The present invention relates to lower limb activity technologies and more particularly, to a lower limb spasticity measurement method for measuring the spasticity of the lower limbs.
For the person with paraplegia caused by spinal cord injury, stroke, nerve damage and other causes . . . , their body positioning, joint movement and other daily activities need to rely on medical aids, further, the implementation of activity works should also be carried out subject to the assistance of related auxiliary devices. However, during the implementation of a activity work, cramps in the lower body of the person can occur due to muscle fatigue or other factors. At this time, the activity work must be stopped, and the activity work can be started again only after the person has enough rest.
US Patent Number 2014/0343459 discloses a spasticity measurement apparatus, which uses a strain gauge and a potentiometer to measure a muscular contraction force for easily evaluating spasticity of the lower limbs. Further, US Patent Number 2008/0312549 teaches a method for quantitative measurement of spasticity in a person by measuring a joint angle and EMG activity in the limb, determining a threshold EMG activity value and a zero angle, recording angle and velocity as a data point at which the measured EMG value crosses the threshold EMG activity value. However, the aforesaid two prior art patents require the use of sensor means to achieve the expected effect, leading to the problem of expensive equipment.
The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a lower limb spasticity measurement method for measurement of spasticity in the lower limbs of a person, which directly fetches motor torque signal for measurement of spasticity without the use of additional sensors, thereby effectively saving equipment cost.
To achieve this and other objects of the present invention, a lower limb spasticity measurement method comprises a first step of letting a person enter a gait activity machine and then setting the lower limbs of the person in a lower limb orthotic device of the gait activity machine, a second step of starting up a motor of the gait activity machine to drive the lower limb orthotic device in assisting activity of the lower limbs of the person, a third step of getting a statistical distribution data from the torque output of the motor within a predetermined time and then calculating the statistical distribution data to obtain a threshold, and a fourth step, namely, the last step of determining whether the output torque of the motor is greater than the threshold or not. If the output torque is greater than the threshold, it means that the person gets spasticity. At this time, stop the motor immediately. If the output torque is not greater than the threshold, it means the condition of the person is normal. At this time, let the motor keep running.
Further, the statistical distribution data is divided into a positive half cycle interval and a negative half cycle interval. The threshold for the positive half cycle interval and the threshold for the negative half cycle interval are defined as THup=μup±3σup and THdown=μdown±3σdown respectively, in which THup is the threshold of the positive half cycle interval; μup is the mean value of the positive half cycle interval; σup is the standard deviation of the positive half cycle interval; THdown is the threshold of the negative half cycle interval; μdown is the mean value of the negative half cycle interval; σdown is the standard deviation of the negative half cycle interval.
Further, in lines with the needs of different people, the aforesaid two equations can be modified subject to the operating speed of the motor, the stride length of the person and the sensitivity of the gait activity machine to
Other advantages and features of the present invention will be fully understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference signs denote like components of structure.
Referring to
As illustrated in
TH
up=μup±3σup
TH
down=μdown±3σdown
in which THup is the threshold of the positive half cycle interval; μup is the mean value of the positive half cycle interval; σup is the standard deviation of the positive half cycle interval; THdown is the threshold of the negative half cycle interval; μdown is the mean value of the negative half cycle interval; σdown is the standard deviation of the negative half cycle interval.
On the other hand, since stride length varies widely from patient to patient and the operating speed of the motor 14 may also be differently set for different people, the present invention utilizes surface fitting technique to calculate the operating speed of the motor 14 and the stride length of the person so as to obtain a correction parameter (see
Further, a sensitivity parameter can be added to the equation, enabling the threshold to be further corrected to become THup=μup±3σup+Sv+Sωup for the positive half cycle interval and THdown=μdown±3σdown−Sv+Sωdown for the negative half cycle interval, in which Sωup and Sωdown are the sensitivity parameter for the gait activity machine in spasticity measurement. This sensitivity parameter satisfies the following equations:
Sω
up=(μup−μdata)*ω
Sω
down=(μdata−μdown)*ω
in which μdata is the overall mean value of the statistical distribution data; ω is the weight in the range from the most sensitive 0 to the least sensitive 1. With this sensitivity parameter, it allows adjustment of the range of the threshold according to the condition of the person, as illustrated in
In conclusion, the lower limb spasticity measurement method of the invention utilizes the output torque of the motor 14 as signal source for measuring spasticity in the lower limbs of a person during activity without the use of additional sensors. Thus, the method of the invention effectively saves the cost of equipment. Further, during activity, the person can adjust the speed without re-calibration, and can also adjust the sensitivity of the measurement according to the person's personal needs, thereby enhancing the ease of use.