The present disclosure relates methods and devices for providing a low power, localized radio frequency transmitter which allows for localized wireless communications or localized radio frequency attenuation monitoring or testing.
Radio frequency (RF) transmitters used in various applications emit electrical signals at power levels adequate for maintaining reliable wireless communications. Typical transmitters emit RF radiation more or less uniformly in all directions. This requires a great deal of energy, due to signal attenuation levels and interference occurring over the air in a typical RF transmission environment.
In some cases it is desirable to limit the amount of RF energy levels in surrounding volume and yet still allow a reliable communications channel to specific areas. For example in some circumstances, it may be desirable to reduce interference or lower the amount of power required to communicate in a particular area, which may be far from a radio frequency transmission source, or to penetrate a heavily shielded enclosure. However, current wireless technologies provide a limited useful range.
For these and other reasons, improvements are desirable.
In accordance with the following disclosure, the above and other issues are addressed by the following:
In a first aspect, a wireless transmitter is disclosed that includes a radio frequency signal source and a coaxial cable including a near end and a far end. The near end is electrically connected to the radio frequency signal source and configured to receive signals from the radio frequency signal source. The coaxial cable has an inner conductor and an outer conductor. The wireless transmitter includes a shorting connection at the far end of the coaxial cable, the shorting connection electrically connecting the inner conductor and the outer conductor, and a plurality of openings along the coaxial cable spaced at predetermined locations to output signals generated by the radio frequency signal source.
In a second aspect, a wireless communication system is disclosed that includes a wireless transmitter and a wireless receiver. The wireless transmitter includes a radio frequency signal source and a coaxial cable including a near end and a far end. The near end is electrically connected to the radio frequency signal source and configured to receive signals from the radio frequency signal source. The coaxial cable has an inner conductor and an outer conductor. The wireless transmitter includes a shorting connection at the far end of the coaxial cable, the shorting connection electrically connecting the inner conductor and the outer conductor, and a plurality of openings along the coaxial cable spaced at predetermined locations to output signals generated by the radio frequency signal source. The wireless receiver is placed in proximity to at least a portion of the coaxial cable.
In a third aspect, a method for monitoring the effectiveness of electromagnetic shielding of an enclosure is disclosed. The method includes installing a radio frequency receiver within an interior of an enclosure, the enclosure designed to provide shielding from electromagnetic events. The method also includes installing a radio frequency transmitter external to the enclosure and in the proximity of the enclosure. The radio frequency transmitter includes a radio frequency signal source and a coaxial cable including a near end and a far end. The near end is electrically connected to the radio frequency signal source and configured to receive signals from the radio frequency signal source. The coaxial cable has an inner conductor and an outer conductor. The radio frequency transmitter includes a shorting connection at the far end of the coaxial cable, the shorting connection electrically connecting the inner conductor and the outer conductor, and a plurality of openings along the coaxial cable spaced at predetermined locations to output signals generated by the radio frequency signal source. The method further includes activating the radio frequency transmitter, causing the radio frequency transmitter to emit a radio frequency signal recognizable to the radio frequency receiver, and, upon detection of the radio frequency signal at the radio frequency receiver, generating an alert indicating that shielding effectiveness of the enclosure has been compromised.
Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention.
In general, the present disclosure relates to a low power, localized radio frequency (RF) transmitter. In general, a coaxial cable can be used which has a series of small emitting holes in the cable which provide a series of closely spaced RF emitters. Such an antenna cable will allow a lower power broadcasting RF communications system when potential interference with other equipment could be a problem. The cable antenna can be placed along a line which is close proximity to the users, such as a hallway or outer rim of an office area, such that the RF energy emitted can be held to a lower level than in a typical installation.
Referring now to
The transmitter 104 provides a source of radio frequency signals to excite a coaxial cable line 108. As illustrated in further detail in
The receiver 102 and transmitter 104 are communicatively connected to a network interface 110, which can be connected to a remote system, for example to provide network (e.g. Internet) access to remote locations, or locations where high radio frequency signal levels are undesirable.
Referring now to
The multi-aperture antenna 200 includes a number of openings, or holes 206, through the outer shield 202 which allow transmission of an electrical field standing wave when the multi-aperture antenna 200 is connected to a radio frequency transmitter, such as is shown in
For example, using a coaxial cable having low loss and providing appropriate small size holes, the holes 206 will emit a nearly equal power from each hole. The wavelength of the exciting source (e.g., the radio frequency transmitter 104 of
Although in the embodiment shown a coaxial cable is used, in alternative embodiments, a different type of electrical cable and/or with different material and construction could be used to fabricate the cable antenna. For example, a differential, twisted pair cable could be used as well.
The multi-aperture antenna 200 is terminated at an electrically short termination 210, at a one quarter wavelength distance from the last hole 206. This termination distance results in the standing wave as shown, providing local maxima at each hole 206.
As seen in
In an alternative embodiment seen in
Referring now to
In alternative applications, an RF transmitter using an associated multi-aperture antenna could be used in different environments. Other example environments can include, for example, installation within an airplane cabin, such that a data service could be extended to passengers without interfering with airplane instrumentation. Additionally, such a coaxial multi-aperture antenna could be used in the case of a tunnel, to deliver wireless communications to remote areas where RF communication would be otherwise attenuated before reaching. The same may be true in other environments, such as battlefield environments, in which large shielding obstructions may present barriers to RF communication from a single endpoint.
Referring now to
In the embodiment shown in
In the embodiment shown, a radio frequency transmitter 512 is positioned external to the enclosure, and includes an RF source 513 and one or more multi-aperture antennas 514. In the embodiment shown, the one or more multi-aperture antennas 514 can correspond to antennas 200, 300 of
In accordance with the present disclosure, transmitted power levels using antennas 514, 200, 300 of the present disclosure will be relatively low and similar to or lower than the power levels of a typical wireless router transmitter. This power level will allow the radio frequency receivers within the enclosure to detect EM attenuation discrepancies which are on the order of 80-100 db from that of the specified enclosure effectiveness. For example, if the enclosure shielding effectiveness is specified as having an 80 db attenuation effectiveness, then the systems described herein will measure and alert the user when the attenuation is compromised to at least the 80 db level. To increase the sensitivity of the monitoring system either the transmitter power would need to be increased or the sensitivity of the receiver would need to be increased.
Although, in the embodiment shown, two multi aperture antennas 514 are illustrated, such that each passes along two edges of the door 504, other configurations are possible as well, using one or more such antennas.
Additionally, in alternative embodiments, the cable transmitter 504 and antennas 514 could be placed inside the cabinet with the RF receiver 516 on the outside.
Referring now to
Referring to
In operation, when the system is functioning properly and the enclosure no signal will be detected because of the extremely high attenuation levels provided by the materials of the enclosure, as well as any additional sealing structures of the enclosure, such as finger stock other electrically conductive gasket materials. Openings in the enclosure also include attenuating structures, which may be provided through use of honeycomb-shaped waveguide vents, a fiberoptic waveguide port, or an electrical power filter. As such, if the enclosure is not compromised, there should exist sufficient attenuation that the receiver will not detect the signal transmitted by the transmitter. However should one of the attenuation components or structures used in the enclosure become compromised, the radio frequency receiver interior to the enclosure will detect the encoded radio frequency signal generated by the radio frequency transmitter exterior to the enclosure; in such cases, the radio frequency receiver can send a signal to security personnel, such as a data signal to a remote computing system, to indicate that the effectiveness of the enclosure has been compromised.
It is noted that, if the radio frequency receiver detects the signal from the transmitter, the energy could be entering by a number of paths; namely, an open door, a defective air vent, a defective door gasket or finger stock, fiber waveguide beyond cutoff attenuator, any other finger stock or electrically conducting gaskets or thru an electrical power filter.
In a complementary arrangement according to an alternative embodiment of the present disclosure, the radio frequency transmitter can be placed in an interior of the enclosure, and the radio frequency receiver can be placed external to the enclosure. In this configuration, a larger transmitter signal could be used (without worry of other interference with nearby electronics) and would allow for a more sensitive measurement of the shielding effectiveness of the enclosure.
Referring to
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
The present application claims priority from U.S. Provisional Application No. 61/425,155, filed Dec. 20, 2010, and U.S. Provisional Application No. 61/425,161, filed Dec. 20, 2010, the disclosures of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3009984 | Lindgren | Nov 1961 | A |
3075818 | Fay | Jan 1963 | A |
3158016 | Fay | Nov 1964 | A |
3189394 | Fay | Jun 1965 | A |
3231663 | Schwartz | Jan 1966 | A |
3297383 | Fay | Jan 1967 | A |
3364489 | Masters | Jan 1968 | A |
3390491 | Hayden et al. | Jul 1968 | A |
3492568 | Johnson | Jan 1970 | A |
3729740 | Nakahara et al. | Apr 1973 | A |
3962550 | Kaiserswerth | Jun 1976 | A |
D245303 | Gazarek | Aug 1977 | S |
4060709 | Hanson | Nov 1977 | A |
4066305 | Gazarek | Jan 1978 | A |
D248003 | Gazarek | May 1978 | S |
4102554 | Reimer | Jul 1978 | A |
4115656 | Aitel | Sep 1978 | A |
4177353 | McCormack | Dec 1979 | A |
4655012 | Downey et al. | Apr 1987 | A |
4660014 | Wenaas et al. | Apr 1987 | A |
4677251 | Merewether | Jun 1987 | A |
4691483 | Anderson | Sep 1987 | A |
4748790 | Frangolacci | Jun 1988 | A |
4750957 | Gustafson | Jun 1988 | A |
4755630 | Smith et al. | Jul 1988 | A |
H526 | Miller | Sep 1988 | H |
4787181 | Witten et al. | Nov 1988 | A |
D300097 | Cook | Mar 1989 | S |
4884171 | Maserang et al. | Nov 1989 | A |
4894489 | Takahashi et al. | Jan 1990 | A |
4913476 | Cook | Apr 1990 | A |
H821 | Hatfield et al. | Sep 1990 | H |
4962358 | Svetanoff | Oct 1990 | A |
5045636 | Johnasen et al. | Sep 1991 | A |
5079388 | Balsells | Jan 1992 | A |
5117066 | Balsells | May 1992 | A |
5136119 | Leyland | Aug 1992 | A |
5136453 | Oliver | Aug 1992 | A |
5148111 | Shiloh et al. | Sep 1992 | A |
5179489 | Oliver | Jan 1993 | A |
5184311 | Kraus et al. | Feb 1993 | A |
5190479 | Jordi | Mar 1993 | A |
5191544 | Benck et al. | Mar 1993 | A |
5241132 | McCormack | Aug 1993 | A |
5414366 | Rogers | May 1995 | A |
5436786 | Pelly et al. | Jul 1995 | A |
5465534 | Mittag | Nov 1995 | A |
5546096 | Wada | Aug 1996 | A |
5594200 | Ramsey | Jan 1997 | A |
5600290 | Anderson, II | Feb 1997 | A |
5685358 | Kawasaki et al. | Nov 1997 | A |
5749178 | Garmong | May 1998 | A |
5751530 | Pelly et al. | May 1998 | A |
5828220 | Carney et al. | Oct 1998 | A |
5929821 | Goldstein et al. | Jul 1999 | A |
5939982 | Gagnon et al. | Aug 1999 | A |
5983578 | Huttie et al. | Nov 1999 | A |
6011504 | Tan | Jan 2000 | A |
6068009 | Paes et al. | May 2000 | A |
6090728 | Yenni, Jr. et al. | Jul 2000 | A |
6157546 | Petty et al. | Dec 2000 | A |
6185065 | Hasegawa et al. | Feb 2001 | B1 |
6210787 | Goto et al. | Apr 2001 | B1 |
6292373 | Li et al. | Sep 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6324075 | Unrein et al. | Nov 2001 | B1 |
6346330 | Huang et al. | Feb 2002 | B1 |
6377473 | Huang et al. | Apr 2002 | B1 |
6380482 | Norte et al. | Apr 2002 | B1 |
6426459 | Mitchell | Jul 2002 | B1 |
6442046 | Sauer | Aug 2002 | B1 |
6480163 | Knop et al. | Nov 2002 | B1 |
6485595 | Yenni, Jr. et al. | Nov 2002 | B1 |
6542380 | Hailey et al. | Apr 2003 | B1 |
6542384 | Radu et al. | Apr 2003 | B1 |
6613979 | Miller et al. | Sep 2003 | B1 |
6683245 | Ogawa et al. | Jan 2004 | B1 |
6838613 | Kopf | Jan 2005 | B2 |
6870092 | Lambert et al. | Mar 2005 | B2 |
6872971 | Hutchinson et al. | Mar 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6891478 | Gardner | May 2005 | B2 |
7071631 | Howard, II | Jul 2006 | B2 |
7210557 | Phillips et al. | May 2007 | B2 |
7258574 | Barringer et al. | Aug 2007 | B2 |
7369416 | Plabst | May 2008 | B2 |
7400510 | Milligan et al. | Jul 2008 | B1 |
7418802 | Sarine et al. | Sep 2008 | B2 |
7420742 | Wood et al. | Sep 2008 | B2 |
7475624 | Daily | Jan 2009 | B1 |
7498524 | Brench | Mar 2009 | B2 |
7504590 | Ball | Mar 2009 | B2 |
7512430 | Nakamura | Mar 2009 | B2 |
7515219 | Bozzer et al. | Apr 2009 | B2 |
7560135 | Kotsubo et al. | Jul 2009 | B2 |
7561444 | He | Jul 2009 | B2 |
7576289 | Kessel | Aug 2009 | B2 |
7589943 | Ramirez et al. | Sep 2009 | B2 |
7710708 | Park et al. | May 2010 | B2 |
7839020 | Nakanishi | Nov 2010 | B2 |
7839136 | John | Nov 2010 | B1 |
8085554 | Holdredge et al. | Dec 2011 | B2 |
8183995 | Wang et al. | May 2012 | B2 |
8197473 | Rossetto et al. | Jun 2012 | B2 |
8351221 | Siomkos et al. | Jan 2013 | B2 |
8358512 | Shiroishi et al. | Jan 2013 | B2 |
8358515 | Chen et al. | Jan 2013 | B2 |
8373998 | Ricci et al. | Feb 2013 | B2 |
8406012 | Kim | Mar 2013 | B2 |
8493504 | Kobayashi et al. | Jul 2013 | B2 |
8547710 | Ruehl et al. | Oct 2013 | B2 |
8599576 | Faxvog et al. | Dec 2013 | B2 |
8642900 | Nordling et al. | Feb 2014 | B2 |
8643772 | Anderson | Feb 2014 | B2 |
8754980 | Anderson et al. | Jun 2014 | B2 |
8760859 | Fuchs et al. | Jun 2014 | B2 |
20010046128 | Ogata | Nov 2001 | A1 |
20020060639 | Harman | May 2002 | A1 |
20030024172 | Lyons et al. | Feb 2003 | A1 |
20030029101 | Lyons | Feb 2003 | A1 |
20030042990 | Schumacher | Mar 2003 | A1 |
20030174487 | Garmong | Sep 2003 | A1 |
20040112205 | MacDougall | Jun 2004 | A1 |
20040232847 | Howard, II | Nov 2004 | A1 |
20050174749 | Liikamaa et al. | Aug 2005 | A1 |
20050247471 | Archambeault | Nov 2005 | A1 |
20060170430 | Tarvainen et al. | Aug 2006 | A1 |
20060272857 | Arnold | Dec 2006 | A1 |
20060274517 | Coffey | Dec 2006 | A1 |
20070002547 | Garmong | Jan 2007 | A1 |
20070025095 | Beall et al. | Feb 2007 | A1 |
20070093135 | Luo et al. | Apr 2007 | A1 |
20070105445 | Manto et al. | May 2007 | A1 |
20070126871 | Henninger, III et al. | Jun 2007 | A1 |
20070127129 | Wood et al. | Jun 2007 | A1 |
20070158914 | Tammaro et al. | Jul 2007 | A1 |
20070296814 | Cooper et al. | Dec 2007 | A1 |
20080050172 | Simola et al. | Feb 2008 | A1 |
20080080158 | Crocker et al. | Apr 2008 | A1 |
20080250726 | Slagel et al. | Oct 2008 | A1 |
20090067141 | Dabov et al. | Mar 2009 | A1 |
20090125316 | Moore | May 2009 | A1 |
20090140499 | Kline | Jun 2009 | A1 |
20090229194 | Armillas | Sep 2009 | A1 |
20090244876 | Li et al. | Oct 2009 | A1 |
20090268420 | Long | Oct 2009 | A1 |
20090278729 | Bosser et al. | Nov 2009 | A1 |
20090291608 | Choi et al. | Nov 2009 | A1 |
20090295587 | Gorman, Jr. | Dec 2009 | A1 |
20100001916 | Yamaguchi et al. | Jan 2010 | A1 |
20100103628 | Steffler | Apr 2010 | A1 |
20100116542 | Sugihara et al. | May 2010 | A1 |
20100128455 | Ophoven et al. | May 2010 | A1 |
20100208433 | Heimann et al. | Aug 2010 | A1 |
20100315199 | Slagel et al. | Dec 2010 | A1 |
20100315792 | Jones | Dec 2010 | A1 |
20110058035 | DeBerry et al. | Mar 2011 | A1 |
20110088940 | Nordling et al. | Apr 2011 | A1 |
20110092181 | Jackson et al. | Apr 2011 | A1 |
20110169634 | Raj et al. | Jul 2011 | A1 |
20110222249 | Ruehl et al. | Sep 2011 | A1 |
20110267765 | Fuchs et al. | Nov 2011 | A1 |
20120140431 | Faxvog et al. | Jun 2012 | A1 |
20120243846 | Jackson et al. | Sep 2012 | A1 |
20130152485 | Austin et al. | Jun 2013 | A1 |
20130170159 | Jiang | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
0 668 692 | Aug 1995 | EP |
1 114 423 | Feb 2007 | EP |
1860725 | Nov 2007 | EP |
2 221 921 | Aug 2010 | EP |
294513 | Jul 1928 | GB |
11-239288 | Aug 1999 | JP |
2003-133849 | May 2003 | JP |
Entry |
---|
Invitation to Pay Additional Fees with Partial International Search mailed May 9, 2012. |
Military Handbook 235-1B, Electromagnetic (Radiated) Environment Considerations for Design and Procurement of Electrical and Electronic Equipment, Subsystems and Systems, Part 1B, General Guidance, 20 Pages, 1993. |
Military Handbook 237B, Department of Defense Handbook, Guidance for Controlling Electromagnetic Environmental Effects on Platforms, Systems, and Equipment, 248 Pages, 1997. |
Military Handbook 253, Guidance for the Design and Test of Systems Protected Against the Effects of Electromagnetic Energy, 27 Pages, 1978. |
Military Handbook 273, Survivability Enhancement, Aircraft, Nuclear Weapon Threat, Design and Evaluation Guidelines, 228 Pages, 1983. |
Military Handbook 411B, Power and the Environment for Sensitive DoD Electronic Equipment (General), vol. 1, 658 pages, 1990. |
Military Handbook 419A, Grounding, Bonding, and Shielding for Electronic Equipments and Facilities, vol. 1 of 2 vols., Basic Theory, 812 Pages, 1987. |
Military Handbook 1857, Grounding, Bonding and Shielding Design Practices, 185 Pages, 1998. |
Military Handbook 5961A, List of Standard Semiconductor Devices, 33 Pages, 1999. |
Military Standard 188-124B, Grounding, Bonding and Shielding, for Common Long Haul/Tactical Communication Systems Including Ground Based Communications-Electronics Facilities and Equipments, 41 Pages, 1992. |
Military Standard 188-125-1, Department of Defense Interface Standard, High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions (Part 1—Fixed Facilities), 107 Pages, 1998. |
Military Standard 188-125-2, Department of Defense Interface Standard, High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions (Part 2—Transportable Systems), 148 Pages, 1999. |
Military Standard 188-125, High-Altitude Electromagnetic Pulse (HEMP) Protection for Ground-Based C41 Facilities Performing Critical, Time-Urgent Missions (vol. 1—Fixed Facilities), 114 Pages, Feb. 1994. |
Military Standard 220C, Department of Defense—Test Method Standard—Method of Insertion Loss Measurement, 19 Pages, 2009. |
Military Standard 285—Notice of Cancellation—MIL-STD-285, dated 1956 canceled, 17 Pages, 1997. |
Military Standard 285, Military Standard Attenuation Measurements for Enclosures, Electromagnetic Shielding, for Electronic Test Purposes, 15 Pages, 1956. |
Military Standard 461C, Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference, 183 Pages, 1986. |
Military Standard 461E, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 253 Pages, 1999. |
Military Standard 461F, Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment, 269 Pages, 2007. |
Military Standard 462, Electromagnetic Interference Characteristics, 80 Pages, 1967. |
Military Standard 462D, Measurement of Electromagnetic Interference Characteristics, 203 Pages, 1993. |
Military Standard 464, Electromagnetic Environmental Effects Requirements for Systems, 116 pages, 1997. |
Military Standard 464A, Electromagnetic Environmental Effects Requirements for Systems, 121 pages, 2002. |
Military Standard 469B, Radar Engineering Interface Requirements, Electromagnetic Compatibility, 98 Pages, 1996. |
Military Standard 1542B (USAF), Electromagnetic Compatibility and Grounding Requirements for Space System Facilities, 52 Pages, 1991. |
Military Handbook 1195, Radio Frequency Shielded Enclosures, 86 Pages, Sep. 1988. |
IEEE Std 299-1997, IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures, 44 Pages, 1997. |
Leland H. Hemming, Architectural Electromagnetic Shielding Handbook—A Design Specification Guide, IEEE Press, 232 Pages, 1991. |
USAF Handbook for the Design and Construction of HEMP/TEMPEST Shielded Facilities, AF Regional Civil Engineer Central Region, Dallas, Texas, 39 Pages, 1986. |
ETS-Lindgren—High Performance EMI/RFI Shielding Solutions, 2 Pages, 2002. |
ETS-Lindgren—Double Electrically Isolated RF Enclosures, for Industrial, Communication, and Research and Development Applications, 8 Pages, 2005. |
ETS-Lindgren—Tempest Information Processing System (TIPS), 2 Pages, 2008. |
ETS-Lindgren—Table Top Enclosure—5240 Series, 2 Pages, 2009. |
ETS-Lindgren—Auto Latching Door System, 2 Pages, (undated). |
ETS-Lindgren—RF Shielded Doors, 5 Pages, (undated). |
NSA-94-106, National Security Agency Specification for Shielded Enclosures, 9 Pages, 1994. |
Holland Shielding Systems BV, Shielding Gaskets With or Without Water Seal (EMI-RFI-IP Gaskets), 2 Pages, (undated). |
Holland Shielding Systems BV, EMI-RFI-EMP—Shielded Doors for Faraday Cages and EMI-RFI Shielded Room, 5 Pages, (undated). |
Holland Shielding Systems BV, Innovative EMI Shielding Solutions—Gasket Selection, 36 Pages, (undated). |
Equipto Electronic Corporation—Technical Guide to EMI/RFI Suppression in Electronic Cabinets, 16 Pages, Apr. 2005. |
Crenlo—Emcor—Product—Options—Doors, 12 Pages, (undated). |
RFI/EMI Shielded Cabinets and Features Available, 4 Pages, (undated). |
Special Door Company, Radiation Shielding Doors: SH Door Tech, 2 Pages, (undated). |
Special Door Company, EMP Doors: Electro Magnetic Pulse Doors, 3 Pages, (undated). |
Braden Shielding Systems, Anechoic Chambers, EMC Chambers, MRI Enclosures, 1 Page, (undated). |
Magnetic Shield Corp.—Bensenville, Illinois, Magnetic Shielding, 2 Pages, (undated). |
EEP—Electromagnetic Radiation Shielding & Magnetic Field Shielding Technology—Products and Services, 3 Pages, (undated). |
Fleming—RF & EMI Shielded Doors, Radiation Shielded Doors, 3 Pages, (undated). |
H. Bloks, “NEMP/EMI Shielding,” EMC Technology, vol. 5, No. 6, Nov.-Dec. 1986, 5 Pages. |
W.E. Curran, “New Techniques in Shielding,” ITEM, 1984, 9 Pages. |
W. E. Curran, “Shielding for HEMP/TEMPEST Requirements,” ITEM, 1988, 10 Pages. |
IEEE Transactions on Advanced Packaging, “Electromagnetic Interference (EMI) of System-on-Package (SOP),” vol. 27, No. 2, pp. 304-314, May 2004. |
Number | Date | Country | |
---|---|---|---|
20120326729 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61425155 | Dec 2010 | US | |
61425161 | Dec 2010 | US |