This application is the national stage of PCT/DE2004/00427 filed on Nov. 3, 2004 and claims Paris Convention priority of DE 103 51 255.1 filed Nov. 3, 2003.
The invention concerns a lowering device for a support structure for safely lowering all building industry loads.
Support structures for the building industry, such as ceiling formwork elements or floor tables are conventionally held by construction supports with adjustable length, which are adjusted to a predetermined length for a concrete pouring process. For example, a large number of construction supports, e.g. floor tables, are used for concrete pouring of large ceiling sections. When the ceiling to be poured with concrete has hardened to a sufficient degree, the formwork must be removed from the ceiling by shortening e.g. all telescopic construction supports which support the ceiling formwork until the formwork elements or floor tables can be removed and re-used at another location.
The removal of the formwork may be complicated when a plurality of construction supports are used to support heavy loads. Each construction support must be individually shortened, e.g. via a spindle procedure.
It is the object of the invention to provide a lowering device which can be moved in a safe, simple and rapid manner into a first working position and a second lowered position.
This object is achieved in accordance with the invention by a lowering device of a support structure, consisting of at least one plate, wherein a locking mechanism is formed on a first side of the plate, which can be moved into two positions, and wherein a support structure can be disposed at a second side of the plate, lifted relative to the stationary plate in a first position of the locking mechanism, and lowered relative to the stationary plate in a second position of the locking mechanism in response to the force of gravity, wherein the support structure engages the locking mechanism via at least one bolt, the bolt being displaceable relative to the plate from the first position into the second position and vice versa.
The inventive lowering device offers the essential advantage that a support structure can be adjusted to a required height by opening a locking mechanism which is stable under load and which automatically repositions itself, such that a support structure connected to the lowering device is immediately lowered by the desired amount. The lever ratios of the locking mechanism may thereby be selected such that even heavy loads of between e.g. 5 and 10 t can be lowered in a fast and safe manner by one worker using only little force. In its first position, the locking mechanism is self-locking under load, such that inadvertent opening of the inventive locking mechanism is not possible.
The inventive locking mechanism is preferably formed by one first and one second latch part which each surround at least part of a bolt at a first free end region thereof, wherein the bolts extend through elongated holes in the plate to permit displacement thereof relative to the plate, and the bolts can be fixed to the support structure in the region of their second free ends.
Safe lowering can thereby be advantageously ensured with a very simple structure.
In a further embodiment of the inventive locking mechanism, the second latch part is disposed for rotation around the bolt which it surrounds, and comprises a first and a second support surface via which the second latch part is supported on a projection of the plate in correspondence with its respective position, wherein the respective support surfaces have different separations from the axis of rotation formed by the bolt.
When the plate is stationary, this structure permits safe lowering of the support structure connected to the lowering device in dependence on the design of the two support surfaces of the second latch part and their separation from the axis of rotation of the second latch part. Lowering is possible only to the extent allowed by the matching support surfaces on the second latch part.
The first latch part advantageously comprises a first free end which partially covers an opening of the plate and surrounds the bolt in such a manner that, upon pivoting of the first latch part away from the opening, the second latch part automatically pivots into the second position under the action of the force exerted by the support structure onto the locking mechanism.
This is advantageous in that the locking mechanism can be triggered, i.e. be opened with only little force using an aid, e.g. a rod that can be inserted into the opening. The latch parts formed in the locking mechanism are pivoted and turned into a second end position, which limits the lowering motion of a support structure connected to the lowering device.
The inventive lowering device is further improved by mounting the plate to one end of a longitudinal housing having a bracket at the other end that has an elongated hole for receiving a bolt which can be connected to the support structure in a stationary manner, the bracket being overlapped by a frame which is rigidly connected to both the bracket and the plate.
This embodiment of the inventive lowering device permits connection of a conventional construction support to the lowering device in a torsion-proof and bending-resistant fashion. If the lowering device is mounted to a construction support in this fashion, the support structure connected to the lowering device can be lowered rapidly and safely by an amount predetermined by the locking mechanism.
The frame advantageously forms a housing which receives both the bracket and the plate, and comprises receptacles for a support for immovably connecting the lowering device to the support. A construction support can be quickly and safely mounted to the lowering device via such receptacles.
Lowering devices of this type are preferably mounted to the sides of truss girders of a floor table. If a floor table is held by numerous construction supports, each having an inventive lowering device, the floor table can be quickly and safely lowered and be re-used when the concrete pouring process is completed.
Further advantages can be extracted from the description of the attached drawings. The features of the invention mentioned above and below can be used individually or in arbitrary combination. The above-mentioned embodiments are not to be understood as exhaustive enumeration but have exemplary character.
The invention is described in more detail below with reference to an embodiment. The lowering devices or parts thereof shown in the figures are not necessarily true to scale.
a through 2c show different views of the inventive lowering device of
The locking mechanism 16 comprises a plate 17 with a projection or stop 18, a first latch part 19, a second latch part 20 and the bolts 12, 13. The first and second latch parts 19, 20 can be pivoted or turned about the bolts 12, 13. The second latch part 20 is supported on the projection 18 both in a first and in a second location of the locking mechanism 16.
The bolt 11 is displaceably held in a bracket 21 which also contains the elongated hole 14. The bracket 21, which is bent in an L-shape, abuts the support structure to be retained, via a first leg piece 22. A frame portion 24 is preferably connected to a second leg piece 23 of the bracket 21 with material fit. The frame 24 with bracket 21 and plate 17 and the individual parts mounted thereto, form a housing extending in a longitudinal direction, which also has a first and a second receptacle 25, 26 for guiding and fixing a construction support and which can preferably be adjusted in height.
The first receptacle 25 engages with a construction support held in this receptacle 25 in a positive fashion, and the second receptacle 26 is designed as finger that engages in the free end of a construction support. A construction support retained in the lowering device 10 can be securely connected to the lowering device 10, e.g. via a bolt, through the opening formed on the finger.
The lowering device 10 of the figure is preferably a metal construction which can accept the load or a partial load of a support structure connected to the lowering device 10.
a, 2b and 2c show different views of the lowering device 10.
b shows the lowering device 10 in a positioned turned relative to
c shows the lowering device 10 from a point of view which clearly shows the bearing of the bolt 11 in the bracket 21 and the bearing of the bolts 12, 13 in the plate 17. The receptacle 25 and the bracket 21 project beyond the frame 24. The bolts 11, 12, 13 are displaceably disposed in the elongated holes 14, 15. The plate 17 has an opening 28 via which the locking mechanism formed on the other side of the plate 17 can be actuated. In a state of the lowering device 10 mounted to a support structure, the opening 28 must be accessible for the staff operating the lowering device 10. The bolt 11 can be displaced in the elongated hole 14 in the direction of arrows 29 and the bolts 12, 13 can be displaced in the elongated hole 15 in the direction of arrows 30. When a support structure is mounted to the bolts 11, 12, 13, the bolts 11, 12, 13 can be displaced in the direction of arrows 29, 30 with the lowering device being stationary.
A lowering device 10 of a support structure for the construction industry comprises at least one plate 17 which holds a locking mechanism 16 and either blocks the motion of the bolts 12, 13 or releases that blockage. The bolts 12, 13 are rigidly connected to a support structure and are also held in the locking mechanism 16 in a controlled manner, such that the support structure connected to the lowering device 10 is lifted in a first position and the support structure connected to the locking mechanism is lowered in the second position thereof to the extent permitted by the locking mechanism.
Number | Date | Country | Kind |
---|---|---|---|
103 51 255 | Nov 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2004/002427 | 11/3/2004 | WO | 00 | 4/20/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/045159 | 5/19/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3843084 | Gregory et al. | Oct 1974 | A |
3863878 | Gregory et al. | Feb 1975 | A |
4103856 | Riblet | Aug 1978 | A |
4467993 | Markewitz | Aug 1984 | A |
Number | Date | Country |
---|---|---|
10056831 | Feb 2002 | DE |
0092694 | Nov 1983 | EP |
0 283 391 | Sep 1988 | EP |
2414599 | Sep 1979 | FR |
2099902 | Dec 1982 | GB |
2 344 609 | Jun 2000 | GB |
Number | Date | Country | |
---|---|---|---|
20070170319 A1 | Jul 2007 | US |