Many circuit applications are more valuable as the speed of the circuits increases. Examples of such circuits include latches, flip-flops, multiplexers, and combinatorial logic. Some approaches to increasing speed unfortunately also involve increased power consumption.
In one example, a circuit includes a first transistor comprising a first control input and first and second current terminals, the first control input coupled to receive a first input control signal, and the first current terminal coupled to a first power supply node. The circuit also includes a first resistor coupled to the first control input of the first transistor, a first capacitor coupled between the second current terminal of the first transistor and the first resistor and a second transistor comprising a second control input and third and fourth current terminals, the third current terminal coupled to the first resistor and to the first capacitor.
In another example, a circuit includes a first transistor comprising a first control input and first and second current terminals, the first control input coupled to receive a first input control signal, and the first current terminal coupled to a first power supply node. The circuit also includes a first resistor coupled to the first control input of the first transistor, a first capacitor coupled between the second current terminal of the first transistor and the first resistor, and a second transistor comprising a second control input and third and fourth current terminals, the third current terminal coupled to the first resistor and to the first capacitor. A third transistor also is included which comprises a third control input and seventh and eighth current terminals, the third control input coupled to receive a second input control signal, the second input control signal being reciprocal to the first input control signal. The circuit further includes a second resistor coupled to the third control input, a second capacitor coupled between the sixth current terminal and the second resistor, and a fourth transistor comprising a fourth control input and seventh and eighth current terminals, the seventh current terminal coupled to the second resistor and to the second capacitor.
In yet another example, a circuit includes a first transistor comprising a first control input and first and second current terminals, the first control input coupled to receive a time-varying first input control signal, a first resistor coupled to the first control input of the first transistor and a first high pass filter coupled to the second current terminal and to the first resistor at a first output node, the first high pass filter having a first cut-off frequency. The voltage on the second current terminal of the first transmitter is provided through the first high pass filter to the first output node at frequencies of the time-varying first input control signal above the first cut-off frequency. At frequencies of the time-varying first input control signal below the first cut-off frequency, the voltage on the first output node is a voltage drop across the first resistor less than the time-varying first input control signal.
For a detailed description of various examples, reference will now be made to the accompanying drawings in which:
The disclosed examples are directed to a circuit for driving current mode logic (CML) circuits. The disclosed drive circuit is such that the CML logic can be operated from a lower voltage power supply than would have otherwise been used. In some prior CML implementations, the circuit that generates the control signals for the CML-based functional circuit includes a stacked arrangement of bipolar junction transistors (e.g., n-type bipolar junction transistors). As a result of the stacked bipolar junction transistors (BJTs) and based on other headroom issues within the CML-based circuit, the power supply voltage is greater than or equal to a certain minimum value, which currently is around 2.5V. Part of the headroom issue driving the selection of a power supply voltage is the base-to-emitter voltage (Vbe) of a BJT. With the stacked BJT arrangement, at least 2*Vbe is needed for the power supply voltage, and more than that based on other headroom issues. A Vbe voltage is approximately 0.8V and thus 2*Vbe is approximately 1.6V. Including other headroom issues associated with CML circuits, the power supply voltage is generally at least 2.5V.
The disclosed circuit for producing the control signals to operate a CML functional circuit (e.g., a CML latch, a CML multiplexer, a CML flip-flop, etc.) does not use a stacked BJT arrangement and can produce a suitable voltage for the CML logic while using a lower supply voltage. In one example, the supply voltage is 1.5V.
Each of the input control signals INA and INA_Z have a similar circuit to convert the input signal to a corresponding output signal. For example, the control signal drive circuit 100 includes transistors M1, M2, and M3, resistor R1, and capacitor C1 for input signal INA. The control signal drive circuit 100 includes transistors M4, M5, and M6, resistor R2, and capacitor C2 for input control signal INA_Z, In this example, M1 and M4 are n-type BJTs and M2, M3, M5 and M6 are n-type metal oxide semiconductor field effect transistors (NMOS). In other implementations, the transistors M1-M6 can be of other types. For example, M1 and M4 can be implemented as p-type BJTs and any of M2, M3, M5, and M6 can be implemented as p-type metal oxide semiconductor field effect transistors (PMOS) or as BJTs. Each transistor M1-M6 has a control input and a pair of current terminals. In the case of a BJT (e.g., M1 and M4), the control input is the base of the transistors and the current terminals are the transistor's collector and emitter. In the case of an NMOS or PMOS device, the control input is the transistor's gate and the current terminals are the transistor's source and drain.
Input signal INA is provided to the base of M1 and to one terminal of R1. The collector of M1 is connected to a power supply node 105 (e.g. VCC). The other terminal of R1 (node 110) represents the output signal Y. Capacitor C1 connects to the emitter of M1 and to the resistor R1 at node 110. The drain of M2 also connects to capacitor C1 and resistor R1 at node 110 as shown. The source of M2 is connected to a power supply node 107 (e.g., ground). The drain of M3 is connected to the emitter of M1 and to capacitor C1, and the source of M3 is connected to power supply node 107. The gate of M2 is biased by way of bias voltage V1_BIAS and the gate of M3 is biased by way of bias voltage V2_BIAS.
The architecture of the control signal drive circuit 100 with respect to input control signal INA_Z is similar to that described above regarding input control signal INA. Input signal INA_Z is provided to the base of M4 and to one terminal of R2. The collector of M4 is connected to the power supply node 105. The other terminal of R2 (node 120) represents the output signal Y_Z. Capacitor C2 connects to the emitter of M4 and to the resistor R2 at node 120. The drain of M5 also connects to capacitor C2 and resistor R2 at node 120 as shown. The source of M5 is connected to power supply node 107. The drain of M6 is connected to the emitter of M4 and to capacitor C1, and the source of M3 is connected to power supply node 107.
The gate of M5 is biased by way of bias voltage V1_BIAS and the gate of M6 is biased by way of bias voltage V2_BIAS. Transistors M2 and M5 are of equal size in some implementations and thus being biased by the same bias voltage V1_BIAS causes the current through M2 (designed as I2 in
Capacitor C1 is part of a high pass filter. The resistance of the downstream circuit as viewed from node 110, coupled with C1 forms the high pass filter. As noted above, INA is a time-varying signal with a DC component. The high pass filter permits the frequency components on the emitter of M1 above the filter's cut-off frequency to pass through C1 to the output signal Y at node 110. As M1 is controlled by time-varying input control signal INA, the voltage on node 115 also is time-varying with the same frequency and duty cycle as INA, and is generally synchronous to INA. Through C1 of the high pass filter, the output signal Y will have a time-varying component that also is synchronous to the input control signal INA.
The aforementioned high pass filter will not permit the DC component of INA to pass through to the output signal Y. Instead, the DC component of the output signal Y will be equal to the DC voltage of INA less the voltage drop across R1. The voltage drop across R1 is the resistance value of R1 multiplied by the current through R1. The current through R1 is I2 and is controlled by M2 and the bias voltage V1_BIAS provided to the gate of M2. Thus, the DC component of Y is INA−(R1)(I2). By selection of R1 and the current I2 through M2 (and thus through R1), the voltage drop across R1 can be set as desired. In one example, the voltage drop across R1 is 400 my, which is significantly less than a Vbe (about 800 my). As such, the control signal drive circuit of
The generation of output signal Y_Z is similar to that described above. C2 is part of a high pass filter that includes the resistance of the downstream circuit as viewed from node 120, The signal on node 125 is time-varying with the same frequency and duty cycle as INA_Z, and is generally synchronous to INA_Z. Through C2 of the high pass filter, the output signal Y_Z will have a time-varying component that also is synchronous to the input control signal INA_Z and, through R2, have a DC component that is I5*R2 less than the DC component of INA_Z.
The control signal drive circuit 100 can be used to provide control signals Y and Y_Z for any of a variety of downstream CML functional circuits.
The output signals OUT and OUT_Z from the CML latch 200 are taken from nodes 210 and 212 as shown. When D is large enough to turn on M10, OUT_Z becomes VCC less the voltage drop across R3 (which his R3 times the current defined by current source device comprising M7). With D high, D_Z is low and thus M11 is off and thus OUT is high (i.e., higher than OUT_Z). OUT and OUT_Z are at the opposite voltage levels when D_Z is greater than D. With Y asserted high, OUT and OUT_Z track the input data signals D and D_Z in a transparent mode of operation of the latch. When Y_Z becomes high (and Y becomes low), current ceases to flow through the sample circuit 202 and, instead flows through the hold circuit 205 and through M9 and M7. The transistors M12 and M13 of the hold circuit are connected in a cross-coupled arrangement to operate in a regenerative positive feedback mode. As such, the output signals OUT and OUT_Z are held at their voltage levels on nodes 210 and 212 when Y_Z is high as no current will flow through the sample circuit 202 and the current instead flows through the hold circuit.
The Y and Y_Z signals operate the CML latch as described above and are generated by the control signal drive circuit 100 of
Certain terms have been used throughout this description and claims to refer to particular system components. As one skilled in the art will appreciate, different parties may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In this disclosure and claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct wired or wireless connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
This continuation application claims priority to U.S. patent application Ser. No. 15/993,725, filed May 31, 2018, which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 15993725 | May 2018 | US |
Child | 16834316 | US |