Lower limb spasticity measurement method

Information

  • Patent Grant
  • 10463308
  • Patent Number
    10,463,308
  • Date Filed
    Friday, May 27, 2016
    8 years ago
  • Date Issued
    Tuesday, November 5, 2019
    5 years ago
Abstract
A lower limb spasticity measurement method includes the step of setting the lower limbs of the person in a lower limb orthotic device of a gait activity machine, the step of starting up a motor of the gait activity machine to drive the lower limb orthotic device for lower limb activity, the step of getting a statistical distribution data from the output torque of the motor within a predetermined time and then calculating the statistical distribution data to obtain a threshold, and the step of determining whether the output torque of the motor is greater than the threshold or not, and then stopping motor if the output torque of the motor is greater than the threshold. Thus, the method of the invention can accurately measures spasticity in the lower limbs of a person without the use of sensors, effectively saving the cost of equipment.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to lower limb activity technologies and more particularly, to a lower limb spasticity measurement method for measuring the spasticity of the lower limbs.


2. Description of the Related Art

For the person with paraplegia caused by spinal cord injury, stroke, nerve damage and other causes . . . , their body positioning, joint movement and other daily activities need to rely on medical aids, further, the implementation of activity works should also be carried out subject to the assistance of related auxiliary devices. However, during the implementation of a activity work, cramps in the lower body of the person can occur due to muscle fatigue or other factors. At this time, the activity work must be stopped, and the activity work can be started again only after the person has enough rest.


US Patent Number 2014/0343459 discloses a spasticity measurement apparatus, which uses a strain gauge and a potentiometer to measure a muscular contraction force for easily evaluating spasticity of the lower limbs. Further, US Patent Number 2008/0312549 teaches a method for quantitative measurement of spasticity in a person by measuring a joint angle and EMG activity in the limb, determining a threshold EMG activity value and a zero angle, recording angle and velocity as a data point at which the measured EMG value crosses the threshold EMG activity value. However, the aforesaid two prior art patents require the use of sensor means to achieve the expected effect, leading to the problem of expensive equipment.


SUMMARY OF THE INVENTION

The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a lower limb spasticity measurement method for measurement of spasticity in the lower limbs of a person, which directly fetches motor torque signal for measurement of spasticity without the use of additional sensors, thereby effectively saving equipment cost.


To achieve this and other objects of the present invention, a lower limb spasticity measurement method comprises a first step of letting a person enter a gait activity machine and then setting the lower limbs of the person in a lower limb orthotic device of the gait activity machine, a second step of starting up a motor of the gait activity machine to drive the lower limb orthotic device in assisting activity of the lower limbs of the person, a third step of getting a statistical distribution data from the torque output of the motor within a predetermined time and then calculating the statistical distribution data to obtain a threshold, and a fourth step, namely, the last step of determining whether the output torque of the motor is greater than the threshold or not. If the output torque is greater than the threshold, it means that the person gets spasticity. At this time, stop the motor immediately. If the output torque is not greater than the threshold, it means the condition of the person is normal. At this time, let the motor keep running.


Further, the statistical distribution data is divided into a positive half cycle interval and a negative half cycle interval. The threshold for the positive half cycle interval and the threshold for the negative half cycle interval are defined as THupup±3σup and THdowndown±3σdown respectively, in which THup is the threshold of the positive half cycle interval; μup is the mean value of the positive half cycle interval; σup is the standard deviation of the positive half cycle interval; THdown is the threshold of the negative half cycle interval; μdown is the mean value of the negative half cycle interval; σdown is the standard deviation of the negative half cycle interval.


Further, in lines with the needs of different people, the aforesaid two equations can be modified subject to the operating speed of the motor, the stride length of the person and the sensitivity of the gait activity machine to


Other advantages and features of the present invention will be fully understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference signs denote like components of structure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow chart of a lower limb spasticity measurement method in accordance with the present invention.



FIG. 2 is a schematic structural view of a gait activity machine used in accordance with the present invention.



FIG. 3 is a scatter plot of motor torque versus time graph coordinates.



FIG. 4 is similar to FIG. 3, illustrating spasticity occurred in the lower limbs of the person.



FIG. 5 is a plot illustrating the surface correction of the correction parameter.



FIG. 6 is a scatter plot of motor torque versus time graph coordinates obtained after added correction parameter to the threshold.



FIG. 7 is a scatter plot of motor torque versus time graph coordinates obtained after added sensitivity parameter to the threshold.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a lower limb spasticity measurement method in accordance with the present invention comprises the steps as follows:

    • a) Let a person enter a gait activity machine 10, as illustrated in FIG. 2, and then set the lower limbs of the person in a lower limb orthotic device 12.
    • b) Start up a motor 14 of the gait activity machine 10 to drive the lower limb orthotic device 12, assisting activity of the lower limbs of the person.
    • c) Get a statistical distribution data from the output of the torque variation of the motor 14 within a predetermined time, and then calculate the statistical distribution data to obtain a threshold.


As illustrated in FIG. 3, the statistical distribution data is divided into a positive half cycle interval and a negative half cycle interval. The projection of the positive half cycle interval and the projection of the negative half cycle interval on y-axis respectively form a normal distribution. A normal signal will fall within this normal distribution. Thereafter, use the concept of confidence interval to determine the data of one particular measurement point to be or not to be a normal signal. If the data of this particular measurement point is a normal signal, the data of this particular measurement point will fall within the range of the mean value of the positive, negative half cycle interval plus or minus three standard deviations. Therefore, in this step c), calculate the mean value and standard deviation of the positive and negative half cycle intervals, and then define the threshold for the positive and negative half cycle intervals using the concept of confidence interval, and thus, the following two equations are obtained:

THupup±3σup
THdowndown±3σdown

in which THup is the threshold of the positive half cycle interval; μup is the mean value of the positive half cycle interval; σup is the standard deviation of the positive half cycle interval; THdown is the threshold of the negative half cycle interval; μdown is the mean value of the negative half cycle interval; σdown is the standard deviation of the negative half cycle interval.

    • d) Determine whether or not the output torque of the motor 14 is greater than the threshold? If the output torque is greater than the threshold, as indicated by P1 in FIG. 4, it means that the person gets spasticity. At this time, stop the motor 14 immediately. If the output torque is not greater than the threshold, it means the condition of the person is normal. At this time, let the motor 14 keep running.


On the other hand, since stride length varies widely from patient to patient and the operating speed of the motor 14 may also be differently set for different people, the present invention utilizes surface fitting technique to calculate the operating speed of the motor 14 and the stride length of the person so as to obtain a correction parameter (see FIG. 5). Thus, the threshold of the positive half cycle interval is corrected to become THupup±3σup+Sv for the positive half cycle interval and THdowndown±3σdown−Sv for the negative half cycle interval, in which Sv is the correction parameter. Therefore, it can be seen from P2 in FIG. 6, it is assumed to change the operating speed of the motor 14 in the first 300 seconds, the threshold will be automatically corrected without needing recalibration.


Further, a sensitivity parameter can be added to the equation, enabling the threshold to be further corrected to become THupup±3σup+Sv+Sωup for the positive half cycle interval and THdowndown±3σdown−Sv+Sωdown for the negative half cycle interval, in which Sωup and Sωdown are the sensitivity parameter for the gait activity machine in spasticity measurement. This sensitivity parameter satisfies the following equations:

up=(μup−μdata)*ω
down=(μdata−μdown)*ω

in which μdata is the overall mean value of the statistical distribution data; ω is the weight in the range from the most sensitive 0 to the least sensitive 1. With this sensitivity parameter, it allows adjustment of the range of the threshold according to the condition of the person, as illustrated in FIG. 7, thus achieving the effect of changing the sensitivity of the measurement.


In conclusion, the lower limb spasticity measurement method of the invention utilizes the output torque of the motor 14 as signal source for measuring spasticity in the lower limbs of a person during activity without the use of additional sensors. Thus, the method of the invention effectively saves the cost of equipment. Further, during activity, the person can adjust the speed without re-calibration, and can also adjust the sensitivity of the measurement according to the person's personal needs, thereby enhancing the ease of use.

Claims
  • 1. A lower limb spasticity measurement method without a sensor, comprising the steps: a) letting a person enter a gait activity machine, and then setting the lower limbs of said person in a lower limb orthotic device of said gait activity machine;b) starting up a motor of said gait activity machine to drive said lower limb orthotic device for the activity of the lower limbs of said person;c) getting a statistical distribution data from an output of a torque variation of said motor within a predetermined time, and then calculating said statistical distribution data to obtain a threshold; andd) spasticity is determined if the output torque is greater than the threshold, stopping said motor if the output torque of said motor is greater than said threshold;wherein the statistical distribution data comprises a positive half cycle interval and a negative half cycle interval,the threshold for the positive half cycle intervals and the threshold for the negative half cycle intervals are defined as: THup=μup±3σup THdown=μdown±3σdown
  • 2. The lower limb spasticity measurement method as claimed in claim 1, wherein the threshold for said positive half cycle interval and the threshold for said negative half cycle interval are further defined as THup=μup±3σup+Sv and THdown−μdown±3σdown Sv respectively, in which Sv is a correction parameter that is obtained by calculating the operating speed of said motor and the stride length of said person using surface fitting technique.
  • 3. The lower limb spasticity measurement method as claimed in claim 2, wherein the threshold for said positive half cycle interval and the threshold for said negative half cycle interval are further defined as THup=μup±3σup+Sv+Sωup and THdown=μdown±3σdown SV+Sωdown respectively, in which Sωup and Sωdown are the sensitivity parameter for the gait activity machine in spasticity measurement.
  • 4. The lower limb spasticity measurement method as claimed in claim 3, wherein said sensitivity parameter satisfies the equation of Sωup=(μup−μdata)*ω and the equation of Sωdown=(μdata−μdown)*ω, in which μdata is the overall mean value of the statistical distribution data; ω is the weight in the range from the most sensitive 0 to the least sensitive 1.
US Referenced Citations (18)
Number Name Date Kind
5052406 Nashner Oct 1991 A
6589190 Kanderian, Jr. Jul 2003 B2
6666831 Edgerton Dec 2003 B1
7163492 Sotiriades Jan 2007 B1
8308618 Bayerlein Nov 2012 B2
8460162 Park Jun 2013 B2
8771208 Agrawal Jul 2014 B2
8920347 Bayerlein Dec 2014 B2
9314393 Kim Apr 2016 B2
9555276 Kim Jan 2017 B2
9616282 Tholkes Apr 2017 B2
9750978 Nakashima Sep 2017 B2
9895282 Butters Feb 2018 B2
20080312549 Levin Dec 2008 A1
20140343459 Chino Nov 2014 A1
20150374278 Hsieh Dec 2015 A1
20170157396 Dixon Jun 2017 A1
20170311848 Wu Nov 2017 A1
Foreign Referenced Citations (1)
Number Date Country
508091 Oct 2010 AT
Non-Patent Literature Citations (8)
Entry
Banala, et al. “A powered leg orthosis for gait rehabilitation of motor-impaired patients.” Robotics and Automation, 2007 IEEE International Conference on. IEEE, 2007.
MyMedicNews, “Hiwin . . . the Robotic Gait Training System” Video published Sep. 9, 2014. Retrieved from <http://mymedicnews.com/video/756-hiwin-heralds-robotic-age-for-occupational-therapy-and-post-injury-motor-function-recove> on Jun. 22, 2018.
Schmidt, Henning, et al. “Gait rehabilitation machines based on programmable footplates.” Journal of neuroengineering and rehabilitation 4.1 (2007): 2.
TaiwanTrade.com “Hiwin robotic rehabilitation system to gain China market approval” Mar. 20, 2015. Retrieved from <https://www.taiwantrade.com/news/hiwin-robotic-rehabilitation-system-to-gain-china-market-approval-49247.html#> on Jun. 22, 2018.
Woodway. “LokoHelp the Way to Walk” May 5, 2015. Retrieved from <https://web.archive.org/web/20150505205651/http://www.woodway.com/products/lokohelp 1/> on Jun. 22, 2018.
Banala, et al. “Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients.” Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on. IEEE, 2007.
MedGagdet.com “Touring Taiwan's Medtech Sector: Hiwin Enters Medical Space” May 11, 2015. Retrieved from <https://www.medgadget.com/2015/05/touring-taiwans-medtech-sector-hiwin-enters-medical-space.html> on Jun. 22, 2018.
buyKorea.com “Walkbot Robot—assisted gait training system” Oct. 21, 2014. Retrieved from <http://www.buykorea.org/product-details/walkbot-robot-assisted-gait-training-system--3007930.html> Jun. 22, 2018.
Related Publications (1)
Number Date Country
20170340286 A1 Nov 2017 US