded signal having an upper layer signal and a lower layer signal, comprising: means for combining the upper layer signal and the lower layer signal;means for encoding the combined upper layer signal and lower layer signal;means for assigning first symbols to the upper layer signal portion of the encoded combined upper layer signal and the lower layer signal;means for assigning second symbols to the lower layer signal portion of the encoded combined upper layer signal and the lower layer signal;means for delaying the first symbols;means for mapping and modulating the delayed first symbols;means for mapping and modulating the second symbols;transmitting the delayed mapped and modulated first symbols; andmeans for transmitting the mapped and modulated second symbols.
  • 10. The apparatus of claim 9, wherein the means for encoding the combined upper layer signal and lower layer signal further comprises means for inserting timing data into the encoded combined upper layer signal and lower layer signal, the timing data including predetermined lower layer signal data.
  • 11. The apparatus of claim 10, wherein the timing data includes blocks of initialization data.
  • 12. The apparatus of claim 10, wherein the timing data is inserted periodically.
  • 13. The apparatus of claim 9, wherein the means for encoding the combined upper layer signal and lower layer signal further comprises means for inserting timing data into at least a portion of the upper layer signal and into the lower layer signal.
  • 14. The apparatus of claim 13, wherein the timing data includes blocks of initialization data.
  • 15. The apparatus of claim 13, wherein the timing data is inserted periodically.
  • 16. The apparatus of claim 9, wherein the upper layer signal is delayed by an amount of time necessary for a receiver of the transmitted coded signal to remodulate and re-encode a demodulated upper layer signal.
  • 17. An apparatus for transmitting a coded signal having an upper layer signal and a lower layer signal, comprising: an encoder, for encoding a combined upper layer signal and lower layer signal;a first symbol assigner, for assigning first symbols to the upper layer signal portion of the encoded combined upper layer signal and the lower layer signal;a second symbol assigner, for assigning second symbols to the lower layer signal portion of the encoded combined upper layer signal and the lower layer signal;a delay element, communicatively coupled to the first symbol assigner, for delaying the first symbols;a first mapper and modulator, for mapping and modulating the delayed first symbols;a second mapper and modulator, for mapping and modulating the second symbols;a transmitter, connnunicatively coupled to the first mapper and modulator, for transmitting the delayed mapped and modulated first symbols; anda second transmitter, communicatively coupled to the second mapper and modulator, for transmitting the mapped and modulated second symbols.
  • 18. The apparatus of claim 17, wherein the encoder inserts timing data into the encoded combined upper layer signal and lower layer signal, the timing data including predetermined lower layer signal data.
  • 19. The apparatus of claim 18, wherein the timing data includes blocks of initialization data.
  • 20. The apparatus of claim 18, wherein the timing data is inserted periodically.
  • 21. The apparatus of claim 17, wherein the encoder inserts timing data into at least a portion of the upper layer signal and into the lower layer signal.
  • 22. The apparatus of claim 21, wherein the timing data includes blocks of initialization data.
  • 23. The apparatus of claim 21, wherein the timing data is inserted periodically.
  • 24. The apparatus of claim 17, wherein the upper layer signal is delayed by an amount of time necessary for a receiver of the transmitted coded signal to remodulate and re-encode a demodulated upper layer signal.
  • 25. A method of decoding a coded input signal having an upper layer modulated signal and a lower layer modulated signal, comprising the steps of: demodulating the input signal to produce an upper layer signal;delaying the input signal;demodulating the delayed input signal to produce a lower layer signal;combining the upper layer signal and the lower layer signal; anddecoding the combined upper layer signal and the lower layer signal.
  • 26. The method of claim 25, wherein: the coded input signal includes initialization data having predetermined lower layer signal data; andthe combined upper layer signal and the lower layer signal are decoded according to the initialization data.
  • 27. The method of claim 26, wherein: at least a portion of the coded input signal includes a separately encoded upper layer signal and lower layer signal; andthe at least a portion of the coded input signal is decoded according to the initialization data.
  • 28. The method of claim 25, wherein the step of demodulating the delayed input signal to produce a lower layer signal comprises the steps of: re-encoding and remodulating the upper layer signal;extracting the lower layer signal from the input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 29. The method of claim 28, wherein the input signal is delayed by an amount of time necessary to re-encode and remodulate the upper layer signal.
  • 30. The method of claim 25, further comprising the step of de-interleaving the decoded combined upper layer signal and the lower layer signal.
  • 31. An apparatus for decoding a coded input signal having an upper layer modulated signal and a lower layer modulated signal, comprising: means for demodulating the input signal to produce an upper layer signal;means for delaying the input signal;means for demodulating the delayed input signal to produce a lower layer signal;means for combining the upper layer signal and the lower layer signal; andmeans for decoding the combined upper layer signal and the lower layer signal.
  • 32. The apparatus of claim 31, wherein: the coded input signal includes inserted initialization data having predetermined lower layer signal data; andthe combined upper layer signal and the lower layer signal are decoded according to the initialization data.
  • 33. The apparatus of claim 32, wherein: at least a portion of the coded input signal includes a separately encoded upper layer signal and lower layer signal; andthe at least a portion of the coded input signal is decoded according to the initialization data.
  • 34. The apparatus of claim 31, wherein the means for demodulating the delayed input signal to produce a lower layer signal comprises: means for re-encoding and remodulating the upper layer signal;means for extracting the lower layer signal from the input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 35. The apparatus of claim 34, wherein the input signal is delayed by an amount of time necessary to re-encode and remodulate the upper layer signal.
  • 36. The apparatus of claim 31, further comprising the step of de-interleaving the decoded combined upper layer signal and the lower layer signal.
  • 37. An apparatus for decoding a coded input signal having an upper layer modulated signal and a lower layer modulated signal, comprising: a demodulator for demodulating the input signal to produce an upper layer signal;a delay element, communicatively coupled to the input signal for delaying the input signal;a second demodulator for demodulating the delayed input signal to produce a lower layer signal, the second demodulator communicatively coupled to the delay element;a combiner for combining the upper layer signal and the lower layer signal, the combiner communicatively coupled to the first demodulator and the second demodulator; anda decoder, communicatively coupled to the combiner, the decoder for decoding the combined upper layer signal and the lower layer signal.
  • 38. The apparatus of claim 37, wherein: the coded input signal includes inserted initialization data having predetermined lower layer signal data; andthe combined upper layer signal and the lower layer signal are decoded according to the initialization data.
  • 39. The apparatus of claim 38, wherein: at least a portion of the coded input signal includes a separately encoded upper layer signal and lower layer signal; andthe at least a portion of the coded input signal is decoded according to the initialization data.
  • 40. The apparatus of claim 37, further comprising: an encoder communicatively coupled to the decoder, the encoder for re-encoding the upper layer signal;a modulator, communicatively coupled to the encoder, the modulator for remodulating the upper layer signal; anda differencer module, communicatively coupled to the modulator and the second demodulator, for extracting the lower layer signal from the input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 41. The apparatus of claim 40, wherein the input signal is delayed by an amount of time necessary to re-encode and remodulate the upper layer signal.
  • 42. The apparatus of claim 37, further comprising a de-interleaver, communicatively coupled to the decoder, the de-interleaver for de-interleaving the decoded combined upper layer signal and the lower layer signal.
  • 43. A method of decoding a coded input signal having an upper layer modulated signal and a lower layer modulated signal, comprising the steps of: demodulating the input signal to produce an encoded upper layer signal;demodulating the input signal to produce an encoded lower layer signal;multiplexingly applying the encoded upper layer signal and the encoded lower layer signal to a signal decoder to produce the upper layer signal and the lower layer signal;wherein the step of demodulating the input signal to produce an encoded lower layer signal comprises the steps of re-encoding and remodulating the upper layer signal, and extracting the lower layer signal from the input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 44. The method of claim 43, further comprising the step of de-interleaving the upper layer signal and the lower layer signal.
  • 45. A method of decoding a coded input signal having an upper layer signal and a lower layer signal, comprising the steps of: demodulating the coded input signal to produce a coded upper layer signal;demodulating the coded input signal to produce a coded lower layer signal; andmultiplexingly decoding the coded upper layer signal and the coded lower layer signal;wherein the step of demodulating the coded input signal to produce a coded lower layer signal comprises the steps of decoding the coded upper layer signal, re-encoding and remodulating the decoded upper layer signal, and extracting the lower layer from coded input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 46. The method of claim 45, wherein the step of alternately decoding the coded upper layer signal and the coded lower layer signal comprises the step of alternately applying the coded upper layer signal and the coded lower layer signal to a decoder.
  • 47. An apparatus for decoding a coded input signal having an upper layer modulated signal and a lower layer modulated signal, comprising: means for demodulating the input signal to produce an encoded upper layer signal;means for demodulating the input signal to produce an encoded lower layer signal;means for multiplexingly applying the encoded upper layer signal and the encoded lower layer signal to a signal decoder to produce the upper layer signal and the lower layer signal;wherein the means for demodulating the input signal to produce an encoded lower layer signal comprises means for re-encoding and remodulating the upper layer signal, and means for extracting the lower layer signal from the input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 48. The apparatus of claim 47, further comprising means for de-interleaving the upper layer signal and the lower layer signal.
  • 49. An apparatus for decoding a coded input signal having an upper layer signal and a lower layer signal, comprising: means for demodulating the coded input signal to produce a coded upper layer signal;means for demodulating the coded input signal to produce a coded lower layer signal; andmeans for multiplexingly decoding the coded upper layer signal and the coded lower layer signal;wherein the means or demodulating the coded input signal to produce a coded lower layer signal comprises means for decoding the coded upper layer signal, means for re-encoding and remodulating the decoded upper layer signal, and means for extracting the lower layer signal from coded input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 50. The apparatus of claim 49, wherein the means for alternately decoding the coded upper layer signal and the coded lower layer signal comprises means for alternately applying the coded upper layer signal and the coded lower layer signal to a decoder.
  • 51. An apparatus for decoding a coded input signal having an upper layer modulated signal and a lower layer modulated signal, comprising: a first demodulator for demodulating the input signal to produce an encoded upper layer signal;a second demodulator for demodulating the input signal to produce an encoded lower layer signal;a multiplexer, communicatively coupled to the first demodulator and the second demodulator, the multiplexer for multiplexingly applying the encoded upper layer signal and the encoded lower layer signal to a signal decoder;an encoder, communicatively coupled to the decoder, for re-encoding the upper layer signal;a modulator, communicatively coupled to the encoder, the modulator for remodulating the re-encoded upper layer signal; andan extractor, communicatively coupled to the modulator and the second demodulator, the extractor for extracting the lower layer signal from the input signal by subtracting the re-encoded and remodulated upper layer signal from the input signal.
  • 52. The apparatus of claim 51, further comprising a de-interleaver, communicatively coupled to the decoder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Patent Application No. 60/421,331, entitled “LOWER COMPLEXITY LAYERED MODULATION SIGNAL PROCESSOR,” by Ernest C. Chen, Weizheng Wang, Guangcai Zhou, Tung-Sheng Lin, and Joseph Santoru, filed Oct. 25, 2002, which application is hereby incorporated by reference herein. This application is also a continuation-in-part of the following co-pending and commonly assigned patent application(s), all of which applications are incorporated by reference herein: Utility application Ser. No. 09/844,401, filed Apr. 27, 2001 now U.S. Pat. No. 7,209,524, by Ernest C. Chen, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,”. This application is also related to the following applications: Application Ser. No. 11/653,517, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Jan. 16, 2007, by Ernest C. Chen, which is a continuation of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/165,710, entitled “SATELLITE TWTA ON-LINE NON-LINEARITY MEASUREMENT,” filed on Jun. 7,2002, by Ernest C. Chen, which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as US. Pat. No. 7,209,524; Application Ser. No. 10/236,414, entitled “SIGNAL, INTERFERENCE AND NOISE POWER MEASUREMENT,” filed on Sep. 6,2002, by Ernest C. Chen and Chinli Tran, which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/693,135, entitled “LAYERED MODULATION FOR ATSC APPLICATIONS,” filed on Oct. 24, 2003, by Ernest C. Chen, which claims benefit to Provisional Patent Application 60/421,327, filed Oct. 25, 2002 and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/913,927, entitled “CARRIER TO NOISE RATIO ESTIMATIONS FROM A RECEIVED SIGNAL,” filed on Aug. 5, 2004, by Ernest C. Chen, which is a continuation in part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 11/619,173, entitled “PREPROCESSING SIGNAL LAYERS IN LAYERED MODULATION DIGITAL SIGNAL SYSTEM TO USE LEGACY RECEIVERS,” filed Jan. 2, 2007, which is a continuation of application Ser. No. 10/068,039, entitled “PREPROCESSING SIGNAL LAYERS IN LAYERED MODULATION DIGITAL SIGNAL SYSTEM TO USE LEGACY RECEIVERS,” filed on Feb. 5, 2002, by Ernest C. Chen, Tiffany S. Furuya, Philip R. Hilmes, and Joseph Santoru now issued as U.S. Pat. No. 7,245,671, which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/693,421, entitled “FAST ACQUISITION OF TIMING AND CARRIER FREQUENCY FROM RECEIVED SIGNAL,” filed on Oct. 24, 2003, by Ernest C. Chen, now issued as U.S. Pat. No. 7,151,807, which claims priority to Provisional Patent Application Ser. No. 60/421,292, filed Oct. 25, 2002, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/692,491, entitled “ONLINE OUTPUT MULTIPLEXER FILTER MEASUREMENT,” filed on Oct. 24,2003, by Ernest C. Chen, which claims priority to Provisional Patent Application 60/421,290, filed Oct. 25, 2002, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 11/603,776, entitled “DUAL LAYER SIGNAL PROCESSING IN A LAYERED MODULATION DIGITAL SIGNAL SYSTEM,” filed on Nov. 22, 2006, by Ernest C. Chen, Tiffany S. Furuya, Philip R. Hilmes, and Joseph Sanroru, which is a continuation of application Ser. No. 10/068,047, entitled “DUAL LAYER SIGNAL PROCESSING IN A LAYERED MODULATION DIGITAL SIGNAL SYSTEM,” filed on Feb. 5, 2002, by Ernest C. Chen, Tiffany S. Furuya, Philip R. Hilmes, and Joseph Santoru, now issued as U.S. Pat. No. 7,173,981, which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No 10/691,032, entitled “UNBLIND EQUALIZER ARCHITECTURE FOR DIGITAL COMMUNICATION SYSTEMS,⇄ filed on Oct. 22, 2003, by Weizheng W. Wang, Tung-Sheng Lin, Ernest C. Chen, and William C. Lindsey, which claims priority to Provisional Patent Application Serial No. 60/421,329, filed Oct. 25, 2002, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/962,346, entitled “COHERENT AVERAGING FOR MEASURING TRAVELING WAVE TUBE AMPLIFIER NONLINEARITY,” filed on Oct. 8, 2004, by Ernest C. Chen, which claims priority to Provisional Patent Application Serial No. 60/510,368, filed Oct. 10, 2003, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 11/655,001, entitled “AN OPTIMIZATION TECHNIQUE FOR LAYERED MODULATION,” filed on Jan. 18, 2007, by Weizheng W. Wang, Guancai Zhou, Tung-Sheng Lin, Ernest C. Chen, Joseph Santoru,, and William Lindsey, which claims priority to Provisional Patent Application 60/421,293, filed Oct. 25, 2002, and which is a continuation of application Ser. No. 10/693,140, entitled “OPTIMIZATION TECHNIQUE FOR LAYERED MODULATION,” filed on Oct. 24, 2003, by Weizheng W. Wang, Guancai Zhou, Tung-Sheng Lin, Ernest C. Chen, Joseph Santoru, and William Lindsey, now issued as U.S. Pat. No. 7,184,489, which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27,2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 11/656,662, entitled “EQUALIZERS FOR LAYERED MODULATION AND OTHER SIGNALS,” filed on Jan. 22,2007, by Ernest C. Chen, Tung-Sheng Lin, Weizheng W Wang, and William C. Lindsey, which claims priority to Provisional Patent Application 60/421,241, filed Oct. 25, 2002, and which is a continuation of application Ser. No. 10/691,133, entitled “EQUALIZERS FOR LAYERED MODULATED AND OTHER SIGNALS,” flied on Oct. 22, 2003, by Ernest C. Chen, Tung-Sheng Lin, Weizheng W. Wang, and William C. Lindsey, now issued as U.S. Pat. No. 7,184,473, which is a continuation-in-part of application Ser. No.09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/961,579, entitled “EQUALIZATION FOR TWTA NONLINEARITY MEASUREMENT” filed on Oct. 8,2004, by Ernest C. Chen, which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/532,631, entitled “FEEDER LINK CONFIGURATIONS TO SUPPORT LAYERED MODULATION FOR DIGITAL SIGNA,” filed on Apr. 25, 2005, by Paul R. Anderson, Joseph Santoru and Ernest C. Chen, which is a National Phase Application of PCT US03/33255, filed Oct. 20, 2003, which claims priority to Provisional Patent Application 60/421,328, entitled “FEEDER LINK CONFIGURATIONS TO SUPPORT LAYERED MODULATION FOR DIGITAL SIGNALS,” filed Oct. 25, 2002, by Paul R. Anderson, Joseph Santorn and Ernest C. Chen, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/532,619, entitled “MAXIMIZING POWER AND SPECTRAL EFFICIENCIES FOR LAYERED AND CONVENTIONAL MODULATIONS,” filed on Apr. 25, 2005, by Ernest C. Chen., which is a National Phase Application of PCT Application US03/32800, filed Oct. 16, 2003, which claims priority to Provisional Patent Application 60/421,288, entitled “MAXIMIZING POWER AND SPECTRAL EFFICIENCIES FOR LAYERED AND CONVENTIONAL MODULATION,” filed Oct. 25, 2002, by Ernest C. Chen and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524, Application Ser. No, 10/532,524, entitled “AMPLITUDE AND PHASE MATCHING FOR LAYERED MODULATION RECEPTION,”filed on Apr. 25, 2005, by Ernest C. Chen, Jeng-Hong Chen, Kenneth Shuna, and Joungheon Oh, which is a National Phase Application of PCT Application US03/31199, filed Oct. 3, 2003, which claims priority to Provisional Patent Application 60/421,332, entitled “AMPLITUDE AND PHASE MATCHING FOR LAYERED MODULATION RECEPTION,” filed Oct. 25, 2002, by Ernest C. Chen, Jeng-Hong Chen, Kenneth Shum, and Joungheon Oh, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as US. Pat. No. 7,209,524, and also claims priority to; Application Ser. No. 10/532,582, entitled “METHOD AND APPARATUS FOR TAILORING CARRIER POWER REQUIREMENTS ACCORDING TO AVAILABILITY IN LAYERED MODULATION SYSTEMS,” filed on Apr. 25, 2005, by Ernest C. Chen, Paul R. Anderson and Joseph Santoru, now issued as U.S. Pat. No. 7,173,977, which is a National Stage application of PCT Application US03/32751, filed Oct. 15, 2003, which claims priority to Provisional Patent Application 60/421,333, entitled “METHOD AND APPARATUS FOR TAILORING CARRIER POWER REQUIREMENTS ACCORDING TO AVAILABILITY IN LAYERED MODULATION SYSTEMS,” filed Oct. 25, 2002, by Ernest C. Chen, Paul R. Anderson and Joseph Santoru, and which is a continuation-in-part of application Ser. No. 09/844,401 entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/532,509, entitled “ESTIMATING THE OPERATING POINT ON A NONLINEAR TRAVELING WAVE TUBE AMPLIFIER,” filed on Apr. 25, 2005, by Ernest C. Chen and Shamik Maitra, now issued as U.S. Pat. No. 7,230,480, which is a National Stage Application of PCT Application US03/33130 filed Oct. 17, 2003, and which claims priority to Provisional Patent Application 60/421,289, entitled “ESTIMATING THE OPERATING POINT ON A NONLINEAR TRAVELING WAVE TUBE AMPLIFIER,” filed Oct. 25, 2002, by Ernest C. Chen and Shainik Mairra, and which is a continuation-in-part of application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/519,322, entitled “IMPROVING HIERARCHICAL SPSK PERFORMANCE,” filed on Dec. 23, 2004 by Erncst C. Chen and Joseph Santoru, which is a National Stage Application of PCT US03/020862 filed Jul. 1, 2003, which claims priority to Provisional Patent Application 60/392,861, filed Jul. 1, 2002 and Provisional Patent Application 60/392,860, filed Jul. 1, 2002, and which is also related to application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524; Application Ser. No. 10/519,375, entitled “METHOD AND APPARATUS FOR LAYERED MODULATION,” filed on Jul. 3, 2003, by Ernest C. Chen and Joseph Santons, which is a National Stage Application of PCT US03/20847, filed Jul. 3, 2003, which claims priority to Provisional Patent Application 60/393,437 filed Jul. 3, 2002, and which is related to application Ser. No. 09/844,401, entitled “LAYERED MODULATION FOR DIGITAL SIGNALS,” filed on Apr. 27, 2001, by Ernest C. Chen, now issued as U.S. Pat. No. 7,209,524.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/32264 10/10/2003 WO 00 4/25/2005
Publishing Document Publishing Date Country Kind
WO2004/040403 5/13/2004 WO A
US Referenced Citations (233)
Number Name Date Kind
3076180 Havens et al. Jan 1963 A
3383598 Sanders May 1968 A
3878468 Falconer et al. Apr 1975 A
3879664 Monsen Apr 1975 A
3974449 Falconer Aug 1976 A
4039961 Ishio et al. Aug 1977 A
4068186 Sato et al. Jan 1978 A
4213095 Falconer Jul 1980 A
4253184 Gitlin et al. Feb 1981 A
4283684 Satoh Aug 1981 A
4384355 Werner May 1983 A
RE31351 Falconer Aug 1983 E
4416015 Gitlin Nov 1983 A
4422175 Bingham et al. Dec 1983 A
4484337 Leclert et al. Nov 1984 A
4500984 Shimbo et al. Feb 1985 A
4519084 Langseth May 1985 A
4594725 Desperben et al. Jun 1986 A
4628507 Otani Dec 1986 A
4637017 Assal et al. Jan 1987 A
4647873 Beckner et al. Mar 1987 A
4654863 Belfield et al. Mar 1987 A
4670789 Plume Jun 1987 A
4709374 Farrow Nov 1987 A
4800573 Cupo Jan 1989 A
4829543 Borth et al. May 1989 A
4835790 Yoshida et al. May 1989 A
4847864 Cupo Jul 1989 A
4860315 Hosoda et al. Aug 1989 A
4878030 Vincze Oct 1989 A
4896369 Adams et al. Jan 1990 A
4918708 Pottinger et al. Apr 1990 A
4993047 Moffatt et al. Feb 1991 A
5043734 Niho Aug 1991 A
5088110 Bonnerot et al. Feb 1992 A
5111155 Keate et al. May 1992 A
5121414 Levine et al. Jun 1992 A
5199047 Koch Mar 1993 A
5206889 Unkrich Apr 1993 A
5221908 Katz et al. Jun 1993 A
5229765 Belfield et al. Jul 1993 A
5233632 Baum et al. Aug 1993 A
5237292 Chethik Aug 1993 A
5285474 Chow et al. Feb 1994 A
5285480 Chennakeshu et al. Feb 1994 A
5317599 Obata May 1994 A
5329311 Ward et al. Jul 1994 A
5337014 Najle et al. Aug 1994 A
5353307 Lester et al. Oct 1994 A
5412325 Meyers May 1995 A
5430770 Abbey Jul 1995 A
5450623 Yokoyama et al. Sep 1995 A
5467197 Hoff Nov 1995 A
5471508 Koslov Nov 1995 A
5493307 Tsujimoto Feb 1996 A
5513215 Marchetto et al. Apr 1996 A
5555257 Dent Sep 1996 A
5577067 Zimmerman Nov 1996 A
5577087 Furuya Nov 1996 A
5579344 Namekata Nov 1996 A
5581229 Hunt Dec 1996 A
5592481 Wiedeman et al. Jan 1997 A
5602868 Wilson Feb 1997 A
5603084 Henry et al. Feb 1997 A
5606286 Bains Feb 1997 A
5608331 Newberg et al. Mar 1997 A
5625640 Palmer et al. Apr 1997 A
5642358 Dent Jun 1997 A
5644592 Divsalar et al. Jul 1997 A
5648955 Jensen et al. Jul 1997 A
5732113 Schmidl et al. Mar 1998 A
5793818 Claydon et al. Aug 1998 A
5815531 Dent Sep 1998 A
5819157 Ben-Efraim et al. Oct 1998 A
5828710 Beale Oct 1998 A
5848060 Dent Dec 1998 A
5870439 Ben-Efraim et al. Feb 1999 A
5870443 Rahnema Feb 1999 A
5937004 Fasulo et al. Aug 1999 A
5940025 Koehnke et al. Aug 1999 A
5940750 Wang Aug 1999 A
5946625 Hassan et al. Aug 1999 A
5952834 Buckley Sep 1999 A
5956373 Goldston et al. Sep 1999 A
5960040 Cai et al. Sep 1999 A
5963845 Floury et al. Oct 1999 A
5966048 Thompson Oct 1999 A
5966186 Shigihara et al. Oct 1999 A
5966412 Ramaswamy Oct 1999 A
5970098 Herzberg Oct 1999 A
5970156 Hummelgaard et al. Oct 1999 A
5970429 Martin Oct 1999 A
5978652 Burr et al. Nov 1999 A
5987068 Cassia et al. Nov 1999 A
5995832 Mallinckrodt Nov 1999 A
5999793 Ben-Efraim et al. Dec 1999 A
6002713 Goldstein et al. Dec 1999 A
6008692 Escartin Dec 1999 A
6018556 Janesch et al. Jan 2000 A
6021159 Nakagawa Feb 2000 A
6028894 Oishi et al. Feb 2000 A
6032026 Seki et al. Feb 2000 A
6034952 Dohi et al. Mar 2000 A
6049566 Saunders et al. Apr 2000 A
6052586 Karabinis Apr 2000 A
6055278 Ho et al. Apr 2000 A
6061393 Tsui et al. May 2000 A
6072841 Rahnema Jun 2000 A
6078645 Cai et al. Jun 2000 A
6084919 Kleider et al. Jul 2000 A
6104747 Jalloul et al. Aug 2000 A
6108374 Balachandran et al. Aug 2000 A
6125148 Frodigh et al. Sep 2000 A
6125260 Wiedeman et al. Sep 2000 A
6128357 Lu et al. Oct 2000 A
6131013 Bergstrom et al. Oct 2000 A
6134282 Ben-Efraim et al. Oct 2000 A
6140809 Doi Oct 2000 A
6141534 Snell et al. Oct 2000 A
6144708 Maruyama Nov 2000 A
6166601 Shalom et al. Dec 2000 A
6177836 Young et al. Jan 2001 B1
6178158 Suzuki et al. Jan 2001 B1
6188717 Kaiser et al. Feb 2001 B1
6192088 Aman et al. Feb 2001 B1
6212360 Fleming et al. Apr 2001 B1
6219095 Zhang et al. Apr 2001 B1
6246717 Chen et al. Jun 2001 B1
6249180 Maalej et al. Jun 2001 B1
6266534 Raith et al. Jul 2001 B1
6272679 Norin Aug 2001 B1
6275678 Bethscheider et al. Aug 2001 B1
6297691 Anderson et al. Oct 2001 B1
6304594 Salinger Oct 2001 B1
6307435 Nguyen et al. Oct 2001 B1
6313885 Patel et al. Nov 2001 B1
6314441 Raghunath Nov 2001 B1
6320464 Suzuki et al. Nov 2001 B1
6320919 Khayrallah et al. Nov 2001 B1
6325332 Cellier et al. Dec 2001 B1
6330336 Kasama Dec 2001 B1
6333924 Porcelli et al. Dec 2001 B1
6335951 Cangiani et al. Jan 2002 B1
6366309 Siegle Apr 2002 B1
6369648 Kirkman Apr 2002 B1
6377116 Mattsson et al. Apr 2002 B1
6389002 Schilling May 2002 B1
6411659 Liu et al. Jun 2002 B1
6411797 Estinto Jun 2002 B1
6426822 Winter et al. Jul 2002 B1
6429740 Nguyen et al. Aug 2002 B1
6433835 Hartson et al. Aug 2002 B1
6452977 Goldston et al. Sep 2002 B1
6477398 Mills Nov 2002 B1
6501804 Rudolph et al. Dec 2002 B1
6515713 Nam Feb 2003 B1
6529715 Kitko et al. Mar 2003 B1
6535497 Raith Mar 2003 B1
6535801 Geier et al. Mar 2003 B1
6574235 Arslan et al. Jun 2003 B1
6597750 Knutson et al. Jul 2003 B1
6657978 Millman Dec 2003 B1
6661761 Hayami et al. Dec 2003 B2
6678336 Katoh et al. Jan 2004 B1
6700442 Ha Mar 2004 B2
6718184 Aiken et al. Apr 2004 B1
6731622 Frank et al. May 2004 B1
6731700 Yakhnich et al. May 2004 B1
6745050 Forsythe et al. Jun 2004 B1
6754872 Zhang et al. Jun 2004 B2
6772182 McDonald et al. Aug 2004 B1
6775521 Chen Aug 2004 B1
6795496 Soma et al. Sep 2004 B1
6809587 Ghannouchi et al. Oct 2004 B2
6892068 Karabinis et al. May 2005 B2
6922436 Porat et al. Jul 2005 B1
6922439 Yamaguchi et al. Jul 2005 B2
6934314 Harles et al. Aug 2005 B2
6947741 Beech et al. Sep 2005 B2
6956841 Stahle et al. Oct 2005 B1
6956924 Linsky et al. Oct 2005 B2
6970496 Ben-Bassat et al. Nov 2005 B1
6980609 Ahn Dec 2005 B1
6990627 Uesugi et al. Jan 2006 B2
6999510 Batruni Feb 2006 B2
7041406 Schuler et al. May 2006 B2
7073116 Settle et al. Jul 2006 B1
7079585 Settle et al. Jul 2006 B1
7154958 Dabak et al. Dec 2006 B2
7173981 Chen et al. Feb 2007 B1
7209524 Chen Apr 2007 B2
7230992 Walker et al. Jun 2007 B2
7239876 Johnson et al. Jul 2007 B2
7251291 Dubuc et al. Jul 2007 B1
7263119 Hsu et al. Aug 2007 B1
20010012322 Nagaoka et al. Aug 2001 A1
20010016926 Riggle Aug 2001 A1
20010024479 Samarasooriya Sep 2001 A1
20010055295 Akiyama et al. Dec 2001 A1
20020006795 Norin et al. Jan 2002 A1
20020009141 Yamaguchi et al. Jan 2002 A1
20020051435 Giallorenzi et al. May 2002 A1
20020071506 Lindquist et al. Jun 2002 A1
20020082792 Bourde et al. Jun 2002 A1
20020136327 El-Gamal et al. Sep 2002 A1
20020158619 Chen Oct 2002 A1
20020172296 Pilcher Nov 2002 A1
20020176516 Jeske et al. Nov 2002 A1
20020186761 Corbaton et al. Dec 2002 A1
20030002471 Crawford et al. Jan 2003 A1
20030043941 Johnson et al. Mar 2003 A1
20030072385 Dragonetti Apr 2003 A1
20030138037 Kaku et al. Jul 2003 A1
20030138040 Rouphael et al. Jul 2003 A1
20030147472 Bach et al. Aug 2003 A1
20030171102 Yang Sep 2003 A1
20030185310 Ketchum et al. Oct 2003 A1
20030194022 Hammons et al. Oct 2003 A1
20040013084 Thomas et al. Jan 2004 A1
20040091059 Chen May 2004 A1
20040110467 Wang Jun 2004 A1
20040137863 Walton et al. Jul 2004 A1
20040146014 Hammons et al. Jul 2004 A1
20040146296 Gerszberg et al. Jul 2004 A1
20040196935 Nieto Oct 2004 A1
20050008100 Chen Jan 2005 A1
20050037724 Walley et al. Feb 2005 A1
20060013333 Chen Jan 2006 A1
20060022747 Chen et al. Feb 2006 A1
20060045191 Vasanth et al. Mar 2006 A1
20060056541 Chen et al. Mar 2006 A1
20070011716 Koslov et al. Jan 2007 A1
20070121718 Wang et al. May 2007 A1
Foreign Referenced Citations (39)
Number Date Country
3642213 Dec 1986 DE
0115218 Aug 1984 EP
0222076 Aug 1986 EP
0238822 Sep 1987 EP
0356096 Feb 1990 EP
0491668 Jun 1992 EP
0874474 Oct 1998 EP
0929164 Jul 1999 EP
1011245 Jun 2000 EP
1065854 Jan 2001 EP
1335512 Aug 2003 EP
2696295 Apr 1994 FR
2724522 Mar 1996 FR
2-5631 Jan 1990 JP
2-95033 Apr 1990 JP
03139027 Jun 1991 JP
5-41683 Feb 1993 JP
5-114878 May 1993 JP
5-252084 Sep 1993 JP
07-038615 Feb 1995 JP
2000-022659 Jan 2000 JP
2001-244832 Sep 2001 JP
2002118611 Apr 2002 JP
2002-300132 Oct 2002 JP
2001 0019997 Mar 2001 KR
WO 9900957 Jan 1999 WO
WO 9920001 Apr 1999 WO
WO 9923718 May 1999 WO
WO 9933203 Jul 1999 WO
0079753 Dec 2000 WO
0113532 Feb 2001 WO
WO 0119013 Mar 2001 WO
WO 0139455 May 2001 WO
WO 0139456 May 2001 WO
WO 0180471 Oct 2001 WO
WO 02073817 Sep 2002 WO
WO 03105375 Dec 2003 WO
WO 2005074171 Aug 2005 WO
WO 2005086444 Sep 2005 WO
Related Publications (1)
Number Date Country
20060153315 A1 Jul 2006 US
Provisional Applications (1)
Number Date Country
60421331 Oct 2002 US
Continuation in Parts (1)
Number Date Country
Parent 09844401 Apr 2001 US
Child 10532632 US