LSC AND HSC SIGNATURES FOR PREDICTING SURVIVAL OF PATIENTS HAVING HEMATOLOGICAL CANCER

Abstract
A method for determining prognosis in a subject having a hematological cancer comprising: a) determining an expression profile by measuring the gene expression levels of a set of genes selected from a leukemic stem cell (LSC) gene signature marker set or an hematopoietic stem cell (HSC) gene signature marker set, in a sample from a subject; and b) classifying the subject as having a good prognosis or a poor prognosis based on the expression profile; wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.
Description
FIELD OF THE DISCLOSURE

The disclosure pertains to methods and compositions for determining gene expression signatures for predicting survival in patients having a hematological malignancy and particularly leukemia patients such as AML patients.


BACKGROUND OF THE DISCLOSURE

Acute myeloid leukemia (AML) is a clonal disease, marked by the growth of abnormally differentiated immature myeloid cells, with a long term survival rate in adult patients of only 30%1, 2. The first explicit experimental evidence for the existence of leukemic stem cells (LSC), the only cell capable of initiating and sustaining the leukemic clonal disease, has been demonstrated3. Leukemia stem cells (LSCs) are a biologically distinct blast population positioned at the apex of the acute myeloid leukemia (AML) developmental hierarchy. A more complete understanding of the unique properties of LSCs is crucial for the identification of novel AML regulatory pathways and the subsequent development of innovative therapies that effectively target these cells in leukemia patients. Typically, studies overlook the heterogeneity of AML and the existence of LSC, potentially masking important molecular pathways.


While the cancer stem cell model was proposed over three decades ago, only recently has experimental evidence confirmed the hierarchical model for leukemia3. Using a quantitative assay for transplantation of primary AML into SCID or NOD/SCID mice, human AML cells that can initiate a human leukemic graft in mice (termed SCID Leukemia-Initiating Cells—SL-IC) were identified and prospectively purified3. The cells presenting with surface markers CD34+CD38, representing from 0.1-1% of the AML cell population, were the only AML fraction capable of serially transplanting the leukemia. Additionally, this fraction could recapitulate the cellular diversity of the original leukemia, and therefore contained the LSC. The CD34+CD38+ fraction contained progenitor cells (cells capable of forming colonies but with limited self-renewal ability) while the other two fractions contain blast cells with no self-renewal capacity. Several groups have since used the NOD/SCID xenotransplant model to isolate rare cancer stem cell (CSC) in, for example, brain and breast tumours, indicating that the CSC model applies to multiple types of cancer4-6.


Since AML samples are more variable than normal hematopoietic cells it is essential to validate each sorted fraction. Incorrectly labeling a sorted AML fraction would severely compromise the ability to properly analyze the global gene expression data. Currently, the in vivo transplantation assay is the best technique to accurately detect LSCs. In vitro methods suffer from the alteration of marker expression and the inability to maintain LSC in culture. Importantly, a novel and improved in vivo SCID leukemia initiating cell assay to confirm the presence of LSC activity in each sorted fraction of 16 AML involving intrafemoral injection into NOD/SCID mice depleted of CD122 cells has been applied. With this assay, LSC were detected in the expected CD34+/CD38− population of sorted AML. However, in the majority of AML samples, LSC were detected in at least one additional fraction, demonstrating the critical importance of functional validation when interpreting global gene expression profiles of sorted stem cell populations19.


Significantly, while it is expected that HSC and LSC share similar regulatory pathways, a recent finding has highlighted differences between HSC and LSC regulatory networks7, 8. Deletion of the tumour suppressor gene Pten in murine hematopoietic cells resulted in the generation of transplantable leukemias. However, Pten deletion in HSCs lead to HSC depletion, indicating that, unlike LSCs, HSCs could not be maintained without Pten. Regulatory differences between HSC and LSC represent a vulnerability that can be used to specifically target LSCs for eradication, leaving HSCs unharmed. Greater understanding of both LSC and HSC regulation may reveal further differences between LSC and HSC control and lead to novel therapies.


Little is currently known of the expression profile of LSC enriched sub-populations in AML. Gal et al. examined the expression of CD34+/CD38− vs CD34+/CD38+ populations in 5 AML and identified 409 genes that are 2-fold over or under expressed between the cell populations9. However, the different cell populations were not functionally validated, and it is likely that the CD34+/CD38+ fractions also contain LSC, therefore the gene profile is cell marker dependent, not functionally dependent. Additionally, Majeti et al. identified 3005 differentially expressed genes in a comparison between AML CD34+/CD38− cells and normal bone marrow CD34+/CD38− cells. However, the analysis did not include mature cell populations, suggesting that the profile is a leukemia specific profile, not necessarily a stem cell profile10. The prognostic significance of these profiles was not explored.


AML is a genetically heterogeneous disease, with the karyotype of the AML blast as the most important prognostic factor11, 12. However, approximately half of all adult AML are cytogenetically normal at diagnosis. Within the cytogenetically normal AML (CN-AML) patient population, the mutational status of genes such as FLT3, NPM1, MN1 and CEBPA are associated with outcome; however, the association is not absolute and not all CN-AML present with such mutations, indicating that this class of AML is heterogeneous and additional factors are prognostically significant13, 14. Two groups have attempted to use gene expression profiling to predict outcome specifically in CN-AML patients. Bullinger et al. developed a signature that was validated by Radmacher et al., where there was a correlation with overall survival (p=0.001) of an classification rule developed using the previously identified signature15, 16. Metzeler et al. used an cohort of 163 CN-AML to develop an 86 probe signature that predicts survival in CN-AML, with a significant prediction of overall survival in an independent set of 79 CN-AML (p=0.002)17. There was a correlation with FLT3ITD status for these signatures; however, the 86 probe signature maintained association with outcome, independent of FLT3ITD status, indicating that gene expression profiling can be of value for predicting prognosis, in addition to mutational status.


SUMMARY OF THE DISCLOSURE

A method for determining a prognosis of a subject having a hematological cancer comprising:


a) determining a gene expression level for each of a set of genes selected from leukemia stem cell (LSC) signature genes listed in Tables 2, 6, and/or 12, hematopoietic stem cell (HSC) signature genes listed in Tables 4 and/or 14, and/or CE-HSC/LSC signature genes listed in Table 19, to obtain a subject expression profile of a sample obtained from the subject; and


b) classifying the subject as having a good prognosis or a poor prognosis based on the subject expression profile;


wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


A computer-implemented method for determining a prognosis of a subject having a hematological cancer comprising: obtaining a subject expression profile and classifying, on a computer, the subject as having a good prognosis or a poor prognosis based on the subject expression profile comprising measurements of expression levels of a set of genes in a sample from the subject, wherein the set of genes is selected from genes listed in Table 2, 4, 6, 12 and 14, comprises at least 2 genes; wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


A method for monitoring a response to a cancer treatment in a subject having a hematological cancer, comprising:


a) collecting a first sample from the subject before the subject has received the cancer treatment;


b) collecting a subsequent sample from the subject after the subject has received the cancer treatment;


c) determining the gene expression levels of a set of genes selected from LSC signature genes and/or HSC signature genes in the first and the subsequent samples according to a method described herein, to obtain a first sample subject expression profile and a subsequent sample subject expression profile, wherein the set of genes comprises at least 2 genes; and


d) calculating a first sample subject expression profile score and a subsequent sample subject expression profile score;


wherein a lower subsequent sample expression profile score compared to the first sample expression profile score is indicative of a positive response, and a higher subsequent sample expression profile score compared to the first expression profile score is indicative of a negative response.


A method of treating a subject having a hematological cancer, comprising determining a prognosis of the subject according to a method described herein, and providing a suitable cancer treatment to the subject in need thereof according to the prognosis determined.


Use of a prognosis determined according to a method described herein, and identifying a suitable treatment for treating a subject with a hematological cancer.


A composition comprising a set of nucleic acid molecules each comprising a polynucleotide probe sequence selected from SEQ ID NO:1-2533.


An array comprising for each gene in a set of genes, the set of genes comprising at least 2 of the genes listed in Table 2, 4, 6, 12 and/or 14, one or more polynucleotide probes complementary and hybridizable to a coding sequence in the gene, for determining a prognosis according to a method described herein.


A kit for determining prognosis in a subject having a hematological cancer according to the method described herein comprising:


a) an array or composition described herein;


b) a kit control; and


c) optionally instructions for use.


A computer system comprising:


a) a database including records comprising reference expression profiles associated with clinical outcomes, each reference profile comprising the expression levels of a set of genes listed in Table 2, 4, 6, 12 and/or 14;


b) a user interface capable of receiving and/or inputting a selection of gene expression levels of a set of genes, the set comprising at least 2 genes listed in Table 2, 4, 6, 12 and/or 14 for use in comparing to the gene reference expression profiles in the database;


c) an output that displays a prediction of clinical prognosis according to the expression levels of the set of genes.


In an embodiment, the expression profile is used to calculate an subject risk score, wherein the subject is classified has having a good prognosis if the subject risk score is low and as having a poor prognosis if the expression profile is high.


Other features and advantages of the present disclosure will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the disclosure are given by way of illustration only, since various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A Experimental Design: Sixteen AML patient samples were sorted into 4 subpopulations based upon CD34 and CD38 antibody staining and cells recovered for functional and gene expression analysis. Functional validation of the presence of SCID Leukemia Initiating Cells (SL-IC) was undertaken for each fraction of 16 of the AML samples. SL-IC is a functional readout of LSC—only LSC are known to generate long term leukemic grafts in mice. Functional validation was successful for at least 1 fraction for each of 16 AML. Generally, CD34+ and CD38− and approximately 60% of CD34+/CD38+ fractions contained SL-IC. RNA was extracted from each fraction and global gene expression was measured using Affymetrix microarrays. The mRNA expression between fractions containing SL-IC and fractions that did not contain SL-IC was compared and each mRNA probe was ranked according to correlation with SL-IC. Publicly available data for gene expression and overall survival of 160 AML was used to measure prognostic significance of the top 25 LSC probe sets that positively correlated with SL-IC17.



FIG. 1B Correlation of the 25 LSC Probe Signature with Overall Survival in CN-AML: Publicly available overall survival and expression data was analyzed17. In short, the expression of each probe set was scaled to 0 across the 160 AML patient bone marrow samples using the median value. The expression of the 25 probe sets was summed for each of the 160 bone marrow AML samples (expression score). This expression score was used to divide the 160 AML patient group into two equal sized populations of 80 patients based upon above (high expression score) or below (low expression score) median expression score of the 25 LSC probe set. The overall survival of the two groups was examined using a Kaplan-Meier plot and log-rank (Mantel-Cox) test. The 25 LSC probe set signature separated the AML patients into 2 populations with distinct outcomes (poor and good survival). The AML patients with a high expression score using the 25 LSC probe set signature had lower overall survival than the AML patients with low expression (p=0.0001; median survival of 236 days vs 999 days; hazard ratio of 2.641 with a 95% Cl of 1.763 to 3.957, computed using the Mantel-Haenszel method).



FIG. 2A Experimental Design: Three pooled cord blood samples were sorted into 3 subpopulations based upon CD34 and CD38 antibody staining and cells recovered for functional and gene expression analysis. Two cell fractions enriched for HSC, Lin-CD34+CD38− (HSC-1) and Lin-CD34+CD38lowCD36− (HSC-2), and one population enriched for progenitors, Lin-CD34+CD38+ (containing all multilineage and unilineage progenitors), were obtained. Whole CB from each pooled sample set was used as a mature cell fraction. To identify a set of genes associated with the HSC subsets, a Student's ANOVA (analysis of variance) test was performed. To reduce the incidence of false positives to <1%, Benjamini and Hochberg False Discovery Rate (FDR) was applied to the analysis. Tukey Post Hoc testing revealed that 19 differentially expressed probe sets that were over-expressed in HSC-1 compared to the other 3 groups, and 28 probe sets that were over-expressed in HSC-1 and HSC-2 compared to the other 2 groups. These probe sets were combined and duplicates removed to generate a 43 HSC probe set signature. Publicly available data for gene expression and overall survival of 160 AML was used to measure prognostic significance of this 43 HSC probe set signature17.



FIG. 2B Correlation of 43 HSC Probes Signature with Overall Survival in CN-AML: Same approach as described in FIG. 1B. The AML patients with high expression of the 43 HSC probe set signature in their bone marrow cells had lower overall survival than the AML patients with low expression (p,0.0001; median survival of 233 days vs 999 days; hazard ratio of 2.680 with a 95% Cl of 1.782 to 4.030, computed using the Mantel-Haenszel method).



FIG. 3 Example of AML Cell Sorting: Fifty three million low density peripheral blood cells from AML sample 8227 were stained with CD34 and CD38 antibodies and sorted with a BD FACSAria (Becton-Dickinson). Sorting gates were set wide to minimize contamination from other fractions. Fractionated cells were captured in 100% FCS and recovered by centrifugation. As a result, the AML patient sample was sorted into 4 subpopulations based upon CD34 and CD38 antibody staining and cells recovered for functional and gene expression analysis, including injection into the right femur of mice in the SL-IC xenotransplant assay.



FIG. 4 Example of Engraftment: Ten weeks post injection of 50,000 CD34+/CD38+ cells from AML sample 8227, the mouse was euthanized by cervical dislocation and hind leg bones removed and flushed with media to recover engrafted cells. (A) Percent human AML engraftment was assessed by flow cytometry for human CD45+ staining cells. (B) Myeloid cell marker positivity (CD33) was used to indicate that human cells are AML.



FIG. 5 Strategy of transcriptional profiling of functionally determined stem cell fractions. (A) Overview of experimental design. Cells were sorted on CD34/CD38, with representative sort gates shown for AML and cord blood. Functional validation of sorted fractions was performed in vivo and combined with gene expression profiling to generate stem cell related gene expression profiles. (B) The surface marker profiles of AML are variable. Shown are the CD34/CD38 marker profiles for 16 AML that were sorted into 4 populations and assayed for LSC.



FIG. 6 Correlation between the LSC-R and HSC-R. (A) GSEA plot showing the enrichment of the HSC-R gene signature (top) and common lineage-committed progenitor gene signature (bottom) in LSC vs non-LSC gene expression profile. (B) Heat map of the HSC-R GSEA plot from 2A (top panel) showing the core enriched HSC-R genes in the LSC expression profile (CE-HSC/LSC).



FIG. 7 The LSC-R and HSC-R gene signatures correlate with the disease outcome. 160 unsorted cytogenetically normal AML samples were divided into two populations of 80 AML by expression of the stem cell gene signatures. (A) Correlation of the LSC-R and HSC-R signatures and overall survival. The * line represent patients whose AML expressed the LSC-R (left panel) or HSC-R (right panel) signatures above the median while the ** line represent those who expressed the respective stem cell signature below the median. ‘HR’ is hazard ratio. (B) Event free survival of patients stratified by expression of the LSC-R and HSC-R, as in (A). (C) The correlation between the LSC-R signature and overall survival is not based upon a single or few genes. The y axis is the log-rank p-value of each combination of probes. The x axis is the number of probes included in the analysis, starting with the top ranked probe positively correlated with LSC followed by the addition of each next ranked probe in the LSC-R gene profile (as determined by Z-score in the LSC vs non-LSC t-test). Therefore the first point on the x axis represents the p-value of the correlation with overall survival of the top ranked LSC probe. The second point is the p-value of the combination of the top two ranked LSC-R probes. (D) An AML signature based upon phenotypic markers (CD34+/CD38− ‘stem cell’ vs CD34+/CD38+‘progenitor’) does not correlate with overall survival. The * line represent patients whose AML expressed the CD34+/CD38− gene list above the median while the ** line represent those who expressed the stem cell signature below the median.



FIG. 8 Multivariate correlation of LSC, HSC gene expression signatures and molecular risk status with overall survival in a cohort of 160 cytogenetically normal AML. Overall survival curves of 160 CN-AML divided by expression of the LSC-R (A) or HSC-R (B) signatures and molecular risk with multivariate analysis of prognostic factors below. Low molecular risk group (LMR) include NPM1mut/FLT3wt CN AML; high molecular risk (HMR) include NPM1wt or FLT3ITD positive CN AML.



FIG. 9 LSC from each AML engraft mice with similar kinetics, regardless of LSC marker profile. (A) Engraftment of AML #2, derived from LSC with different CD34/CD38 marker profiles, as detected by human CD45+CD33+ chimerism 7.5-11 weeks after injection of sorted cells. (B) Engraftment of AML #5, derived from LSC with different CD34/CD38 marker profiles, as detected by human CD45+CD33+ chimerism 8-10.5 weeks after injection of sorted cells.



FIG. 10 Representative AML sample—primary and post xenograft transplantation. (A) Differentiation marker profile for primary patient AML sample 5. (B) Sorting scheme for AML sample 5 into 4 populations based upon CD34 and CD38. (C) Both CD34+/CD38+ and CD34+/CD38− cells engrafted mice, as measured by human CD45. In each case, the differentiation marker profile is identical between chimaeric cells derived from either CD34+/CD38+ or CD34+/CD38− cells injected into mice.



FIG. 11 Properties of sorted cord blood fractions. (A) Two cell fractions enriched for HSC and one population enriched for progenitors were isolated by FACS-sorting. (B) Biological assessment of FACS-sorted cells by in vitro CFC assay with myeloid (white columns) and erythroid (black columns) colonies. (C) In vivo SRC repopulating assay. Column colour denotes cell type (black—erythroid cells, white—non-erythroid) in bone marrow of right femur (R—injected femur), left femur (L) and tibias (T).



FIG. 12 Validation of differential gene expression of 19 genes included in the HSC-R gene signature. qRT-PCR was performed on 3 populations used in the development of the HSC-R signature, including two stem cell enriched populations and one progenitor enriched population: CD34+CD38-lin− cells (HSC1), CD34+CD38loCD36-lin− (HSC2), and CD34+CD38+ (progenitor). Gene expression was normalized to that of GAPDH.



FIG. 13 Correlation between the LSC-R signature and HSC gene expression data. (A) GSEA plot showing the enrichment of the LSC-R gene signature in the HSC-R gene expression profile, comparing HSC and non-HSC. (B) Heat map of the GSEA plot showing the core enriched LSC genes in the HSC expression profile as described for (A). The populations are HSC(HSC1 and HSC2), lineage-committed progenitor (Prog) and lineage+ cells (Lin+).



FIG. 14 LSC and HSC gene expression signatures correlate with poor risk AML patients. GSEA plots showing the enrichment of (A) LSC-R FDR0.10 gene signature and (B) HSC-R FDR0.05 gene signature in 110 AML split into poor and good cytogenetic risk status. The leading edge genes are listed below. Twenty-one of the 32 leading edge HSC-R genes are enriched in LSC cell fractions and are included in the CE-HSC/LSC gene list (FIG. 2A).



FIG. 15 Correlation of LSC, HSC gene expression signatures and FLT3 status with overall survival in a cohort of 160 cytogenetically normal AML. Overall survival curves of 160 CN-AML divided by expression of the LSC-R (left panel) or HSC-R (right panel) signatures and FLT3ITD status. Multivariate analysis of prognostic factors is shown below.



FIG. 16 Schematic showing a computer system.



FIG. 17 Survival graph for expression levels of 2 LSC genes CLN5 AND NF1 showing they are significantly correlated with overall survival in the 160 AML cohort (214252_s_at and 212676_at respectively). The p value is 0.0293 and the hazard ratio is 1.53.





DETAILED DESCRIPTION OF THE DISCLOSURE
I. Definitions

As used herein, “Leukemia stem cell (LSC) signature genes” or “leukemic stem cell (LSC) signature genes includes genes listed in Tables 2, 6, and/or 12 and genes detectable by the probesets listed in Tables 1, 5 and/or 18 which are preferentially expressed in leukemic stem cells functionally defined.


As used herein, “LSC signature probe sets” as used herein refers to probesets listed for example in Tables 1, 5 and/or 18, each probeset comprising a set of probes, for example 11 probes that can be used to detect LSC signature genes.


As used herein, “Hematopoietic stem cell (HSC) signature genes” includes genes listed in Tables 4 and/or 14 and genes detectable by the probesets listed in Tables 3 and/or 17, which are preferentially expressed in hematopoietic stem cells functionally defined. Also included is the subset of HSC signature genes included in Table 20.


As used herein, “HSC signature probe sets” as used herein refers to the probesets listed for example in Tables 3 and/or 17, each probeset comprising a set of probes, for example 11 probes that can be used to detect HSC signature genes.


As used herein “core enriched HSC/LSC(CE-HSC/LSC) signature genes” refers to a subset of 44 HSC signature genes that are more highly expressed in LSC containing fractions (compared to non-LSC leukemic cells) and which are listed in Table 13 or Table 19, and which can for example detected using the corresponding probes and probesets listed for example in Tables 1, 3, 5, 17 and/or 18. These forty-four leading edge genes drive the GSEA enrichment of the HSC-R signature in the LSC gene expression data and represent HSC genes that are also differentially expressed in LSC.


As used herein “expression profile” refers to expression levels for a set of genes selected from LSC signature genes and/or HSC signature genes including for example CE-HSC/LSC signature genes. For example, an expression profile can comprise the quantitated relative expression levels of at least 2 or more genes listed in Table 2, 4 6, 12, 13, 14, 19 and/or 20 and/or genes detected by probes and probesets listed in Tables 1, 3, 5, 17 and/or 18.


A “subject expression profile” refers to the expression levels in (or corresponding to) a sample obtained from a subject. The gene expression levels can for example be used to prognose a clinical outcome based on similarity to a reference expression profile known to be associated with a particular outcome or used to calculate a subject risk score for comparison to a selected threshold.


The term “subject risk score” as used herein refers to a sum of the expression values of a set of genes selected from LSC signature genes and/or HSC signature genes (e.g. for example CE-HSC/LSC signature genes), which can be used to classify a subject. A subject risk score can be calculated for example by scaling (e.g. normalizing) each gene expression value detected for example with a probe or probeset, summing the expression values to obtain a risk score which can be compared to a reference value or standard (e.g. a threshold derived from subjects with a known outcome), where a subject risk score above the threshold predicts poor prognosis and below the threshold predicts good prognosis.


A “reference expression profile” or “reference profile” as used herein refers to the expression signature of a setset of genes (e.g. at least 2 genes LSC or HSC signature genes), associated with a clinical outcome in a patient having a hematological cancer such as a leukemia patient. The reference expression profile is identified using two or more reference patient expression profiles, wherein the expression profile is similar between reference patients with a similar outcome thereby defining an outcome class and is different to other reference expression profiles with a different outcome class. The reference expression profile is for example, a reference profile or reference signature of the expression of 2 or more, 3 or more, 4 or more or 5 or more genes listed in Table 2, 4, 6, 12, 13, 14, 19 and/or 20 and/or genes detectable with probes listed in Tables 1, 3, 5, 17 and/or 18 to which the expression levels of the corresponding genes in a patient sample are compared in methods for determining or predicting clinical outcome, e.g. good prognosis or poor prognosis. Similarly, a reference expression profile associated with good prognosis can be referred to a good prognosis reference profile and a reference expression profile associated with a poor prognosis can be referred to as a poor prognosis reference profile.


The term “classifying” as used herein refers to assigning, to a class or kind, an unclassified item. A “class” or “group” then being a grouping of items, based on one or more characteristics, attributes, properties, qualities, effects, parameters, etc., which they have in common, for the purpose of classifying them according to an established system or scheme. For example, subjects having increased expression of a set of genes selected from genes listed in Table 2, 4, 6, 12, 13, 14, 19 and/or 20 are predicted to have poor prognosis. The subject expression profile can for example be used to calculate a risk score to classify the subject, for example subjects having a summed expression value (e.g. subject risk score) above a selected threshold which can for example be the median score of a population of subjects having the same hematological cancer as the subject, can be classified as having a poor prognosis.


As used herein “prognosis” refers to an indication of the likelihood of a particular clinical outcome e.g. the resulting course of disease, for example, an indication of likelihood of survival or death due to disease within a fixed time period, and includes a “good prognosis” and a “poor prognosis”.


As used herein “outcome” or “clinical outcome” refers to the resulting course of disease and can be characterized for example by likelihood of survival or death due to disease within a fixed time period. For example a good clinical outcome includes cure, prevention of metastasis and/or survival for a fixed period of time, and a poor clinical outcome includes disease progression and/or death within a fixed period of time.


As used herein, “good prognosis” indicates that the subject is expected to survive within a set time period, for example five years of initial diagnosis of a hematological cancer such as leukemia. The set period of time varies with the disease type e.g. leukemia type and/or subtype. For example for AML, a good prognosis refers to a greater than 30%, greater than 40%, or greater than 50% chance of surviving more than 1 year, more than 2 years, more than 3 years, more than 4 years or more than 5 years after initial diagnosis. As another example, a good prognosis is used to mean an increased likelihood of survival within a predetermined time compared to a median outcome, for example the median outcome of a particular AML subtype.


As used herein, “poor prognosis” indicates that the subject is expected to die due to disease within a set time period, for example five years of initial diagnosis of a hematological cancer such as leukemia. The set period of time varies with the particular disease e.g. leukemia type and/or subtype. For example for AML, a poor prognosis refers to a less than 50%, less than 40%, or less than 30% chance of surviving greater than 1 year, greater than 2 years, greater than 3 years, greater than 4 years or greater than 5 years after initial diagnosis. As another example, a poor prognosis is used to mean a decreased likelihood of survival within a predetermined time compared for example to a median outcome, for example the median outcome of the particular hematological cancer. For example, the 5 year relative survival rates overall reported form 1999 to 2005 for ALL is 66.3% (90.9% in children under 5); for CLL is 78.8%, for AML 23.4% overall (60.2% in children under 15) and for CML 53.3% (http://www.leukemia-lymphoma.org/all_page?item_id=9346#_survival).


The term a “decreased likelihood of survival”, as used herein means an increased risk of shorter survival relative to for example the median outcome for the particular cancer. For example, increased expression of two or more genes in the gene signatures described herein can be prognostic of decreased likelihood of survival. The increased risk for example may be relative or absolute and may be expressed qualitatively or quantitatively. Examples of expressions of risk include but are not limited to, odds, probability, odds ratio, p-values, attributable risk, relative frequency, positive predictive value, negative predictive value, and relative risk.


The term an “increased likelihood of survival”, as used herein means an increased likelihood or risk of longer survival relative to a subject without the decreased expression levels. Examples of expressions of risk include but are not limited to, odds, probability, odds ratio, p-values, attributable risk, relative frequency, positive predictive value, negative predictive value, and relative risk.


As used herein “signature genes” refers to set of genes disclosed herein predicting clinical outcome in a hematological cancer subject and includes without limitation LSC-derived signature genes and/or HSC-derived signature genes as well as CE-HSC/LSC signature genes. For example, LSC signature genes includes the genes listed in Table 2, 6, and/or 12; HSC signature genes includes the genes listed in Table 4, 14 and/or 20 and CE-HSC/LSC signature genes includes genes listed in Tables 13 and 19. The gene sequences identified by accession number for example in Tables 2, 4, 6, 12, 13, 14 and 19 are herein incorporated by reference.


The term “expression level” of a gene as used herein refers to the measurable quantity of gene product produced by the gene in a sample of a patient wherein the gene product can be a transcriptional product or a translated transcriptional product. Accordingly the expression level can pertain to a nucleic acid gene product such as RNA or cDNA or a polypeptide. The expression level is derived from a subject/patient sample and/or a control sample, and can for example be detected de novo or correspond to a previous determination. The expression level can be determined or measured for example, using microarray methods, PCR methods, and/or antibody based methods, as is known to a person of skill in the art.


The term “determining an expression level” or “expression level is determined” as used in reference to a gene or (set of genes) means the application of an agent and/or method to a sample, for example a sample from the subject and/or a control sample, for ascertaining quantitatively, semi-quantitatively or qualitatively the amount of a gene expression product, for example the amount of polypeptide or mRNA. For example, a level of a gene expression can be determined by a number of methods including for example arrays and other hybridization based methods and/or PCR protocols where a probe or primer or primer set is used to ascertain the amount of nucleic acid of the gene. For example, an expression level of a gene can be determined using a probeset or one or more probes of the probeset, described herein for a particular gene. In addition more than one probeset where more than one exists, can be used to determine the expression level of the gene. Other examples include Nanostring® technology, serial analysis of gene expression (SAGE), RNA sequencing, RNase protection assays, and Northern Blot. The polypeptide level can be determined for example by immunoassay for example Western blot, flow cytometry, immunohistochemistry, ELISA, immunoprecipation and the like, where a gene or gene signature detection agent such as an antibody for example, a labeled antibody specifically binds the gene polypeptide product and permits for example relative or absolute ascertaining of the amount of polypeptide.


The term “hematological cancer” as used herein refers to cancers that affect blood and bone marrow, and include without limitation leukemia, lymphoma and multiple myeloma.


The term “CSC hematological cancer” as used herein refers to cancers that are sustained by a small population of stem-like, tumor-initiating cells


The term “leukemia” as used herein means any disease involving the progressive proliferation of abnormal leukocytes found in hemopoietic tissues, other organs and usually in the blood in increased numbers. For example, leukemia includes acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML) including cytogenetically normal and abnormal subtypes.


The term “lymphoma” as used herein means any disease involving the progressive proliferation of abnormal lymphoid cells. For example, lymphoma includes mantle cell lymphoma, Non-Hodgkin's lymphoma, and Hodgkin's lymphoma. Non-Hodgkin's lymphoma would include indolent and aggressive Non-Hodgkin's lymphoma. Aggressive Non-Hodgkin's lymphoma would include intermediate and high grade lymphoma. Indolent Non-Hodgkin's lymphoma would include low grade lymphomas.


The term “myeloma” and/or “multiple myeloma” as used herein means any tumor or cancer composed of cells derived from the hematopoietic tissues of the bone marrow. Multiple myeloma is also knows as MM and/or plasma cell myeloma.


The term “cytogenetically normal AML” or “CN-AML” as used herein means AML or an AML cell that is characterized by normal chromosome number and structure.


The term “FLT3ITD” as used herein refers to a Fms-like tyrosine kinase 3 (FLT3) molecule (e.g. gene or protein) that comprises an internal tandem duplication (ITD). FLT3 is a receptor tyrosine kinase expressed in primitive hematopoietic cells that has been implicated in the regulation of HSC. Mutation of FLT3 is a strong prognostic indicator in CN-AML associated with poor outcome.


The term “NPM1” as used herein, refers to Nucleophosmin, including for example the sequences identified in entrez gene id 4869, herein incorporated by reference.


As used herein “sample” refers to any patient sample, including but not limited to a fluid, cell or tissue sample that comprises cancer cells such as leukemia cells including blasts, which can be assayed for gene expression levels, particularly genes differentially expressed in stem cell enriched populations or non-stem cell enriched populations, either leukemic or normal. The sample includes for example a blood sample, a fractionated blood sample, a bone marrow sample, a biopsy, a frozen tissue sample, a fresh tissue specimen, a cell sample, and/or a paraffin embedded section, material from which RNA can be extracted in sufficient quantities and with adequate quality to permit measurement of relative mRNA levels, or material from which polypeptides can be extracted in sufficient quantities and with adequate quality to permit measurement of relative polypeptide levels.


The term “sequence identity” as used herein refers to the percentage of sequence identity between two or more polypeptide sequences or two or more nucleic acid sequences that have identity or a percent identity for example about 70% identity, 80% identity, 90% identity, 95% identity, 98% identity, 99% identity or higher identity or a specified region. To determine the percent identity of two or more amino acid sequences or of two or more nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino acid or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=number of identical overlapping positions/total number of positions.times.100%). In one embodiment, the two sequences are the same length. The determination of percent identity between two sequences can also be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, 1990, Proc. Natl. Acad. Sci. U.S.A. 87:2264-2268, modified as in Karlin and Altschul, 1993, Proc. Natl. Acad. Sci. U.S.A. 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al., 1990, J. Mol. Biol. 215:403. BLAST nucleotide searches can be performed with the NBLAST nucleotide program parameters set, e.g., for score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the present application. BLAST protein searches can be performed with the XBLAST program parameters set, e.g., to score-50, word_length=3 to obtain amino acid sequences homologous to a protein molecule of the present invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., 1997, Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-BLAST can be used to perform an iterated search which detects distant relationships between molecules (Id.). When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., of XBLAST and NBLAST) can be used (see, e.g., the NCBI website). The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted.


The term “subject” also referred to as “patient” as used herein refers to any member of the animal kingdom, preferably a human being.


The term “control” as used herein refers to a sample and/or an expression level or numerical value and/or range (e.g. control range) for a LSC or HSC signature gene or group of LSC or HSC signature genes, including for example CE-HSC/LSC signature genes, corresponding to their expression level in such a sample from a subject or a population of subjects (e.g. control subjects) who are known as not having or having a hematological cancer and a particular outcome. In another example, a level of expression in a sample from a subject is compared to a level of expression in a control, wherein the control comprises a control sample or a numerical value derived from a sample, optionally the same sample type as the sample (e.g. both the sample and the control are white blood cell containing fractions), from a subject known as not having or having hematological cancer and a particular outcome. Where the control is a numerical value or range, the numerical value or range is a predetermined value or range that corresponds to a level of the expression or range of levels of the genes in a group of subjects known as having a hematological cancer and outcome (e.g. threshold or cutoff level; or control range).


The term “non-cancer control” as used herein refers to a sample and/or expression level or numerical value corresponding to the expression level in a sample from a subject or a population of subjects (e.g. non-cancer control subjects) who are known as not having a hematological cancer. Similarly a “cancer” as used herein refers to a sample and/or expression level or numerical value corresponding to the expression level in a sample from a subject or a population of subjects (e.g. cancer control subjects) who are known as having a hematological cancer and a particular outcome, e.g. the same hematological cancer as the subject sample being tested e.g. both leukemias.


The term “difference in the level” as used herein when referring to a subject gene expression level in comparison to a control or previous sample refers to a measurable difference in the level or quantity of a LSC or HSC signature gene expression level or set of gene expression levels, compared to the control or previous sample that is of sufficient magnitude to indicate the subject is in a different class from the control and/or previous sample, for example a significant difference or a statistically significant difference. A difference in the level can for example be compared by calculating a subject risk score and comparing to a threshold that is for example statistically associated with a particular prognosis. A difference in a gene expression level can also be detected if a ratio of the level in a test sample as compared with a control (or previous sample) is greater than 1 or less than 1. For example, a ratio of greater than 1.5, 1.7, 2, 3, 3, 5, 10, 12, 15, 20 or more or a ratio less than 0.5, 0.25, 0.1, 0.05 or more


The term “measuring” or “measurement” as used herein refers to assessing the presence, absence, quantity or amount (which can be an effective amount) of either a given substance within a clinical or subject-derived sample, including the derivation of qualitative or quantitative concentration levels of such substances, or otherwise evaluating the values or categorization of a subject's clinical parameters.


The term “set” as used herein in the context of “set of genes” means one or more, optionally 2 or more, 3 or more, 4 or more or 5 or more genes. The set can for example include genes listed in Tables 2, 4 6, 12, 13, 14, 19, and/or 20 and/or genes detected by probes listed in Tables 1, 3, 5, 17 and/or 18 or a subset thereof including any number between for example 1 and 121 genes.


The term “threshold” as used herein refers to a predetermined numerical value or range that corresponds to a level of gene expression or summed levels of gene expression level or range at which a subject is more likely to have a particular clinical outcome compared to a subject with a level of gene expression or summed level of gene expression below the threshold. The threshold can be selected according to a desired level of accuracy or specificity, for example the threshold can be a median level in a population, for example subjects with AML, or an average level in a population of subjects with known outcome, e.g. poor prognosis. The threshold or threshold can correspond to an average of the highest 50%, 40%, 30%, 20% or 10% expression levels in subjects with poor outcome.


The term “kit control” as used herein means a suitable assay control useful when determining an expression level of a LSC or HSC signature gene or set of genes. For kits for detecting RNA levels for example by hybridization, the kit control can comprise an oligonucleotide control, useful for example for detecting an internal control such as GAPDH for standardizing the amount of RNA in the sample and determining relative biomarker transcript levels. The kit can control can also include RNA from a cell line which can be used as a ‘baseline’ quality control in an assay, such as an array or PCR based method.


The term “hybridize” as used herein refers to the sequence-specific non-covalent binding interaction with a complementary nucleic acid. Appropriate stringency conditions which promote hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6. For example, 6.0× sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0×SSC at 50° C. may be employed. With respect to an array, appropriate stringency conditions can be found and have been described for commercial microarrays, such as those manufactured and/or distributed by Agilent Inc, Affymetrix Inc, Roche-Nimblegen Inc. and other entities.


The term “microarray” or “array” as used herein refers to an ordered set of probes fixed to a solid surface that permits analysis such as gene analysis of a set of genes. A DNA microarray refers to an ordered set of DNA fragments fixed to the solid surface. For example, the microarray can be a gene chip. Methods of detecting gene expression and determining gene expression levels using arrays are well known in the art. Such methods are optionally automated.


The term “isolated nucleic acid sequence” as used herein refers to a nucleic acid substantially free of cellular material or culture medium when produced by recombinant DNA techniques, or chemical precursors, or other chemicals when chemically synthesized.


The term “polynucleotide”, “nucleic acid” and/or “oligonucleotide” as used herein refers to a sequence of nucleotide or nucleoside monomers consisting of naturally occurring bases, sugars, and intersugar (backbone) linkages, and is intended to include DNA and RNA which can be either double stranded or single stranded, represent the sense or antisense strand.


The term “probe” as used herein refers to a nucleic acid molecule that comprises a sequence of nucleotides that will hybridize specifically to a target nucleic acid sequence e.g. a coding sequence of a gene listed herein including in Table 2, 4, 6, 12 and/or 14. For example the probe comprises at least 10 or more, 15 or more, 20 or more bases or nucleotides that are complementary and hybridize contiguous bases and/or nucleotides in the target nucleic acid sequence. The length of probe depends on the hybridization conditions and the sequences of the probe and nucleic acid target sequence and can for example be 10-20, 21-70, 71-100, 101-500 or more bases or nucleotides in length. For example, the probe can comprise a sequence provided herein, including those listed in any one of Tables 1, 3, 5, 17 or 18 (e.g. comprise any one of SEQ ID NO:s 1-2533). The probes can optionally be fixed to a solid support such as an array chip or a DNA microarray chip.


A person skilled in the art would recognize that “all or part of” of a particular probe or primer can be used as long as the portion is sufficient for example in the case a probe, to specifically hybridize to the intended target and in the case of a primer, sufficient to prime amplification of the intended template.


The term “probe set” as used herein refers to a set of probes that hybridize with the mRNA of a specific gene and identified by a probe set ID number, such as 209993_at, 206385_at and others as listed in Table 1, 3 5, 17 or 18. Each probe set comprises one or more probes, for example 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more probes.


The term “primer” as used herein refers to a nucleic acid sequence, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand is induced (e.g. in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon factors, including temperature, sequences of the primer and the methods used. A primer typically contains 15-25 or more nucleotides or any number in between, although it can contain less. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art.


The term “antibody” as used herein is intended to include monoclonal antibodies, polyclonal antibodies, and chimeric antibodies. The antibody may be from recombinant sources and/or produced in transgenic or non-transgenic animals. The term “antibody fragment” as used herein is intended to include Fab, Fab′, F(ab′)2, scFv, dsFv, ds-scFv, dimers, minibodies, diabodies, and multimers thereof and bispecific antibody fragments. Antibodies can be fragmented using conventional techniques. For example, F(ab′)2 fragments can be generated by treating the antibody with pepsin. The resulting F(ab′)2 fragment can be treated to reduce disulfide bridges to produce Fab′ fragments. Papain digestion can lead to the formation of Fab fragments. Fab, Fab′ and F(ab′)2, scFv, dsFv, ds-scFv, dimers, minibodies, diabodies, bispecific antibody fragments and other fragments can also be synthesized by recombinant techniques.


To produce polyclonal antibodies, animals can be injected once or repeatedly with an antigen representing a peptide fragment of the protein product corresponding to the nucleotide sequence of interest, alone or in conjunction with other proteins, potentially in combination with adjuvants designed to increase the immune response of the animal to this antigen or antigens in general. Polyclonal antibodies can then be harvested after variable lengths of time from the animal and subsequently utilized with or without additional purification. Such techniques are well known in the art.


To produce human monoclonal antibodies, antibody producing cells (lymphocytes) can be harvested from a human having cancer and fused with myeloma cells by standard somatic cell fusion procedures thus immortalizing these cells and yielding hybridoma cells. Such techniques are well known in the art, (e.g. the hybridoma technique originally developed by Kohler and Milstein (Nature 256:495-497 (1975)) as well as other techniques such as the human B-cell hybridoma technique (Kozbor et al., Immunol. Today 4:72 (1983)), the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., Methods Enzymol, 121:140-67 (1986)), and screening of combinatorial antibody libraries (Huse et al., Science 246:1275 (1989)). Hybridoma cells can be screened immunochemically for production of antibodies specifically reactive with cancer cells and the monoclonal antibodies can be isolated.


Specific antibodies, or antibody fragments, reactive against particular target polypeptide gene product antigens (e.g. Table 2, 4, 6, or 14 polypeptide), can also be generated by screening expression libraries encoding immunoglobulin genes, or portions thereof, expressed in bacteria with cell surface components. For example, complete Fab fragments, VH regions and FV regions can be expressed in bacteria using phage expression libraries (See for example Ward et al., Nature 341:544-546 (1989); Huse et al., Science 246:1275-1281 (1989); and McCafferty et al., Nature 348:552-554 (1990)).


As used herein “a user interface device” or “user interfaced” refers to a hardware component or system of components that allows an individual to interact with a computer e.g. input data, or other electronic information system, and includes without limitation command line interfaces and graphical user interfaces.


The term “similar” in the context of a gene expression level as used herein refers to a subject gene expression level that falls within the range of levels associated with a particular class e.g. prognosis, for example associated with a particular disease outcome, such as likelihood of survival.


The term “most similar” in the context of a reference expression profile refers to a reference expression profile that shows the greatest number of identities and/or degree of changes with the subject expression profile.


The phrase “therapy”, treatment”, or “treatment regimen” as used herein, refers to an approach aimed at obtaining beneficial or desired results, including clinical results and includes medical procedures and applications including for example chemotherapy, pharmaceutical interventions, surgery, radiotherapy, bone marrow transplant, stem cell transplant and naturopathic interventions as well as test treatments for treating hematological cancers. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” or “treatment regimen” can also mean prolonging survival as compared to expected survival if not receiving treatment.


Moreover, a “treatment” or “prevention” regime of a subject with a therapeutically effective amount of a compound of the present disclosure may consist of a single administration, or alternatively comprise a series of applications.


A “suitable treatment” as used herein refers to a treatment suitable according to the determined prognosis. For example, a suitable treatment for a subject with a poor prognosis can include a more aggressive treatment, for example, in the case of AML, this can include a bone marrow transplant.


As used herein, “screening a new drug candidate” refers to evaluating the ability of a new drug or therapeutic equivalent to target CSCs for example LSCs in a hematological cancer.


As used herein, the term “molecular risk status” refers to the presence or absence of molecular risk factors associated with prognosis. For example, a subject in a “high molecular risk (HMR) group” includes a subject having NPM1wt/FLT3wt or FLT3ITD positive CN AML which is associated with poor prognosis; and a subject in a “low molecular risk (LMR) group” includes a subject with NPM1mut/FLT3wt CN AML.


In understanding the scope of the present disclosure, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms of degree should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.


The recitation of numerical ranges by endpoints herein includes all numbers and fractions subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.90, 4, and 5). It is also to be understood that all numbers and fractions thereof are presumed to be modified by the term “about.” Further, it is to be understood that “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. The term “about” means plus or minus 0.1 to 50%, 5-50%, or 10-40%, preferably 10-20%, more preferably 10% or 15%, of the number to which reference is being made.


II. Methods and Computer Product

It is demonstrated herein that a LSC gene expression profile comprising for example 25 probe sets (Table 1, SEQ ID NO:1-280) corresponding to 23 genes (Table 2), 48 probe sets (Table 5; SEQ ID NO:1-280 and 759-1011) corresponding to 42 genes (Table 6) as well as smaller and larger probe sets (see FIG. 7c and Table 16) were able to distinguish patients with a poor prognosis from patients with a good prognosis. As an example, the top twenty-five probe sets associated with LSC within a FDR of 0.05 were chosen and assessed for prognostic ability as shown in Example 1. As another example, the top 48 probe sets associated with LSC within a FDR of 0.05 were chosen and assessed for prognostic ability as shown in Example 6. Other probes set groups comprising other numbers of probes sets are also predicted and herein shown to be prognostic (see for example FIG. 7c and Table 16).


It is also demonstrated herein that a HSC gene expression profile comprising 43 probe sets (Table 3; SEQ ID NO:281-758) corresponding to 39 genes (Table 4) were able to distinguish AML patients with a poor prognosis from patients with a good prognosis. It is also demonstrated herein that an HSC gene expression profile comprising 147 probesets (Table 3 and 17) and 121 genes (Table 14) could also distinguish AML patients with a poor prognosis from patients with a good prognosis. The forty-three HSC signature probesets were identified using an ANOVA test (FDR 0.01) and the 147 signature probesets were identified using an one-way ANOVA analysis using Tukey HSD post-hoc test and Benjamini-Hochberg multiple testing correction (FDR 0.05). Other gene marker sets and/or probes sets comprising other numbers of genes or probe sets are also predicted to be prognostic.


An aspect of the disclosure includes a method for determining prognosis of a subject having a hematological cancer, comprising:

    • a) determining a gene expression level of each of a set of genes, selected from leukemia stem cell (LSC) signature genes, a hematopoietic stem cell (HSC) signature genes and/or CE-HSC/LSC signature genes, in a sample taken from the subject;
    • b) correlating the gene expression levels of the set of genes with a prognosis; and
    • c) providing the prognosis associated with the gene expression levels.


In an embodiment, increased expression of the set of genes compared to a control (e.g. a subject or subjects with good prognosis) is indicative of a poor prognosis. In an embodiment, decreased expression compared to a control, in indicative of a good prognosis. In an embodiment, the gene expression levels is correlated with a prognosis by comparing to one or more reference profiles associated with a prognosis, wherein the prognosis associated with the reference expression profile most similar to the expression levels is the provided prognosis.


In an embodiment, the set of genes includes 2 or more genes described herein (e.g. listed in the Tables and/or detectable by a probe or probeset described herein).


An embodiment, includes a method for determining prognosis in a subject having a hematological cancer comprising:

    • a) determining an expression level for each gene of set a set of genes selected from leukemia stem cell (LSC) signature genes listed in Tables 2, 6 and/or 12, hematopoietic stem cell (HSC) signature genes listed in Tables 4, and/or 14, and/or CE-HSC/LSC signature genes listed in Table 19, to obtain a subject expression profile of a sample obtained from the subject; and
    • b) classifying the subject as having a good prognosis or a poor prognosis based on the subject expression profile;


      wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


As further described below, the subject can be classified by comparing the subject expression profile to one or more reference profiles associated with a prognosis and identifying the reference profile most similar to the subject expression profile thereby classifying the subject. In an embodiment, the subject is classifying by calculating a subject risk score and comparing the subject risk score to a threshold, wherein a subject risk score greater than the threshold classifies the subject as having a poor prognosis and a subject risk score less than the threshold classifies the subject as having a good prognosis. In an embodiment, the threshold is the median score associated with a population of subjects.


In an embodiment, the set of genes comprises at least 2 genes. As demonstrated in FIG. 17 for example, a LSC gene signature comprising 2 genes can differentiate AML subjects that have a poor survival from subjects that have a good survival is statistically significant.


Accordingly, an embodiment includes a method for determining prognosis in a subject having a hematological cancer comprising:


a) determining a gene expression level for each gene of a set of genes selected from Tables 2, 6, 12, 4, 14, 13 and/or 19 (e.g. LSC signature genes listed in Tables 2, 6, and/or 12 and/or hematopoietic stem cell (HSC) signature genes listed in Tables 4 and/or 14, and/or CE-HSC/LSC signature genes listed in Tables 13 or 19), to obtain a subject expression profile of a sample from the subject, wherein the set of genes comprises at least 2 genes; and


b) classifying the subject as having a good prognosis or a poor prognosis based on the subject expression profile;


wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis, compared optionally to a median outcome for the hematological cancer.


A further embodiment includes a method for determining prognosis in a subject having a hematological cancer comprising:

    • a) determining a gene expression level of each of a set of genes selected from LSC signature genes listed in Tables 2, 6, and/or 12, to obtain a subject expression profile in a sample from the subject, wherein the set of genes comprises at least 2 genes; and
    • b) classifying the subject as having a good prognosis or a poor prognosis based on the subject expression profile;


      wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


Table 12 comprises a list of the top 80 most predictive probesets and the genes detected by the probesets. Table 2 comprises 25 probesets that detect 23 genes and Table 6 comprises 48 probesets that detect 42 genes. The genes listed in Table 2 and 6 are also found in Table 12 and the genes listed in Table 2 are also found in Table 6. In an embodiment, the set of genes is selected from Table 6. In a further embodiment, the set of genes comprises the genes listed in Table 6.


Yet another embodiment includes a method for determining prognosis in a subject having a hematological cancer comprising:

    • a) determining a gene expression level of each gene of a set of genes selected from HSC signature genes listed in Tables 4 and/or 14, to obtain a subject expression profile in a sample from the subject, wherein the set of genes comprises at least 2 genes; and
    • b) classifying the subject as having a good prognosis or a poor prognosis based on the expression profile;


      wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


Table 4 comprises 48 probesets, which detect 39 genes and Table 14 comprises 149 probesets that detect 121 genes. Table 20 includes a subset of HSC signature genes that were analyzed by qRT-PCR analysis. The genes listed in Table 20 are also found in Table 14. In an embodiment, the set of genes is selected from Table 20.


A further embodiment, includes a method for determining prognosis in a subject having a hematological cancer comprising:

    • a) determining a gene expression level of each gene of a set of genes selected from CE-HSC/LSC signature genes listed in Table 19, to obtain a subject expression profile in a sample from the subject, wherein the set of genes comprises at least 2 genes; and
    • b) classifying the subject as having a good prognosis or a poor prognosis based on the expression profile;


      wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis and poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


Table 19 comprises a subset of HSC signature genes that are also expressed in LSC. Table 13 comprises a subset of the Table 19 genes. In an embodiment, the set of genes is selected from Table 13.


As mentioned, signatures comprising 2 genes can differentiate AML patients with poor and good survival. In an embodiment, at least one of the set of genes is ceroid-lipofuscinosis, neuronal 5 (CLN5) or neurofibromin 1 (NF1) In an embodiment, CLN5 is detected by one or mores of probe set ID: 214252_s_at. In an embodiment, NF1 is detected by one or more probes of probe set ID 212676_at.


Two genes overlap (RBPMS and FRMD4B) between the HSC and LSC signatures, or between the LSC and CE-HSC/LSC lists. In an embodiment, the set of genes comprises RBPMS and/or FRMD4B.



FIGS. 14
a and 14b, shown an analysis of enrichment of LSC (14A) or HSC (14B) signatures in the expression data for poor cytogenetic risk AML vs good cytogenetic risk AML. FIGS. 14a and 14b show that the stem cell signatures correlate with the gene expression in poor risk AML vs good risk. In an embodiment, the set of genes comprises 2 or more of the genes listed in FIG. 14a and/or FIG. 14b.



FIG. 14 also lists ‘leading edge’ genes. In an embodiment, the set of genes comprises 2 or more of the leading edge genes in FIG. 14a and/or 14b. Also of the HSC leading edge genes, 21 overlap with the 44 CE-HSC/LSC signature gene list. Accordingly in an embodiment, the set of genes comprises 2 or more of the 21 overlap genes. In an embodiment, the set comprises at least 5, at least 10, at least 15, at least 20 or 21 of the 21 overlap genes.


Determination of prognosis, e.g. good prognosis or poor prognosis, involves in an embodiment, classifying a subject with a hematological cancer such as leukemia, based on the similarity of a subject's gene expression profile to a reference expression profile associated with a particular outcome. Accordingly, in an embodiment, the disclosure provides a method for classifying a subject having a hematological cancer as having a good prognosis or a poor prognosis, comprising:

    • a) calculating a first measure of similarity between a subject expression profile and a good prognosis reference profile and a second measure of similarity between the subject expression profile and a poor prognosis reference profile; the subject expression profile comprising the expression levels of a first set of genes in a sample from the subject; the good prognosis reference profile comprising, for each gene in the first set of genes, the average expression level of the gene in a set of good prognosis subjects; and the poor prognosis reference profile comprising, for each gene in the first set of genes, the average expression level of the gene in a set of poor prognosis subjects, the first set of genes comprising at least 2, or at least 5 of the genes listed in Table 2, 4 6, 12, 13, 14, 19, and/or 20 and/or genes detected by probes listed in Tables 1, 3, 5, 17 and/or 18;
    • b) classifying the subject as good prognosis if the subject expression profile has a higher similarity to the good prognosis reference profile than to the poor prognosis reference profile, or classifying the subject as poor prognosis if the subject expression profile has a higher similarity to the poor prognosis reference profile than to the good prognosis reference profile.


A number of algorithms can be used to assess similarity. For example, a Naïve Bayes probabilistic model is trained on data. In order to stratify the class of a new patient (prognosis of survival/non-survival) the Naïve Bayes classifier combines this probabilistic model with a decision rule: assign the sample to the class (survival/non-survival)) that is most probable; this is known as the maximum a posteriori or MAP decision rule.


The similarity can also be assessed by determining if the similarity between a subject expression profile and a reference profile is above or below a predetermined threshold. For example, the expression profile can be summed to provide a subject risk score. If the score is above a selected or predetermined threshold, the subject has a poor prognosis and if below the threshold the subject has a good prognosis.


In an embodiment, the subject expression profile is used to calculate a subject risk score, wherein the subject is classified as having a good prognosis if the subject risk score is low and as having a poor prognosis if the subject risk score is high. For example, the gene expression of 5 or more genes of a LSC and/or HSC signature genes could be determined by microarray analysis wherein the microarray comprises probes and/or probe sets directed to for example the 5 or more of the LSC and/or HSC signature genes The microarray results could be scaled to a standard expression range, (e.g. for example as determined using the 160 AML patients described in the Examples). An expression score is calculated from the summed expression levels detected using the probe or probe sets (e.g. one or more of the probes or probe sets listed in Tables 1, 3, 5, 17 and/or 18, or one or more probe sets selected from SEQ ID NOs:1-2533 and compared to a reference score or threshold (e.g. such as the median expression score of the 160 AML samples form the initial dataset) to determine if the subject falls within the poor prognosis or the good prognosis category based on the expression profile. In an embodiment, an expression profile is used to calculate a subject risk score, wherein the subject is classified as having a good prognosis if the subject risk score is below for example, a median risk score or threshold and as having a poor prognosis if for example the subject risk score is above the median or threshold. In another embodiment, an expression score or subject risk score is calculated by: a) calculating the log 2 expression value of the LSC or HSC gene signature marker set for the sample; b) centering the log 2 expression value of step b) to a zero mean; c) taking the sum of the log 2 expression values.


The predetermined period can vary depending on the likelihood of a particular outcome. In another embodiment, the predetermined period is 1 year, 2 years, 3 years, 4 years or 5 years.


The reference profiles and thresholds can be pre-generated, for example the reference expression profiles can be comprised in a database or generated de novo.


In an embodiment, the methods are used to measure treatment response. For example, the group used to test the prognostic power of the gene expression signature profiles described herein were therapeutically treated. The expression profiles were obtained prior to treatment and outcome was determined after treatment. Accordingly, the methods can be used to predict treatment response wherein a subject expression profile associated with poor prognosis is indicative of an increased likelihood of a poor or no treatment response and a subject expression profile associated with a good prognosis is indicative of an increased likelihood of a treatment response compared to for example the median response for example, the median response for the leukemia. Therefore, in an aspect, the disclosure includes a method for monitoring a response to a cancer treatment in a subject having a hematological cancer, comprising:

    • a. collecting a first sample from the subject before the subject has received the cancer treatment;
    • b. collecting a subsequent sample from the subject after the subject has received the cancer treatment;
    • c. determining the gene expression levels of a set of genes selected from LSC signature genes, HSC signature genes and/or CE-HSC/LSC signature genes in the first and the subsequent samples according to a method described herein, to obtain a first sample subject expression profile and a subsequent sample subject expression profile, wherein the set of genes comprises at least 2 genes; and
    • d. calculating a first sample subject risk score and a subsequent sample subject risk score;


      wherein a lower subsequent sample risk score compared to the first sample risk score is indicative of a positive response, and a higher subsequent sample risk score compared to the first risk score is indicative of a negative response.


In another aspect, the methods described herein are used to screen for a putative drug candidate for a hematological cancer. In an embodiment the method comprises: contacting a test population of cells with a test substance; determining a gene expression level for each gene of a set of genes selected from leukemia stem cell (LSC) signature genes listed in Tables 2, 6, and/or 12, hematopoietic stem cell (HSC) signature genes listed in Tables 4 and/or 14, and/or CE-HSC/LSC signature genes listed in Table 19, to obtain an expression profile for the test population of cells and comparing to a control population of cells; calculating an expression score for the test population of cells and the control population of cells wherein a decreased expression score in the test population of cells compared to the control population is indicative that the test substance is a putative drug candidate. In an embodiment, the test and control population of cells are hematological cancer cells.


In an embodiment, the set of genes comprises 2 or more of the genes listed in Table 2, 6, and/or 12 and the set of genes comprises 2 or more of the genes listed in Table 4 and/or 14. In another embodiment, the set of genes comprises 2 or more of the genes listed in Table 20. In another embodiment, the set of genes comprises 2 or more of the genes listed in Table 13 or Table 19.


In a further embodiment, the set of genes comprises at least at least 2-5, at least 6-10, at least 11-15, at least 16-20, at least 20-25, at least 26-30, at least 31-35, at least 36-40 or at least 41, at least 42 or at least 43, at least 41-45, at least 46-50, at least 51-55, at least 56-60, at least 61-65, at least 66-70, at least 71-75, at least 76-80, at least 81-85, at least 86-90, at least 91-95, at least 96-100, at least 101-105, at least 106 to 110, at least 111 to 115, at least 116 to 120 or 121 genes.


In an embodiment, the set of genes comprises the genes listed in Table 2, 4, 6, 12, 13, 14, 19 or 20. In an embodiment, the set of genes comprises the genes listed in Table 19. In another embodiment, the set of genes comprises the genes listed in Table 13.


In an embodiment, the set of genes does not include one or more of ABCB1, BAALC, ERG, MEIS1, and EVI1 (also known as MECOM).


In another embodiment, the gene expression levels are determined using probes and/or probe sets. In an embodiment, the probes and probe sets are selected from SEQ ID NOs: 1 to 2533.


In an embodiment, the gene expression levels are determined using at least 2-5, at least 6-10, at least 11-14, at least 15-19, at least 20-24, or 25 LSC probe sets listed in Table 1; and/or at least 2-5, at least 6-10, at least 11-15, at least 16-20, at least 21-25, at least 26-30, at least 31-35, at least 36-40, at least 41-45 at least 46-50, at least 51-55, at least 56-60, at least 61-65, at least 66-70, at least 71-75, least 81-85, at least 86-90, at least 91-95, at least 96-100, at least 101-105, at least 106-110, at least 111-115, at least 116-120, at least 121-125, at least 126-130, at least 131-135, at least 136-140, at least 141-145, or at least 146-147 probe sets. In an embodiment, combinations of probes and probes sets listed in different tables are used to determine the gene expression levels.


Successive addition of the most highly ranked, determined by p-value, probes demonstrated a correlation with overall survival (FIG. 7c). For example, successive addition of the top 35 probes, showed the greatest correlation with overall survival. Therefore, in still another embodiment, the gene expression level is determined by one or more probes and/or one or more probe sets selected from probesets listed in Table 16.


In yet another embodiment, a method described herein also comprises obtaining a sample from the subject, e.g. for determining the expression level of the set of genes. The sample, in an embodiment, comprises a blood sample or a bone marrow sample. In an embodiment, the sample comprises fresh tissue, frozen tissue sample, a cell sample, or a formalin-fixed paraffin-embedded sample. In an embodiment, the sample is submerged in a RNA preservation solution, for example to allow for storage. In an embodiment, the sample is submerged in Trizol®. In an embodiment, the sample is stored as soon as possible at ultralow (for example, below −190° C.) temperatures. Storage conditions are designed to maximally retain mRNA integrity and preserve the original relative abundance of mRNA species, as determined by those skilled in the art. The sample in an embodiment is optionally processed, for example, to obtain an isolated RNA fraction and/or an isolated polypeptide fraction. The sample is in an embodiment, treated with a RNAse inhibitor to prevent RNA degradation.


In another embodiment, the sample is a fractionated blood sample or a fractionated bone marrow sample. In an embodiment, the sample is fractionated to increase the percentage of LSC and/or HSC. In an embodiment, the fraction is predominantly for example greater than 90% CD34+. In another embodiment, the fraction is predominantly, for example greater than 90% CD38−. In a further embodiment, the fraction is predominantly, for example greater than 90% CD34+ and CD38−.


Wherein the gene expression level being determined is a nucleic acid, the gene expression levels can be determined using a number of methods for example a microarray chip or PCR, optionally multiplex PCR, northern blotting, or other methods and techniques designed to produce quantitative or relative data for the levels of mRNA species corresponding to specified nucleotide sequences present in a sample. These methods are known in the art. In an embodiment, the gene expression level is determined using a microarray chip and/or PCR, optionally multiplex PCR.


Further, for example a person skilled in the art would be familiar with the necessary normalizations necessary for each technique.


The methods described can utilize probes or probe sets comprising or optionally consisting of a nucleic acid sequence listed in Tables 1, 3, 5, 17 and/or 18. In an embodiment, the gene expression level is determined by detecting mRNA expression using one or more probes and/or one or more probe sets listed in Tables 1, 3, 5, 17 and/or 18.


In an embodiment, the method comprises additionally considering known prognostic factors, such as molecular risk status. For example, the mutational status of FLT3ITD and NPM1 has been associated with risk status in AML subjects, with low molecular risk associated with NPM1mut FLT3ITD− and high molecular risk associated with FLT3ITD+ or NPM1wtFLT3ITD−. It is demonstrated herein that the gene signatures can further stratify for example molecular risk subjects to identify subjects with poor prognosis.


Accordingly, in an embodiment, the method further comprises determining the molecular risk status of the subject. In an embodiment, the molecular risk status is low molecular risk (LMR) or high molecular risk (HMR) according to NPM1 and/or FLT3ITD status, wherein the subject is identified as LMR if the subject comprises a mutant NPMI gene and is FLT3IT positive, and is identified as HMR if the subject has a wildtype NPMI gene and is FLT3ITD negative. In a further embodiment, the subject is LMR and optionally the set of genes comprises genes selected from LSC signature genes. In an embodiment, the subject is HMR and optionally the set of comprises genes selected from HSC signature genes.


In an embodiment, the methods described herein can be used for example to select subjects for a clinical trial.


In an embodiment, the methods described herein can be used to select suitable treatment. For example, subjects with poor prognosis e.g. a high risk of non-survival may be advantageously treated with specific therapeutic regimens. More accurate classification can reduce the number of patients identified as high risk. Further, more accurate classification allows for treatments to be tailored and for aggressive therapies with greater risks or side effects to be reserved for patients with poor outcome. For example, CN-AML patients are considered intermediate risk of poor prognosis. One therapeutic option for treating AML is transplant. Given the intermediate risk, one option available to a patient is transplant, particularly if there was a related donor. However, where only an unrelated donor is available, because of complications, a transplant may not be recommended or carry additional risks. An application of the methods and products described herein is to provide a test to aid a medical professional in making such a decision. For example, where a patient has an intermediate risk but is identified by the methods and products described herein as having an increased likelihood of a good outcome, such a patient may be reclassified in a more “favorable’ category such that a transplant might not be recommended. Similarly, if the methods and products identified the patient as having an increased likelihood of a poor prognosis, the patient may be reclassified in a more “unfavorable’ category suggesting that a transplant, even from unrelated donors might be indicated. Accordingly, a better prognostic prediction could assist in making treatment decisions.


Accordingly in another aspect, the disclosure includes a method further comprising the step of providing a cancer treatment to a subject consistent with the disease outcome prognosis. In an embodiment, the disclosure provides use of a prognosis determined according to the method described herein, and identifying a suitable treatment for treating a subject with a hematological cancer. An embodiment includes a method of treating a subject having a hematological cancer, comprising determining a prognosis of the subject according to a method described herein and providing a suitable cancer treatment to the subject in need thereof according to the prognosis determined.


In another embodiment, the method further comprises providing a cancer treatment for the subject consistent with the molecular risk group and disease outcome prognosis. In an embodiment the cancer treatment is a stem cell transplant.


In an embodiment, the cancer treatment comprises a stem cell transplant. In another embodiment, the cancer treatment comprises a bone marrow transplant, or other standard treatment, such as chemotherapy.


In addition to being able to differentiate AML patients according to prognosis, the HSC signature is expected to be able to differentiate patients with hematological cancers other than AML, particularly other leukemias, that like AML for example have an altered growth and differentiation block and/or hematological cancers that are CSC hematological cancers. For example, it is myeloid leukemias such as MDS (Myelodysplastic Syndrome) or MPD (myeloproliferative disease, including CML—chronic myeloid leukemia which is considered a stem cell disease.


In an embodiment, the hematological cancer is leukemia. In an embodiment, the leukemia is acute myeloid leukemia (AML). In an embodiment, the hematological cancer is cytogenetically normal. In another embodiment, the AML is cytogenetically normal AML (CN-AML). In a further embodiment, the AML is M1, M2, M4, M4eO, M5, M5a, M5b, or unclassified AML. In yet a further embodiment, the AML is MO, M6, M7 or M8 AML. In another embodiment, the leukemia is ALL, CLL or CML or a subtype thereof. In another embodiment, the hematological cancer is lymphoma. In a further embodiment, the hematological cancer is multiple myeloma.


The methods described herein can be implemented using a computer.


Another aspect of the disclosure includes a computer-implemented method for determining a prognosis of a subject having a hematological cancer comprising: classifying, on a computer, the subject as having a good prognosis or a poor prognosis based on a subject expression profile comprising measurements of expression levels of a set of genes in a sample from the subject, the set of genes selected from genes listed in Table 2, 4 6, 12, 13, 14, 19, and/or 20 and/or genes detected by probes listed in Tables 1, 3, 5, 17 and/or 18; wherein a good prognosis predicts increased likelihood of survival within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis.


In an aspect, the disclosure provides a computer-implemented method for determining a prognosis of a subject having a hematological cancer comprising: classifying, on a computer, the subject as having a good prognosis or a poor prognosis based on an expression profile comprising measurements of expression levels of a set of genes selected from LSC signature genes or HSC signature genes in a sample from the subject; wherein a good prognosis predicts an increased likelihood of survival within a predetermined period after initial diagnosis, and wherein a poor prognosis predicts a decreased likelihood of survival within the predetermined period after initial diagnosis. In an embodiment, the set of genes comprises at least one gene of the LSC signature genes or the HSC signature genes.


The results or the results of a step are optionally displayed or outputted. Accordingly, in an embodiment, the method further comprises displaying or outputting a result of one of the steps to a user interface device, a computer readable storage medium, a monitor, or a computer that is part of a network.


Another aspect of the disclosure includes a computer product for implementing the methods described herein e.g. for predicting prognosis, selecting patients for a clinical trial, or selecting therapy.


A further aspect of the disclosure provides a non-transitory computer readable storage medium with an executable program stored thereon, wherein the program is for predicting outcome or prognosis in a subject having a hematological cancer, and wherein the program instructs a microprocessor to perform one or more of the steps of any of the methods described herein.


A computer system comprising:

    • a) a user interface capable of receiving and/or inputting a selection of subject gene expression levels of a set of genes, the set comprising at least 2 genes listed in Table 2, 4 6, 12, 13, 14, 19, and/or 20 and/or genes detected by probes listed in Tables 1, 3, 5, 17 and/or 18, for use in comparing to the gene reference expression profiles in the database;
    • b) a reference database including records comprising reference expression profiles associated with clinical outcomes, each reference profile comprising the expression levels of a set of genes listed in Table 2, 4 6, 12, 13, 14, 19, and/or 20 and/or genes detected by probes listed in Tables 1, 3, 5, 17 and/or 18;
    • c) an analysis module for comparing the received or inputted selection of subject gene expression levels to the reference expression profiles and identifying a most similar reference profile and associated prognosis; and
    • d) an output that displays a prediction of prognosis according to the expression levels of the set of genes.


An exemplary system is a computer system having for example: a central processing unit; a main non-transitory storage unit, for example, a hard disk drive, for storing software and data, the storage unit controlled by storage controller; a system memory, preferably high speed random-access memory (RAM), for storing system control programs, data, and application programs, for example for viewing and manipulating data, evaluating formulae for the purpose of providing a prognosis, comprising programs and data loaded from non-transitory storage unit; system memory may also include read-only memory (ROM); a user interface, comprising one or more input devices (e.g., keyboard) and a display or other output device; a network interface card for connecting to any wired or wireless communication network (e.g., a wide area network such as the Internet); a communication bus for interconnecting the aforementioned elements of the system; and a power source to power the aforementioned elements. Operation of computer is controlled primarily by operating system, which is executed by central processing unit. Operating system can be stored in system memory. In addition to an operating system, in a typical implementation system memory includes: a file system for controlling access to the various files and data structures used by the methods and computer products disclosed herein. The system memory can optionally include a coprocessor dedicated to carrying out mathematical operations.


Another aspect includes a computerized control system 10 for carrying out the methods of the disclosure.


In an embodiment, the computerized control system 10 comprises at least one processor and memory configured to provide:

    • a) a control module 20 to receive a dataset comprising a subject expression profile comprising a set of gene expression levels for a set of genes, each gene of the set of genes selected from LSC signature genes listed in Tables 2, 6 and/or 12 or HSC signature genes listed in Tables 4 and/or 14;
    • c) an analysis module 30 to:
      • i) compare the subject expression profile to a reference expression profile comprising an expression level for each gene of the set of genes; and
      • ii) identify a prognosis associated with the subject expression levels.


A schematic representation of an embodiment of a computerized control system 10 is provided in FIG. 17.


In an embodiment, the set of genes is selected from Tables 2, 4 6, 12, 13, 14, 19, and/or 20 and/or genes detected by probes listed in Tables 1, 3, 5, 17 and/or 18.


In an embodiment, the subject expression profile is compared to a reference expression profile by comparing a subject risk score to a selected threshold, wherein the subject risk score is calculated by summing the subject expression profile gene expression values, optionally the log 2 expression values, of the set of genes.


In an embodiment, the dataset is generated using an array probed with a sample obtained from the subject.


In an embodiment, the computerized control system controls and/or receives data from an imaging module 50. In an embodiment, the imaging module is a microarray scanner, which optionally detects dye fluorescence. In an embodiment, the imaging module is configured to collect the images and spot intensity signals. In an embodiment, the computerized control system 10 further comprises an image data processor for processing the image data.


In an embodiment, the analysis module 30 further determines a prognosis characteristic such as a hazard ratio or risk score.


In an embodiment, the computerized control system 10 further comprises a search module 40 for searching an expression reference databases 70 to identify and retrieve reference expression profiles associated with a prognosis.


In an embodiment, the computerized control system 10 further comprises a user interface 60 operable to receive one or more selection criteria, wherein the processor is further operable to configure the analysis module 30 to include the criteria received in the user interface 60. For example, the selection criteria can comprise a selected threshold.


A further aspect comprises a non-transitory computer-readable storage medium comprising an executable program stored thereon, wherein the program instructs a processor to perform the following steps for a plurality of gene expression levels: calculate a subject risk score; and determine a prognosis according to the subject risk score.


In an embodiment, the program further instructs the processor to determine a prognosis characteristic such as a hazard ratio.


In an embodiment, the program further instructs the processor to output a prognosis and/or a prognosis characteristic such as a hazard ratio.


In an embodiment, one or more of the user interface components can be integrated with one another in embodiments such as handheld computers.


In an embodiment, the computer system comprises a computer readable storage medium described herein.


In an embodiment, the computer system is for performing a method described herein.


III. Compositions, Arrays and Kits

An aspect provides a composition comprising a set of probes or primers for determining expression of a set of genes. In an embodiment, the composition comprises at least 2 nucleic acid molecules each comprising a polynucleotide probe sequence selected from Tables 1, 3, 5, 17 or 18 (SEQ ID NO:1-2533. In an embodiment, the composition comprises a set of nucleic acid molecules wherein the sequence of each molecule comprises a polynucleotide probe sequence selected from SEQ ID NO:1-2533.


Another aspect includes an array comprising, for each gene in a set of genes, the set of genes comprising at least 2 of the genes listed in Table 2, 4, 6, 12, 13, 14, 19 and/or 20, one or more polynucleotide probes complementary and hybridizable to a coding sequence in the gene.


In an embodiment, the composition or array comprises at least 3-22, at least 23-44, at least 45-66, at least 67-88, at least 89-110, at least 111-132, at least 133-154, at least 155-176, at least 177-198, at least 199-220, at least 221-242, at least 243-264, at least 265-286, at least 287-308, at least 309-330, at least 331-352, at least 353-374, at least 375-396, at least 397-418, at least 419-440, at least 441-462, at least 463-478 or more nucleic acid molecules each comprising a polynucleotide probe sequence selected from Tables 1, 3, 5, 17 and/or 18 (SEQ ID NOs:1-2533 In yet another embodiment, the composition comprises 2-2533, or any number there between, nucleic acid molecules comprising or consisting of a polynucleotide probe sequence listed in Tables 1, 3, 5, 17 and/or 18 (SEQ ID NOs:1-2533).


In yet another embodiment, the composition comprises at least 2 nucleic acid molecules each comprising a polynucleotide probe sequence selected from SEQ ID NO:1-280 and 759-1011.


In yet another embodiment, the composition comprises at least 2 nucleic acid molecules each comprising a polynucleotide probe sequence selected from SEQ ID NO:281-758 and 1012 to 2533.


In another embodiment, the composition or array comprises at least 3-22, at least 23-44, at least 45-66, at least 67-88, at least 89-110, at least 111-132, at least 133-154, at least 155-176, at least 177-198, at least 199-220, at least 221-242, at least 243-264, at least 265-280, at least 281-295, at least 296-310, at least 311-325, at least 326-340, at least 341-355, at least 356-380, at least 381-395, at least 396-410, at least 411-425, at least 426-440, at least 441-455, at least 456-470, at least 471-485, at least 486-500, at least 501-515, at least 516-532 or up to 533 nucleic acid molecules/probes. In an embodiment, the composition or array comprises any number of nucleic acid molecules/probes from 3 to 2533, or more.


In another embodiment, the composition comprises at least 2 nucleic acid molecules each comprising a polynucleotide sequence selected from the probes comprised in the probe set IDs listed in Table 16.


In an embodiment, the set of genes comprises at least 3-5, at least 6-10, at least 11-15, at least 16-20, at least 21-25 of the genes listed in Table 2 and/or at least 6-10, at least 11-15, at least 16-20, at least 21-25, at least 26-30, at least 31-35, or at least 36-39 of the genes listed in Table 4, at least 6-10, at least 11-15, at least 16-20, at least 21-25, at least 26-30, at least 31-35, or at least 36-39 or at least 41-43 of the genes listed in Table 6, at least at least 6-10, at least 11-15, at least 16-20, at least 21-25, at least 26-30, at least 31-35, at least 36-39, at least 41-45, 46-66, at least 67-80, of the genes listed in Table 12 and/or at least 6-10, at least 11-15, at least 16-20, at least 21-25, at least 26-30, at least 31-35, or at least 36-39, at least 41-45, 46-66, at least 67-88, at least 89-110, or at least 111-121 of the genes listed in Table 14.


The array can be a microarray designed for evaluation of the relative levels of mRNA species in a sample.


Another aspect of the disclosure provides a kit for determining prognosis in a subject having a hematological cancer comprising:

    • a) an array described herein;
    • b) a kit control; and
    • c) optionally instructions for use.


A further aspect of the disclosure includes a kit for determining prognosis in a subject having a hematological cancer comprising:

    • a) a set of probes wherein each probe of the set hybridizes and/or is complementary to a nucleic acid sequence corresponding to at least 2, or at least 5, genes selected from Table 2, 4, 6, 12 and/or 14;
    • b) a kit control; and
    • c) optionally instructions for use.


In an embodiment, the kit further comprises one or more specimen collectors and/or RNA preservation solution.


In an embodiment, the specimen collector comprises a sterile vial or tube suitable for receiving a biopsy or other sample. In an embodiment, the specimen collector comprises RNA preservation solution. In another embodiment, RNA preservation solution is added subsequent to the reception of sample. In another embodiment, the sample is frozen at ultralow (for example, below 190° C.) temperatures as soon as possible after collection.


In an embodiment the RNA preservation solution comprises one or more inhibitors of RNAse. In another embodiment, the RNA preservation solution comprises Trizol® or other reagents designed to improve stability of RNA.


In an embodiment, the kit comprises at least 3-22, at least 23-44, at least 45-66, at least 67-88, at least 89-110, at least 111-132, at least 133-154, at least 155-176, at least 177-198, at least 199-220, at least 221-242, at least 243-264, at least 265-286, at least 287-308, at least 309-330, at least 331-352, at least 353-374, at least 375-396, at least 397-418, at least 419-440, at least 441-462 or at least 463-473 and for example up to 2533 or any number between 1 and 2533, nucleic acid molecules, each comprising and/or corresponding to a polynucleotide probe sequence listed in Table 1, 3, 5, 17 and/or 18 (SEQ ID NO:1-2533.


Another aspect of the disclosure provides a kit determining prognosis in a subject having a hematological cancer comprising:

    • a set of antibodies comprising at least two antibodies, wherein each antibody of the set is specific for a polypeptide corresponding to a gene selected from Table 2, 4, 6, 12 and/or 14; and
    • instructions for use.


In an embodiment, the kit comprises a set of antibodies specific for polypeptides corresponding to at least 2, 3, 4, 5, 6, 7, 8, 9 or at least 10 of the genes listed in Table 2, 4, 6, 12 and/or 14. In another embodiment, the kit comprises a set of antibodies specific for polypeptides corresponding to at least 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 41-45 or more of the genes listed in Tables 2, 4, 6, 12 and/or 14.


In an embodiment, the antibody or probe is labeled. The label is preferably capable of producing, either directly or indirectly, a detectable signal. For example, the label may be radio-opaque or a radioisotope, such as 3H, 14C, 32P, 35S, 123I, 125I, 131I; a fluorescent (fluorophore) or chemiluminescent (chromophore) compound, such as fluorescein isothiocyanate, rhodamine or luciferin; an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase; an imaging agent; or a metal ion.


In another embodiment, the detectable signal is detectable indirectly. A person skilled in the art will appreciate that a number of methods can be used to determine the amount of a polypeptide product of a gene described herein, including immunoassays such as flow cytometry, Western blots, ELISA, and immunoprecipitation followed by SDS-PAGE, as well as immunocytochemistry or immunohistochemistry. For example, flow cytometry or other methods for detecting polypeptides, can be used for detecting surface protein expression levels.


The kit can comprise in an embodiment, one or more probes or one or more antibodies specific for a gene. In another embodiment, the set or probes or antibodies comprise probes or antibodies wherein each probe or antibody detects a different gene listed in Table 2, 4, 6, 12 or 14.


In an embodiment, the kit is used for a method described herein.


The following non-limiting examples are illustrative of the present disclosure:


EXAMPLES
Example 1
Methods
Sorting of Patient AML Samples

Peripheral blood cells were collected from patients with newly diagnosed AML after obtaining informed consent according to procedures approved by the Research Ethics Board of the University Health Network. Individuals were diagnosed according to the standards of the French-American-British (FAB) classification. Cells from sixteen different samples representing 7 AML subtypes were investigated in the studies. Specifically, low density peripheral blood cells were collected from 16 AML patients representing 7 FAB subtypes (2 M1, 1 M2, 1 M4, 1 M4e, 1 M5, 4 M5a, 1 M5b, 5 unclassified) by density centrifugation over a Ficoll® gradient. Low-density mononuclear cells isolated from individuals with AML were frozen viably in FCS plus 10% (vol/vol) DMSO. For sorting of AML sub-populations, AML blasts were stained with anti-CD34-APC (Becton-Dickinson) and anti-CD38-PE (Becton-Dickinson) and were sorted using either a Dako Mo-Flo (Becton-Dickinson) cell sorter or a BD FACSAria (Becton-Dickinson). Purity of each subpopulation exceeded 95%. Fractionated cells were captured in 100% FCS and recovered by centrifugation. As a result, each AML patient sample was sorted into 4 subpopulations based upon CD34 and CD38 antibody staining and cells recovered for functional and gene expression analysis.


Transplantation of Sorted AML Cells into NOD/SCID Mice


NOD/SCID mice (Jackson Laboratory, Bar Harbor, Me.) were bred and maintained in microisolater cages. Twenty-four hours before transplantation, mice were irradiated with 2.75 to 3.45 Gy gamma irradiation from a 137Cs source. Sorted AML cells were counted and resuspended into 1-5% FCS in 1× phosphate buffered saline (PBS) pH 7.4 and injected directly into the right femur of each experimental animal. Six and a half to fifteen weeks post-transplant, mice were euthanized by cervical dislocation and hind leg bones removed and flushed with media to recover engrafted cells. Percent human AML engraftment was assessed by flow cytometry for human CD45+ staining cells (Lapidot et al., 1994).


mRNA Expression Array


mRNA was extracted using the Trizol® RNA preparation as recommended by the manufacturer (Invitrogen) and the RNA was amplified by Nugen amplification per manufacturer's instructions (NuGEN Technologies, Inc.). Probes were labeled and Affymetrix U133A (high-throughput) microarrays were run as per manufacturer's instructions. Signal was normalized by RMA followed by log 2-transformation. The LSC/primitive cell-related gene list was computed standard two-group differential expression comparison (Smyth's moderated t-test18, SCID Leukemia-Initiating Cells (SL-IC) fractions vs non-SL-IC fractions). Each probe set consists of, generally, eleven oligonucleotide probes complimentary to a corresponding gene sequence. These eleven probes are used together to measure the mRNA transcript levels of a gene sequence. Quality control measures were taken. For example, a sample was rejected as the array results obtained after measurement by Affymetrix standard techniques and prior to normalization was an outlier when compared to the other samples on a box-whisker plot.


Correlation with Overall Survival.


To assess the prognostic impact of the LSC/primitive cell related profile, the 25 probe sets that were most positively correlated with the SL-IC AML populations versus non-SL-IC populations were selected as the 25 LSC probe set signature (genes listed in Table 2; probes listed in Table 1). Publicly available overall survival and expression data was analyzed17. In short, the expression value of each probe was scaled to 0 for each probe across the 160 AML using the median value. For each AML, the expression values of the LSC probe set signature was summed for each of the 160 bone marrow AML samples. This summed value was used to divide the AML group into two equal sized populations of 80 AML each based upon above or below median expression of the summed value of the 25 LSC probe set signature. The overall survival of the two groups was examined using a Kaplan-Meier plot and log-rank (Mantel-Cox) test. Similarly, the correlation with survival and the 43 HSC probe set signature was determined in a similar way (genes listed in Table 4, probes listed in Table 3), except the 43 HSC probe sets were used instead of the 25 LSC probe sets.


Discussion

The gene expression profile of sorted populations of AML cells enriched for SL-IC cells, the LSC cells detected in the xenotransplant assay, were analyzed and compared to those populations without SL-IC, and a LSC/primitive cell related profile (25 LSC probe set signature) was developed. When this profile was used to examine overall survival in a group of 160 AML patients, there was a significant correlation with poor overall survival. Similarly, there was an excellent correlation between a 43 HSC probe set signature and poor overall survival, even though there is only one overlapping probe set between the two independently generated stem cell/primitive cell-related lists. Additionally, the AML cells used in the generation of the 25 LSC probe set signature were peripheral blood samples and the 43 HSC probe set signature was derived from cord blood, while the 160 AML samples were bone marrow samples. This suggests that these two stem cell related profiles are robust and unique.


Other groups have developed prognostic signatures for CN-AML from gene expression data of bulk AML. This approach is unique in that it involves the generation of the gene set that is based upon SL-IC in sorted cells, a functional readout that is independent of patient outcome. Likewise, the HSC profile is based upon the SCID repopulating cell assay, not overall survival. However, these independent investigations into stem cell regulation have a similar correlation with patient outcome, indicating that a stem cell profile is relevant to leukemia, whether it is the 43 HSC probe set signature or the 25 LSC probe set signature.


Example 2

The LSC signature and HSC signatures can be tested in additional leukemia patient sample sets, including sets of patient samples that contain cytogenetically abnormal AML, in order to further support the prognostic value of the signatures. For example, other blood cancers such as acute lymphoblastic leukemia, lymphomas, CML, and CLL can be tested.


Example 3

The expression levels of subsets of the LSC signature genes and HSC signature genes, combinations of the genes in the LSC probe set signature and HSC probe set signature as well as shared genes such as the CE-HSC/LSC signature genes will be determined and assessed to identify and/or confirm the prognostic abilities of said gene sets according to the methods described in Example 1.


Example 5

Similar to Example 1, using the sorting of patient AML samples, transplantation of sorted AML cells into NOD/SCID mice, mRNA expression array, and correlation with overall survival procedures a 43 gene signature marker set prognostic of outcome was identified (Table 6). The expression levels of the genes in the LSC gene signature were detected using 48 probe sets (Table 5). The 48 probe set LSC/primitive cell-related gene list was computed USING standard two-group differential expression comparison (Smyth's moderated t-test 18, SL-IC fractions vs non-SL-IC fractions). Benjamini and Hochberg multiple testing correction was performed to generate a list of 48 probe sets with a false discovery rate of 0.05.”


Example 6

Evidence from experimental xenografts show that some solid tumours and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSC). Despite the promise of the CSC model, the relevance to human disease remains uncertain and improvements to prognosis and therapy have yet to be derived from CSC properties. Moreover, there are conflicting reports of whether tumours continue to adhere to a CSC model when enhanced xenograft assays are applied. Here it is demonstrated that 16 primary human acute myeloid leukemia (AML) samples, fractionated into 4 populations and subjected to sensitive in vivo leukemia stem cell (LSC) analysis, follow a CSC model of organization. Each fraction was subjected to gene expression analysis and a global LSC-specific signature was determined from functionally defined LSC. Similarly, using human cord blood, a hematopoietic stem cell (HSC) enriched gene signature was established. Bioinformatic analysis identified a core transcriptional program that LSC and HSC share, revealing the molecular machinery that underlies stemness properties. Both LSC and HSC signatures, when assessed against a large group of cytogenetically normal AML samples, showed prognostic significance independent of other factors. The data establishes that determinants of stemness influence clinical outcome of AML and more broadly they provide direct evidence for the clinical relevance of CSC.


The cancer stem cell (CSC) model posits that many cancers are organized hierarchically and sustained by a subpopulation of CSC at the apex that possess self renewal capacity1. This model has elicited considerable interest within the greater cancer community especially as data is accumulating showing the relative resistance of CSC to therapy2-7. A key implication of the model is that cure should be dependent upon eradication of CSC, consequently patient outcome is determined by CSC properties. The CSC paradigm is well supported by two lines of evidence derived from xenotransplant models: primary cancer cells capable of generating a tumour in vivo can be purified and distinguished from those cancer cells that lack this ability; and CSC can be serially transplanted providing evidence for self renewer. However, there is little progress in translating understanding of CSC biology to improved prognosis or treatment of human disease. Thus, the importance of CSC outside of xenotransplant models is unclear and their relevance to human disease is not firmly established.


The best evidence to substantiate the clinical significance of CSC would be robust demonstration of improved survival in patients treated with new CSC-targeted therapeutics. In the absence of treatment data, the prognostic relevance of CSC can be indirectly established by correlating patient survival outcomes with CSC-specific biological properties determined using state-of-the-art xenograft models. By extension, the CSC hypothesis predicts that the heterogeneous survival outcomes observed within uniformly treated patient cohorts may be reflective of variation in CSC properties among patients. Emerging evidence from leukemia samples lends support to this prediction as correlative studies have associated characteristics linked to stem cell properties with outcome, such as the ability to engraft mice or surface expression of LSC-linked markers8, 9. However, these studies are based upon an older xenograft model and only investigated single cohorts, nevertheless they establish the feasibility of this approach.


If CSC properties are relevant to human disease, it follows that the molecular machinery that governs the stem cell state must influence clinical outcome. However, little is currently known of the identity of the molecular regulators that govern CSC-specific properties. Experimental data shows that LSC possess stem cell functions common to all stem cells, including self renewal and the ability to produce differentiated, non-stem cell progeny1. Murine models have been successfully used to identify a small number of genes that regulate LSC function, including MEIS1 and BMI110, 11. Gene expression profiling provides an approach to define CSC-specific attributes on a genome-wide basis. Recently, a human breast CSC signature was generated from an expression analysis where CSC-enriched populations were obtained from xenografts and some pleural effusions and compared to normal mammary cells12. The expression of the breast CSC genes correlated with patient outcome for breast and other cancer types, although some have questioned to what degree this correlation derives from cancer-specific versus CSC-specific properties12-14. Clearly, more focused studies of global gene expression in well defined CSC and non-CSC populations from primary samples are needed to generate CSC specific signatures. Such studies should reveal the identity of important stem cell regulators and provide the basis to determine whether CSC-specific signatures correlate to clinical aspects of human disease.


The prospective isolation and subsequent functional and molecular analysis of CSC from a heterogeneous tumour population is often dependent on the distinctive expression of surface marker proteins. Historically, xenografts into SCID or NOD/SCID mice were used to confirm these early marker-dependant sorting strategies15, 16. However, a series of recent studies using either syngeneic murine cancer models or NOD/SCID mice with impaired residual innate immunity have cast doubt upon the reliability of NOD/SCID mice to accurately capture all cancer stem cell activityl17-20. For example, while previous studies observed that LSC can be prospectively isolated only from the CD34+/CD38− cell fraction of acute myeloid leukemia (AML), identical to normal HSC, an improved xenotransplant system has enabled the detection of LSC in previously non-tumourigenic populations15, 16, 18, 19. In a separate example, the use of optimized xenotransplant methods radically altered the apparent detectable frequency of CSC from 1 in 105 tumour cells to 1 in 4 tumour cells, a result that stands in stark contrast to other studies20-22. These studies suggest that some human cancers may not follow the CSC model and strongly demonstrate the requirement for a sensitive xenotransplant model to confirm or refute the existence of a CSC hierarchy in each human cancer. More importantly, sample to sample variation between cell surface marker expression and CSC activity establishes an important principle, that all experiments designed to investigate CSC properties in purified cell fractions must assess, at the same time, all cell fractions with well validated tumour- or leukemia-initiation assays (e.g. in regards to determining a LSC or HSC signature.


Here 16 AML and 3 cord blood primary samples were fractionated and a sensitive xenotransplant assay was utilized to detect and functionally quantify each fraction for cells with LSC or HSC activity, respectively. Leukemia stem cell (LSC) and hematopoietic stem cell (HSC) gene expression signatures were identified based on this functional stem cell characterization of each purified cell fraction and bioinformatic analyses showed that they are closely correlated. Both signatures predict poor overall survival independently of other prognostic factors in patients with cytogenetically normal AML, demonstrating that stem cell gene expression programs determine patient outcome. Overall, the results establish the clinical relevance of LSC defined solely on the basis of functional xenotransplant assays.


Methods
Collection of Patient Samples and Normal Hematopoietic Cells

Peripheral blood samples were collected from patients with AML after obtaining informed consent according to the procedures approved by the Research Ethics Board of the University Health Network. Low-density mononuclear cells isolated from individuals with AML were frozen viably in FCS plus 10% vol/vol DMSO. Human cord blood cells obtained from full-term deliveries from consenting healthy donors according to the procedures approved by the Research Ethics Board of the University Health Network were processed as described33.


Cell Staining, Sorting and Flow Cytometry

Cells were stained with antibodies to CD34, CD38, and in the case of cord blood CD36, and sorted on either a MoFlo (Beckman Coulter) or FACSAria (BD Biosciences) cells sorter. AML cells were sorted into CD34+/CD38−, CD34+/CD38+, CD34−/CD38+, CD34−/CD38− populations. Three independent pooled CB samples from 15-22 donors were used for isolation of HSC subsets and progenitors. Lin− Cord blood cells were sorted into CD34+/CD38− (HSC1), CD34+/CD38lo/CD36− (HSC2), and CD34+/CD38+ (Prog) populations. The mature cord blood fraction are cord blood cells after hemolysis (lin+). Representative sorting gates are in FIG. 5. The StemSep system (Stem Cell Technologies) was used to lineage deplete cord blood cells. Antibodies to CD34, CD38, CD15, CD14, CD19, CD33, CD45, CD36, HLA-DR, CD11b, CD117, and CD3 were used to characterize primary AML samples and AML after transplantation into mice. All antibodies were obtained from Beckman Coulter and BD Biosciences. Flow Cytometry was performed on either a FACScalibur or LSRII (BD-Biosciences).


Transplantation of Cells into NOD/scid Mice and Colony Formation Assays


NOD/ShiLtSz-scid (referred to as NOD/scid) mice were bred at the University Health Network/Princess Margaret Hospital. Animal experimentation followed protocols approved by the University Health Network/Princess Margaret Hospital Animal Care Committee. NOD/scid mice 8-13 weeks old were pretreated with 2.75-3.4Gy and antiCD122 antibody before being injected intrafemorally with transduced AML cells at a dose of 200 to 2.87×10̂6 sorted cells per mouse, as previously described23. Anti-CD122 antibody was purified from hybridoma cell line TM-b1 (generously provided by Prof T. Tanaka, Hyogo University of Health Sciences) and 200 ug injected i.p. following irradiation. Mice were sacrificed at 6.5 to 15 weeks (mean 10 weeks) and bone marrow from the injected right femur and opposite femur and, in some cases, both tibias as well as spleen, were collected for flow cytometry and secondary transplantation. Human engraftment was evaluated by flow cytometry of the injected right femur and non-injected bones and spleen. A threshold of 1% human CD45+ cells in bone marrow was used as positive for human engraftment. For each case, sort purity was integrated with the frequency of LSC in the other fractions in order to estimate LSC contamination and eliminate false positives (LSC+). Mice with greater than 50% CD19+ cells were labeled as normal human engraftment. The mean purity for each fraction was 98.3%. To eliminate false negative results (LSC−), the sensitivity of detection for each fraction was based upon the equivalent of unsorted cells injected (based upon the frequency of the sorted population). Each sorted fraction negative for LSC in vivo represented the equivalent of 6.58×10̂7 unsorted cells (mean). 5×10̂6 unsorted AML cells were confirmed to engraft mice for each sample. CD33 positivity was used to confirm the AML nature of the engraftment. Secondary transplantation was performed by intrafemoral injection of cells from either right femur or pooled bone marrow from primary mice into 1-3 secondary mice pretreated with irradiation and anti-CD122 antibody. For validation of cord blood HSC, 3×10̂3 to 1×10̂5 cells were injected intrafemorally per mouse and human engraftment determined by assessment of human CD45, CD19 and CD33 as previously described33. Human CFC assays were done as previously described33.


Microarray and Bioinformatics Analysis

RNA from cord blood or AML cells was extracted using Trizol (Invitrogen) or RNeasy (Qiagen). RNA was amplified before array analysis by either Nugen (NuGEN Technologies) or in vitro transcription amplification for AML and cord blood, respectively. The in vitro transcription method is an optimized version of the T7 RNA polymerase based RNA amplification published by Baugh et al78. Human genome U133A and U133B arrays were used for cord blood and HT HG-U133A arrays for AML samples (Affymetrix). Data was normalized by RMA using either RMA Express ver. 1.0.4 or GeneSpring GX (Agilent). Clustering and heat maps were generated using MeV79, 80. LSC data was clustered using Pearson correlation metric with average linkage. HSC data was clustered using Pearson uncentered metric with average linkage. Gene Ontology (GO) annotation was performed using DAVID Bioinformatics Resources 6.781, 82.


The LSC-R expression profile was generated by a comparison of gene expression in LSC fractions with those fractions without LSC. The HSC-R expression signature was derived from an ANOVA analysis of probes more highly expressed in HSC1 than all other populations as well as probes more highly expressed in HSC1 and HSC2 than other populations. qRT-PCR confirmation of HSC microarray expression was performed using an ABI PRISM 7900 sequence detection system (Applied Biosystems) and GAPDH to normalize expression.


Gene set enrichment analysis was performed using GSEA v2.0 with probes ranked by signal-to-noise ratio and statistical significance determined by 1000 gene set permutations34, 35. Gene set permutation was used to enable direct comparisons between HSC and LSC results (<7 replicates and >7 replicates, respectively). Median of probes was used to collapse multiple probe sets/gene. For the GSEA analysis of the 110 AML cohort by the LSC-R signature, an LSC-R gene set generated by FDR cutoff of 0.1 was used in order to have >100 probes . . . .


Differentially expressed genes were mapped to known and interologous protein-protein interactions (PPIs) in I2D (Interolog Interaction Database) v1.72 (http://ophid.utoronto.ca/i2d)36, 37, with additional updated PPIs (February 2010) from BioGrid (http://www.thebiogrid.org)83, DIP (http://dip.doe-mbi.ucla.edu)84, HPRD (v8; http://www.hprd.org)85, IntAct (www.ebi.ac.uk/intact/86) and MINT (mint.bio.uniroma2.it/mint/)87. Experimental PPI networks were generated by querying I2D with the target genes/proteins to obtain their immediate interacting proteins, and their mutual interaction. Network visualization was performed using NAViGaTOR ver. 2.1.15 (http://ophid.utoronto.ca/navigator)37, 88.


Correlation with Clinical Outcome


All patients in the 160 AML cohort received intensive double-induction and consolidation therapy55, 89. 156 of these patients were enrolled in the AMLCG-1999 trial55, 89. Of the 163 samples, 3 were removed for being peripheral blood or MDS RAEB. Characterization and gene expression profiling of these cohorts is described in Metzeler et al. (GEO accession GSE12417)55. The log 2 expression values for each sample were centered to zero mean. The sum of log2 expression values of the HSC-R or LSC-R probe sets was used as the risk score for each patient. The 160 patients were split into high and low risk groups above and below the median risk score. These risk groups were assessed for prognostication of overall survival and event-free survival in univariate Cox analysis (logrank test) and in multivariate Cox analysis (Wald test). Similarly, the sum of log 2 expression of LSC-R or HSC-R FDR0.05 signature was used to rank the 110 AML cohort (subdivided by cytogenetic risk (GEO accession GSE6891 matrix1)), and chi-squared test applied to the top quartile of samples (highest expression sum). The “phenotypically determined stem cell signature” (FIG. 7c) was derived from a comparison of AML CD34+/CD38− vs AML CD34+/CD38+ cells. This analysis included an additional 7 AML samples that were not included in the generation of the LSC-R data because they had not been functionally validated (Table 15).


Statistics

Frequency of LSC was determined with a limited dilution analysis and interpreted with the L-Calc software (StemSoft Software Inc). The lower estimate of frequency in cases without negative results was estimated using ELDA (WEHI—Bioinformatics Division)90. The HSC-R signature was generated using oneway ANOVA analysis using Tukey HSD post-hoc test and Benjamini-Hochberg multiple testing correction (FDR 0.05) (GeneSpring GX software Agilent). The LSC-R signature was generated using a Smyth's moderated t-test with Benjamini-Hochberg multiple testing correction to compare fractions positive for LSC against fractions without LSC91. Fisher's exact test was used to determine correlation between LSC-R or HSC-R and complete remission.


Results:

AML LSC have Heterogeneous Surface Marker Profiles and Frequency


As an initial step to investigate the molecular regulation of LSC, primary human AML patient samples were fractionated into LSC-enriched and LSC-depleted populations to enable further analysis. A xenotransplant model, including the pretreatment of NOD/scid mice with an anti-CD122 antibody (to deplete residual natural killer and macrophage cell activity) and intrafemoral injection of cells, was previously shown to increase the sensitivity of engraftment and detection of stem cells18, 23, 24. Thus, 16 primary human AML samples were sorted into 4 cell populations each based upon surface expression of CD34 and CD38, followed by functional validation in this optimized xenotransplant assay (FIG. 5, see Table 7 for patient and sample data).


LSC were detectable in each of the four CD34/CD38 AML fractions as determined by human engraftment (≧1% human cells, 8+ weeks after injection) (FIG. 5, Table 8). As expected, LSC were observed in the CD34+/CD38− fraction in each informative case but one; in addition, LSC were also detected in other fractions in the majority of AML samples. The LSC were able to engraft secondary mice, a test of long term self renewal, irrespective of marker profile (Table 9). Additionally, the immunophenotype of the leukemic graft in mice was similar to the primary patient sample and the linear relationship between the number of LSC transplanted and level of human chimerism was the same regardless of the marker profile of the transplanted cells (FIG. 9, 10). This indicates that LSC from different fractions are functionally indistinguishable and can be treated equally in gene expression analysis. In those fractions where LSC were detected the frequency varied from 1/1.6×103 to 1/1.1×106 cells, as determined by limiting dilution analysis (LDA) in vivo, and was generally highest in the CD34+/CD38− fraction (Table 8). In ten cases the LDA analysis was repeated and the results were highly consistent among replicates. Further, an estimate of the absolute number of LSC contributed by each fraction revealed that the majority of LSC are in the minor CD34+/CD38− fraction in 50% of the patients, and in the CD34+/CD38+ fraction in the other 50% (Table 10, 11). Thus, using an optimized xenograft model, it can be concluded that AML LSC represent a minor population that can be reproducibly purified and they are able to self-renew and re-establish the AML hierarchy in xenograft models. Collectively, these data provide strong evidence that AML is organized as a hierarchy that follows a CSC model.


Transcription Profiling of Functionally Defined LSC

To gain insight into the molecular regulation of LSC, each of the functionally validated fractions derived from all 16 primary human AML samples were subjected to global gene expression analysis (FIG. 5). Two assumptions were made. First, that an LSC specific transcriptional profile will contain at least some genes that govern the stem cell state. Second, that comparison of closely related cell fractions that differ only by the absence or presence of LSC will reveal LSC specific gene expression even though the actual LSC frequency remains relatively low. There is ample precedence for both assumptions from many gene expression studies of normal HSC, where subsequent studies have proven the HSC specific function of the differentially expressed genes25-28. Since the goal was to generate an LSC-related gene profile (LSC-R) bioinformatic analysis was undertaken to compare global gene expression of the 25 LSC enriched fractions with the 29 fractions in which LSC were absent (Table 12 for top 80 array probe list). The LSC-R signature, comprised of genes more highly expressed in LSC enriched populations, with a false discovery rate (FDR) of 0.05, consists of 42 genes (48 probes sets) (probe sets listed in Table 5 and genes listed in Table 6). This represents a common signature, as it was generated from AML samples that possessed a variety of karyotypic alterations and FAB subtype. Prior reports of LSC specific gene expression used simple comparisons of LSC to HSC29-31, phenotypically defined cell populations (where both may have contained LSC as the data herein establishes)32 or used a small patient cohort5. Comparison of both the LSC-R and a normal HSC signature (described below) with prior work,2, 31, 32, 35 is shown in Example 7. By contrast, the approach taken here resolves these problems by focusing the analysis only on a large number of functionally validated LSC-enriched versus non-LSC AML populations resulting in the identification of a novel LSC-specific gene signature (probe sets listed in Table 5, genes listed in Table 6).


Functionally Defined HSC Related Transcription Profiles

LSC and HSC both possess canonical stem cell functions such as self renewal and maturation processes that result in progeny that lack stem cell function1. However it is not known if human LSC utilize molecular mechanisms also employed by HSC or if they are governed through unique pathways. If gene expression programs are shared between LSC and HSC, there is a high likelihood that some will govern common stem cell functions, and such a comparison provides the first step in their identification To determine the gene expression profile of HSC, gene expression in human cord blood CD34+/CD38− (HSC1), CD34+/CD38lo/CD36− (HSC2), and CD34+/CD38+ (progenitor) cells as well as lineage positive (mature) cells were examined (FIG. 11). It has been previously reported that the HSC2 fraction contains a lower frequency of HSC than HSC1 and a novel class of repopulating cells termed R-SRC33. An HSC-related profile (HSC-R) was generated based on transcript enrichment in HSC fractions (FIG. 5a, FIG. 11, Table 14). The HSC and progenitor enrichment in each fraction was validated by in vitro colony formation and in vivo xenograft assays (FIG. 11). The HSC-R signature of genes with higher expression in HSC fractions (FDR 0.05) consists of 121 genes (147 probes sets (Table 14). The differential expression of 19 genes was validated by qRT-PCR (FIG. 12) In order to facilitate gene ontology (GO) analysis, larger lists using an FDR cutoff of 0.10 were also used: an FDR0.1 HSC signature is enriched in 63 GO categories, including the 5 GO categories in which the FDR0.10 LSC signature is enriched.


LSC Express an HSC Gene Expression Profile

The LSC-R and HSC-R gene expression profiles were examined for common expression patterns. Gene Set Enrichment Analysis (GSEA), a threshold-free method of comparing gene expression between independent datasets, was used to compare the expression profiles and found enrichment of the HSC-R gene signature in the LSC-R profile (p<0.001) (FIG. 6A top panel, 6B)34, 35. Conversely, the LSC-R signature was found to be enriched in the HSC-R expression profile (p<0.001) (FIG. 13). Forty-four leading edge genes termed the “core enriched HSC/LSC” genes (CE-HSC/LSC), drive the GSEA enrichment of the HSC-R signature in the LSC gene expression data and represent HSC genes that are also differentially expressed in LSC; of these 18 have previously been implicated in stem cell regulation, oncogenesis, or both, including ABCB1(MDR1), MEIS1, ERG, HLF, EVI1 and homeobox genes (FIG. 6B; see Example 8 for a complete description of these genes). A subset is included in Table 13.


To identify the core pathways that these genes might predict, a stem cell protein-protein interaction network from the CE-HSC/LSC genes was generated, consisting of direct protein-protein interactions as well as proteins that link CE-HSC/LSC proteins using the I2D protein interaction database36, 37. The full network is available in NAViGaTOR 2.037 XML file format at http://www.cs.utoronto.ca/˜juris/data/NatMed10/. Further, a gene list as well as protein network representing more highly expressed genes common to normal lineage-committed progenitors was generated. The CE-HSC/LSC protein interaction network shows significant enrichment of multiple pathways separate from the progenitor network, including Notch and Jak-STAT signaling, which are implicated in stem cell regulation, thereby supporting the stem cell nature of the HSC and LSC-related gene profiles38-44. To gain further insight into the gene expression programs preferentially active in LSC, this data was compared with previously generated human and murine gene sets derived from stem, progenitor and mature cell populations as well as embryonic stem cells (ESC)25, 28, 45-51. In a comparison of gene expression between LSC and non-LSC fractions by GSEA, LSC-R gene expression positively correlated with pre-existing primitive cell gene sets such as HSC genes and genes shared between HSC and lineage-committed progenitor cells, and negatively correlated with gene sets derived from more differentiated cells such as late lineage-committed progenitor and mature blood cells (FDR q≦0.05; see Example 9 for further description)25, 28, 45. As well, the normal common lineage-committed progenitor-related gene list negatively correlated with genes more highly expressed in LSC fractions than with non-LSC (p<0.001) (FIG. 6A bottom panel). In a similar analysis, LSC were not enriched for ESC modules or ESC gene expression sets compared to non-LSC, unlike what was previously observed for murine MLL-induced leukemia LSC46-52 (FDR q>0.05). Thus, an HSC expression program, and not a common lineage-committed progenitor or ESC expression pattern, is preferentially expressed in LSC compared to more mature leukemic cells.


LSC and HSC Gene Expression Signatures Predict Outcome of Leukemia Patients

To investigate whether there is a correlation between these LSC-R and HSC-R gene signatures and clinical outcomes in AML patients, a pre-existing set of AML gene expression profiles were interrogated53-55. As discussed later, this approach assumes that, since a hallmark of AML is altered growth and blocked differentiation, some components of stem cell gene expression programs will persist in leukemic blasts. In their study, Valk et al. examined global gene expression in leukemic blasts from 285 AML patients and identified 16 distinct groups by unsupervised cluster analysis53. In general, clustering was driven by the presence of gross chromosomal alterations and known point mutations. When the genes that define each cluster were examined in the LSC-R and HSC-R profiles, a significant enrichment for a number of clusters was found. Generally, the LSC-R and HSC-R profiles produced similar results in the enrichment of the clusters and correlated positively with clusters characterized by FLT3-ITD or EVI1 over-expression, molecular markers that indicate a poor prognosis53, 56-58. They correlated negatively with clusters that have good prognosis, including karyotypes such as t(15;17) and inv(16) although 11q23 MLL was also in this group53. Recently, 110 of these AML samples were stratified into ‘poor’ or ‘good’ prognostic risk groups, based upon cytogenetic alterations, and new gene expression data was generated54. Higher expression of the LSC-R or HSC-R signatures was able to predict poor prognostic risk patients in this data set (p=0.0125 and p=0.001 respectively). Further, enrichment analysis identified subsets of LSC-R and HSC-R genes that correlate with poor cytogenetic risk groups (FIG. 14). This subset of the HSC-R signature has considerable overlap with the shared CE-HSC/LSC gene list (21 of 32 genes) (FIG. 6c, 14). Overall, these findings support the validity of the stem cell expression profiles and demonstrate that AML with worse prognosis express stem cell-related genes more highly than less aggressive AML samples. Furthermore, they establish the feasibility of using an LSC or HSC signature as a biomarker to stratify patients through analysis of their bulk blast populations.


To validate the clinical relevance of stem cell gene expression in leukemia, a second cohort of 160 cytogenetically normal (CN) AML patients were examined for whom gene expression and outcome data was available55. CN AML represents approximately 45% of all AML subtypes and is an intermediate risk category57, 58. The LSC-R or HSC-R gene signature was used to divide these patients into 2 equal groups based upon the median expression of the respective signature in bulk AML bone marrow cells. There was significant negative correlation between the rate of complete remission and high expression of the LSC-R signature (p=0.0054, n=158), while negative correlation with the HSC-R signature approached significance (p=0.073, n=158). Both signatures negatively significantly correlated with overall survival (LSC p=5.2×10̂−6, HR=2.4 (95% Cl 1.6-3.6); HSC p=1.8×10̂−5, HR=2.3 (95% Cl 1.6-3.4)) (FIG. 7a) and event-free survival (LSC p=2.5×10̂−7, HR=2.5 (95% Cl 1.8-3.7); HSC p=8.9×10̂−6, HR=2.2 (95% Cl 1.5-3.2)) (FIG. 7b). It is noteworthy that a signature generated using phenotypic stem cell markers alone without functional determination of LSC fractions was not prognostic (p=0.81, HR=1, Table 15), supporting the requirement for functional validation of LSC populations (FIG. 7d). Thus, this data demonstrates that high expression of stem cell expression signatures directly predict patient survival in CN AML and, therefore, variation in stem cell expression programs among patients is highly correlated to heterogeneity in disease outcome.


CN AML patients lack gross genomic changes making it difficult to identify a prognostic biomarker. However, there has been much effort to use mutational status of specific genes to determine prognosis57-61. Recently, FLT3ITD status and NPM1 mutational status have been combined to designate low molecular risk (NPM1mut FLT3ITD−) (LMR) and high molecular risk (FLT3ITD+ or NPM1wt FLT3ITD−) (HMR) groups57, 60, 61. Patients with LMR AML, who generally account for approximately 35% of CN-AML, have favorable prognosis and are offered standard treatment, however there is still heterogeneity in outcome57, 60, 61. Multivariate analysis was used to demonstrate that the LSC-R and HSC-R signatures could predict outcome independently of known molecular prognostic factors such as molecular risk status and CEBPA (FIG. 8) (See Example 10 for an analysis with FLT3 and NPM1 as independent factors)57, 60-62. Subdividing the 160 CN AML cohort by molecular risk status, it was observed that each stem cell signature identified patients with worse survival in both the HMR subset (LSC-R p=0.003, HR=1.9 (95% Cl 1.2-2.9); HSC-R p=0.00023, HR=2.2 (95% Cl 1.4-3.4)) and the LMR subset (LSC-R p=0.0033, HR=4.5 (95% Cl 1.5-13); HSC-R p=0.021, HR=3.3 (95% Cl 1.1-9.7)) (FIG. 8). Patients with high LSC-R signature represented only 25% of the LMR group and yet accounted for approximately 50% of the LMR patients that did not survive. As the patients in the LMR group were considered to have favorable prognosis, approximately only 10% of the patients in this cohort received a bone marrow transplant. Thus, the LSC-R and HSC-R signatures can be used to stratify patients currently identified as low risk into those who do well with standard therapy and those who could benefit from more intensive therapy, including stem cell transplant.


To determine the robustness of the clinical correlation, the prognostic value of the LSC-R signature was examined in an additive analysis (FIG. 7c). Starting with the highest ranked LSC probe in the LSC-R gene expression profile, the correlation with outcome was determined (as measured by p value, Table 16) after successive addition of each ranked probe. Correlation with overall survival was greatest with the top 35 probes. Beyond that, the correlation decreased but was still significant at 1000 probes (p=0.04). These findings indicate that the stem cell profile is consistently of prognostic significance and that this correlation is not driven by a single, or very few, genes or pathways. Collectively, these data provide strong evidence that stem cell properties influence patient survival outcomes.


Discussion

This data provides human HSC and LSC-specific gene expression signatures derived from multiple sorted cell fractions where both HSC and LSC content was contemporaneously assayed by in vivo repopulation. LSC and HSC share a core transcriptional program that, when taken together, reveals components of the molecular machinery that govern stemness. Since both signatures show strong prognostic significance predicting AML patient outcome, the data establishes that determinants of stemness influence clinical outcome. These findings have two important implications on the role of stem cells in cancer. First, the firm linkage between LSC and HSC signatures and the ability of these signatures to predict survival, a seminal cancer property, provide strong evidence that LSC defined on the basis of functional stem cell properties are distinct and clinically relevant cells present in the leukemic clone. Although the validity of the CSC model continues to be contested for many tumour types, this data supports the contention that LSC are discrete cell types and not artifacts of experimental xenograft models or clinically unimportant17, 20, 63-66. Second, the approach that has been taken in AML provides a paradigm for assessing both the identity and clinical relevance of LSC and CSC from other leukemias and solid tumours, respectively. A well validated and sensitive xenograft assay is essential since only functionally validated populations showed clinical relevance, while signatures derived from phenotypically defined populations did not. Furthermore, the finding of LSC clinical relevance predicts that therapies targeting LSC should improve survival outcomes and that xenograft models based on primary AML engraftment should be used for preclinical evaluation of new cancer drugs.


The identification of shared transcriptional profiles in LSC and HSC strongly predicts that these components of the molecular machinery must play a role in the establishment and maintenance of the stem cell state. Indeed biological studies have clearly established that LSC and HSC share a number of properties including quiescence, niche dependence, and self renewal1. Although this study was not designed to determine the mechanism whereby these genes govern the stem cell properties, it can be inferred that many must have an important role. Genes such as EVI-1, MEIS1, HOXB3, and ERG as well as the pathways identified from network analysis are well known as critical regulators of normal murine and/or human HSC function67-70. Moreover, many genes such as EVI-1, ERG, FLT3 and BAALC are also associated with poor prognosis in AML58, 71. As each is present in the shared stem cell gene profile, it is speculated that their value as a highly significant prognostic indicator derives from their role in governing stem cell function. Collectively, the identification of so many (eighteen) known stem cell and leukemia genes within the transcriptional profile provides confidence that many of the remaining genes not previously associated with the stem cell state are indeed functionally relevant in human LSC and HSC. The shared stem cell profile also adds to the discussion and controversy regarding the cell of origin for AML and whether LSC derive from the transformation of HSC or committed progenitors1, 16, 72-75. GSEA showed that LSC were only enriched for HSC programs and not from progenitor or embryonic cell programs, pointing to their close relationship.


The prognostic value that was found in the LSC and HSC signatures is of significant clinical importance in a disease like AML where a large proportion of patients are cytogenetically normal. Gross genomic changes (e.g. chromosomal translocations) cannot be used to guide therapy, but the mutational status of a small number of genes is now widely employed to stratify LMR patients toward less aggressive treatment compared to HMR patients57, 60, 61. It is particularly noteworthy that the LSC signature clearly identified a large subset (45%) of patients in the LMR group that had poor long term survival. Such patients might benefit from more aggressive therapy. It is somewhat counterintuitive that an LSC/HSC signature should be present in the leukemia blasts (i.e. non-LSC) of a patient with poor outcome. It is possible that the higher expression of a signature simply reflects a higher proportional content of LSC, as suggested previously12, and such cells are harder to eradicate making patient survival shorter. However even in the peripheral blood of AML patients with the highest frequency of LSC only 1 in 500 to 1000 cells is an LSC making it highly unlikely their gene expression was detected. Alternatively, it is well known that as normal HSC maturation occurs there is an essential substitution of stem cell functions (including self renewal, quiescence, DNA damage response, apoptosis) by differentiation programs. In AML, differentiation is perturbed and abnormal but also highly variable between genetic and morphological subtypes76. Additionally, human and murine studies have clearly shown that the self renewal capacity of LSC is abnormal resulting in massive LSC expansion compared to normal HSC1, 64, 77. It is speculated that there is similar variation in the uncoupling of stem cell functions and maturation programs. This data argues that when this dissociation is poor the stem cell programs will persist in bulk leukemia blasts, while in other samples there is a more rigid demarcation between the LSC and non-LSC similar to normal HSC development. The reason the blasts in the former example lack actual LSC function is that any individual blast will only possess a limited repertoire of the full program but since RNA is collected from a large cell dose the full program will be uncovered. If this explanation is correct the greater retention of residual stem cell properties in all cells of the leukemic clone is reflective of an LSC whose stem cell properties are more deregulated resulting in disease progression, treatment failure and shortened survival. More broadly, this data points to the importance of developing LSC biomarkers to contribute to personalized cancer therapy and the need to identify therapeutic targets that will target all leukemic cells in the clone including the LSC.


Example 7

The relationship of the LSC-R and HSC-R gene profiles to previously elucidated human LSC-associated gene expression data was examined. Four previous studies assessed LSC global gene expression. These involved either a comparison of LSC to HSC (AML vs normal, CD34+/CD38− cells)55, 56 or LSC to more differentiated AML cells in small patient cohorts (AML CD34+/CD38− vs CD34+/CD38+ cells)57, 58. In one latter case, the LSC nature of each fraction was not functionally validated58 and, as shown here and as others have shown, the use of CD34 and CD38 to identify stem cell fractions without concomitant functional analysis can mislabel the stem cell nature of sorted cell fractions.


First, of the studies that compared LSC-enriched populations to non-stem cell enriched AML cells, no correlation with the LSC list generated by Gal et al based upon phenotypically defined populations (AML CD34+/CD38− vs CD34+/CD38+ cells)58 was found. FIG. 15a-b). As there was no functional validation, the phenotypically determined non-LSC (CD34+/CD38+) samples likely included LSC in some patients, compromising the data analysis. However, there was a negative correlation of the genes underrepresented in LSC with both the LSC-R and HSC-R data sets. This suggests that the CD34+/CD38+ cell fractions included a mixed population, resulting in higher expression of genes linked to maturation than in the CD34+/CD38− population. In the second study of LSC to non-LSC AML populations, Ishikawa et al. used a cohort of 4 samples with 2 populations each to identify a small number of genes57. In this case, there is some correlation with LSC-R and HSC-R although, critically, the LSC-R does not positively correlate with their LSC up regulated gene set nor does HSC-R negatively correlate with their down regulated LSC gene set (FIG. 15a-b). This suggests that while this study was successful in identifying some LSC-related stem cell genes, it was limited by small sample size and the gene expression variability inherent in cancer samples.


The LSC-R and HSC-R gene expression data here was then compared with the gene sets identified in the two studies that contrasted the gene expression of LSC-enriched populations (AML CD34+/CD38− cells) with HSC-enriched populations (normal CD34+/CD38− cells)55, 56. While a comparison of gene expression of LSC against HSC may identify genes deregulated in LSC, it does not take into account the expression of leukemia associated genes that are independent of the stem cell nature of the populations. When applied to the LSC-R and HSC-R data, the results are the same: in both cases, the genes more highly expressed in LSC vs HSC were negatively correlated with the LSC-R and HSC-R stem cell related expression data while the genes with lower expression in LSC vs HSC were positively correlated with the LSC-R and HSC-R stem cell related expression (FIG. 15c-d) AML cells aberrantly express mature cell markers, even in the primitive cell population, and therefore also likely express multiple mature cell gene expression programs, even at only a low level. Thus, the list of genes with higher expression in LSC vs HSC likely includes genes normally highly expressed in mature cells that are aberrantly expressed in the AML CD34+/CD38− population. These gene lists are therefore found to correlate with the non-LSC and non-HSC genes in the LSC-R and HSC-R stem cell profiles developed here as they are generally highly expressed in differentiated cells. For example, the LSC list by Saito et al., contains genes expressed in more mature cells such as MPO, CD93, CD97, CD24, and HCK56. This analysis supports the experimental design of Saito et al as one aim was to identify surface markers uniquely expressed in LSC and not HSC. Further, as the frequency of stem cells is substantially higher in the CD34+/CD38− compartment of normal cord blood and bone marrow compared to AML, it is not surprising that a comparison of these populations would identify stem cell genes as more highly expressed in the normal HSC population than the equivalent LSC population, as occurred in these two studies. Thus, these results indicate that the comparison of gene expression in LSC-enriched populations with HSC-enriched populations, as carried out in these two studies, succeeded in identifying genes aberrantly expressed in LSC. Critically, however, this strategy resulted in exclusion of most of the common stem cell genes as LSC-related genes.


Overall, these analyses establish the necessity in CSC gene expression studies to functionally validate each stem cell population in a sensitive xenograft model. Further, they highlight the requirement to compare CSC populations against non-CSC cancer populations, as opposed to CSC vs normal populations, when the goal of the study is to provide insight into the entire stem cell-related gene expression program present in CSC.


Example 8

The HSC-R genes enriched in GSEA analysis of the LSC expression profile (CE-HSC/LSC) represent a group of stem cell related genes that are active in both stem cell populations compared to their respective non-stem cell fractions (FIG. 6d). Approximately half of these genes (18/44) have been implicated in stem cell function or leukemogenesis, or both (eg. EVI1):


ABCB1 (ATP-binding cassette, sub-family B (MDR/TAP), member 1; MDR1) acts as a drug transport pump and imparts a multidrug resistant phenotype to cancer cells1, 2. Further, the high expression of ABCB1 in stem cells provides a mechanism for the high efflux of dyes, which can be used to isolate a ‘side population’ of cells that are enriched for stem cells3, 4. Additionally, ABCB1 expression negatively correlates with treatment response in leukemia5.


ALCAM (activated leukocyte cell adhesion molecule; CD166) is a cell surface molecule identified as a marker for the enrichment of colon cancer stem cells6. ALCAM has been implicated in cancer; for example, increased expression of ALCAM is a prognostic marker for poor outcome in pancreatic cancel7, 8.


BAALC (Brain and acute leukemia gene, cytoplasmic) was identified in an attempt to isolate genes differentially expressed in AML+8 compared to cytogenetically normal AML9. High expression of BAALC correlates with poor outcome in leukemia10, 11. BAALC is preferentially expressed in CD34+ primitive cells and expression is down-regulated upon cell differentiation12.


BCL11A (B-cell CLL/lymphoma 11A (zinc finger protein)) is implicated in leukemogenesis as a target of chromosomal translocations of the immunoglobulin heavy chain locus in B-cell non-Hodgkin lymphomas13.


DAPK1 (Death-associated protein kinase 1) is a serine/threonine kinase gene involved in regulating apoptosis14. Decreased expression of DAPK1 has been implicated in both inherited and sporadic chronic lymphocytic leukemia15.


ERG (Ets-related gene), a transcription factor required for normal adult HSC function, is rearranged in human myeloid leukemia and Ewing's sarcoma16-18. Additionally, over-expression of ERG is observed in leukemia and associated with poor patient outcome in AML with normal karyotype10, 19, 20.


EVI1 (Ecotropic viral integration site 1) is a nuclear transcription factor implicated in regulation of adult HSC proliferation and maintenance21. Excision of EVI1 in mice results in a decrease of HSC frequency while over-expression results in greater self-renewal. Additionally, EVI1 plays a role in leukemogenesis22. It is a target of translocation events in human leukemia, for example, generating the fusion protein RUNX-EVI1 as a result of t(3;21)(q26;q22). High expression of EVI1 is associated with poor patient outcome22, 23.


FLT3 (Fms-like tyrosine kinase 3; Stem cell tyrosine kinase 1, STK1; Flk-2) is a receptor tyrosine kinase expressed in primitive hematopoietic cells that has been implicated in the regulation of HSC16, 24-26. Mutation of FLT3 is a strong prognostic indicator in CN-AML associated with poor outcome27-29.


HLA-DRB4 (major histocompatibility complex, class II, DR beta 4) has been linked to increased frequency of leukemia. For example, it is a marker for increased susceptibility for childhood ALL in males30.


HLF (Hepatic leukemia factor), a leucine zipper gene, is involved in gene fusions in human leukemia as well as acting as a positive regulator of human HSC31, 32.


HOXA5 (homeobox A5), along with HOXB2, HOXB3 and MEIS1 is a homeobox gene and is hypermethylated in leukemia33. The hypermethylation of HOXA5 is correlated with progression of CML to blast crisis34.


HOXB2 (homeobox B2) is a member of the HOX gene family. Increased HOXB2 expression is associated with NPM1 mutant CN AML, supporting a correlation between altered HOX expression and NPM1 mutation35.


HOXB3 (homeobox B3) is expressed in a putative HSC cell population of CD34+ cells36 and has been shown to regulate the proliferative capacity of murine HSC when mutated along with HOXB437. Furthermore, HOXB3 can induce AML in mice when expressed along with MEIS138.


INPP4B (inositol polyphosphate-4-phosphatase, type II, 105 kDa) has been implicated as a tumour suppressor gene, supported by the observation of common loss of heterozygosity of the INPP4B locus correlating with lower overall patient survival39.


MEIS1 (Myeloid ecotropic viral integration site 1 homolog, Meis homeobox 1) is a homeobox gene that is highly expressed in MLL rearranged leukemias40, 41. It has been shown to transform hematopoietic cells when co-expressed with genes such as HOXB3, HOXA9 and NUP98-HOXD13 and acts to regulate LSC frequency in a murine MLL leukemia model38, 42-44. Further, it has recently been shown to regulate HSC metabolism through Hif-1alpha45.


MYST3 (MYST histone acetyltransferase (monocytic leukemia) 3; MOZ) is a target of the t(8;16)(p11;p13) translocation commonly observed in M4/M5 AML46. It is a transcriptional activator and has histone acetyl-transferase activity46. As well, homozygous knockout of Myst3 resulted in HSC defects, indicating that it is the required for HSC function47.


SPTBN1 (spectrin, beta, non-erythrocytic 1) is a cytoskeletal protein identified as a fusion partner of FLT3 in atypical chronic myeloid leukemia48.


YES1 (v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1) is a member of the SRC family of kinases and, like SRC, is ubiquitously expressed. YES1 expression was shown to be enriched in murine HSC, ESC and NSC49. YES1 is implicated in maintaining mouse embryonic stem cells in an undifferentiated state50. Furthermore, YES1 was found to be amplified in gastric cancer51.


Example 9

Prior studies have generated normal human and murine hematopoietic gene signatures for populations enriched for stem, progenitor and mature cells. The overlap between the stem cell expression profiles shown here with 3 pre-existing stem cell expression sets available in the Molecular Signatures Database (MSigDB)52-54 using GSEA were examined. First, a human stem cell gene set, developed by Georgantas et al 2004, compared only CD34+ cells split into 2 populations consisting of stem cell enriched (CD34+/CD38− cells from bone marrow, cord blood and mobilized peripheral blood) and a progenitor enriched fraction (CD34+4/[CD38/Lin]+)52. This gene set (“HEMATOP_STEM_ALL_UP”) was enriched in both of the HSC-R and LSC-R expression profiles (FDR q<0.05), supporting the stem cell nature of the expression signatures described herein.


Next, a murine gene set representing genes more highly expressed in an HSC population than in a multipotent progenitor (MPP) population (Rhlo/Sca-1+/c-kit+/lin−/lo vs Rhhi/Sca-1+/c-kit+/lin−/lo) were examined53. The MPP in this case represents a progenitor population that can generate both lymphoid and myeloid cells but not reconstitute beyond 4 weeks. This HSC vs MPP list (“PARK_HSC_VS_MPP_UP”) was enriched for in our LSC-R and HSC-R expression profiles (FDR q=0.03 and 0.04, respectively). This further supports the normal hematopoietic gene expression data and indicates that AML LSC preferentially express an HSC program, not an MPP program, compared to non-LSC stem cell populations.


Finally, the 24 murine gene sets generated by Ivanova et al. 2002 available in MSigDB were examined54. These were generated by examining gene expression in murine stem cell, lineage committed progenitor and mature blood cells from both adult bone marrow and fetal liver and comparing multiple combinations of populations. In the case of adult bone marrow, both long-term and short-term HSCs were isolated (LT HSC and ST HSC, respectively). In general, the LSC-R and HSC-R profiles were enriched for gene sets from primitive cell populations and were negatively correlated with those derived from differentiated populations (“late progenitor” list and “mature” cell list). As expected, the HSC-R expression data correlated with the combined LT and ST HSC gene list (“HSC” FDR q=0.01) and weakly with the LT HSC list alone (FDR q=0.09). However, the HSC-R did not significantly correlate with the ST HSC gene set (FDR q=0.44). Since a ST HSC has not yet been isolated in the human system, this suggests two possible explanations, among others: that the ST HSC does not exist in humans or that the ST HSC gene expression program is unique and undetectable in our sorted population that contains all forms of human HSC. Examining the human LSC-R profile, there is enrichment of the genes in common to primitive cells (“HSC and progenitors”), a weak correlation with the murine LT HSC set (FDR q=0.14) but no correlation with the shared LT and ST stem cell (“HSC”) set (FDR q=0.45). This implies that LSC may preferentially express the gene programs expressed in murine primitive cells as well as, potentially, a subset of the programs specific for LT HSC, although these analyses may suffer from interspecies differences.


Overall, these analyses support the conclusion that HSC-related gene programs and not progenitor or mature gene programs are expressed in AML LSC compared to leukemic blast cells.


Example 10

The FLT3ITD mutation is a strong prognostic indicator of poor outcome in cytogenetically normal AML27-29. Multivariate analysis demonstrated that the LSC-R and HSC-R signatures could predict outcome independently of known molecular prognostic factors such as FLT3ITD status, NPM1 mutation and CEBPA (FIG. 16)29. Subdividing the 160 AML cohort by FLT3ITD status, it was found that stem cell signature gene expression was able to identify patients with worse outcome in each subset. The LSC-R signature was able to predict patients with worse outcome in the FLT3ITD− patients (p=0.00035, HR 2.8 (95% Cl 1.6-5.2) but not as effectively in the FLT3ITD+ patients (p=0.15, HR 1.5 (95% Cl 0.87-2.6) (FIG. 15). Conversely, the HSC-R signature is able to identify patients with worse outcome in the FLT3ITD+ group (p=0.0013, HR 2.6 (95% Cl 1.4-4.9) and not as successfully in the FLT3ITD− subset (p=0.15, HR 1.6 (95% Cl 0.85-2.9) (FIG. 15). Thus, the stem cell gene signatures are prognostically significant independently of other common prognostic factors.


Example 11
Determination of a Threshold

The expression values and clinical outcome data for the a group of normal AML such as the 160 cytogenetically normal AML samples used in the primary study will be used as a test group in an analysis to determine the optimal threshold of expression for the stratification of new patients into poor or good prognostic groups in the clinic.


Example 12

Individuals who present or are suspected of having a hematological cancer will provide a blood sample. The white blood cell fraction will be tested for the expression of two or more genes listed in Tables 2, 4, 6, 12 and/or 14 or for example two or more CE-HSC/LSC genes such as those listed in tables 13 and 19. The expression values will be scaled (e.g. normalized) to a standard (e.g. using experimental controls) and then compared to a threshold value to determine poor or good prognosis prediction.


Example 13

A prognostic analysis as conducted as was done in FIG. 7A was repeated for a combination of 2 probe sets from the LSC signature genes. Expression levels were significantly correlated with overall survival in the 160 AML cohort. The p value is 0.0293 and the hazard ratio is 1.53. The porbesets were 214252_s_at and 212676_at. The gene expression levels detected by these probesets are CLN5 and NF1.


While the present disclosure has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the disclosure is not limited to the disclosed examples. To the contrary, the disclosure is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.


All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.









TABLE 1





LSC probe set (25)







SEQ ID NO: 1-280
















TABLE 2







LSC gene signature (25)

















Representative



Gene

Entrez

Public ID NCBI


Probe Set ID
Symbol
Gene Title
Gene ID
UniGene ID
Accession















201242_s_at
ATP1B1
ATPase, Na+/K+
481
Hs.291196
BC000006




transporting, beta 1




polypeptide


201243_s_at
ATP1B1
ATPase, Na+/K+
481
Hs.291196
NM_001677




transporting, beta 1




polypeptide


201702_s_at
PPP1R10
protein phosphatase 1,
5514
Hs.106019
AI492873




regulatory (inhibitor)




subunit 10


204028_s_at
RABGAP1
RAB GTPase activating
23637
Hs.271341
NM_012197




protein 1


205321_at
EIF2S3
eukaryotic translation
1968
Hs.539684
NM_001415




initiation factor 2,




subunit 3 gamma,




52 kDa


206582_s_at
GPR56
G protein-coupled
9289
Hs.513633
NM_005682




receptor 56


207090_x_at
ZFP30
zinc finger protein 30
22835
Hs.716719
NM_014898




homolog (mouse)


207836_s_at
RBPMS
RNA binding protein
11030
Hs.334587
NM_006867




with multiple splicing


208993_s_at
PPIG
peptidylprolyl
9360
Hs.470544
AW340788




isomerase G




(cyclophilin G)


209272_at
NAB1
NGFI-A binding protein
4664
Hs.570078
AF045451




1 (EGR1 binding




protein 1)


209487_at
RBPMS
RNA binding protein
11030
Hs.334587
D84109




with multiple splicing


209488_s_at
RBPMS
RNA binding protein
11030
Hs.334587
D84109




with multiple splicing


211113_s_at
ABCG1
ATP-binding cassette,
9619
Hs.124649
U34919




sub-family G (WHITE),




member 1


212676_at
NF1
neurofibromin 1
4763
Hs.113577
AW293356


212976_at
LRRC8B
leucine rich repeat
23507
Hs.482017
R41498




containing 8 family,




member B


213056_at
FRMD4B
FERM domain
23150
Hs.709671
AU145019




containing 4B


214252_s_at
CLN5
ceroid-lipofuscinosis,
1203
Hs.30213
AV700514




neuronal 5


215411_s_at
TRAF3IP2
TRAF3 interacting
10758
Hs.654708
AL008730




protein 2


216262_s_at
TGIF2
TGFB-induced factor
60436
Hs.632264
AL050318




homeobox 2


218183_at
C16orf5
chromosome 16 open
29965
Hs.654653
NM_013399




reading frame 5


218907_s_at
LRRC61
leucine rich repeat
65999
Hs.647119
NM_023942




containing 61


219871_at
FLJ13197
hypothetical FLJ13197
79667
Hs.29725
NM_024614


220128_s_at
NIPAL2
NIPA-like domain
79815
Hs.309489
NM_024759




containing 2


221621_at
C17orf86
chromosome 17 open
654434

AF130050




reading frame 86


41113_at
ZNF500
zinc finger protein 500
26048
Hs.513316
AI871396
















TABLE 3







HSC probe set









Probe Set ID
probe sequence
Sequence ID No.













200672_x_at
5′-AAAGACTGCTGCTTCTGGAATTCCC-3′
SEQ ID NO: 281






200672_x_at
5′-AAGAAGCTGTCTGCGAAGTGGCCCT-3′
SEQ ID NO: 282





200672_x_at
5′-AAGCAGGTCCTGGCACAATGTTTAT-3′
SEQ ID NO: 283





200672_x_at
5′-ACACATGGATCCAGGCTATCTCTTC-3′
SEQ ID NO: 284





200672_x_at
5′-AGAGAAGCGGTTCAGCCTTTTTGGC-3′
SEQ ID NO: 285





200672_x_at
5′-AGCGAGGTCCCTGTGAGTTTGAAAG-3′
SEQ ID NO: 286





200672_x_at
5′-CCTTCTCTTACCTTTTCAGTGAAAT-3′
SEQ ID NO: 287





200672_x_at
5′-CGCCATCTCCTCTGATAAACACGAG-3′
SEQ ID NO: 288





200672_x_at
5′-CTGTGCCTAATGTTCCTCAATGTGG-3′
SEQ ID NO: 289





200672_x_at
5′-GAACCAACACATTACTCTCTGTGCC-3′
SEQ ID NO: 290





200672_x_at
5′-GGCAATGAGTACCTCTTCCAAGCCA-3′
SEQ ID NO: 291





201889_at
5′-AAGCAGTATCTGTTATTTAGCTGTA-3′
SEQ ID NO: 292





201889_at
5′-AATACTTCCCTCAATTCTGTAAATT-3′
SEQ ID NO: 293





201889_at
5′-AATTTAGTGATCAAACTGCCATTCA-3′
SEQ ID NO: 294





201889_at
5′-ATGACTTTATACCCAATTCTACATA-3′
SEQ ID NO: 295





201889_at
5′-GATCTATCTTTTTTTGTTACCTTCA-3′
SEQ ID NO: 296





201889_at
5′-GCCATTCACAGTGTAAGGCAGCACT-3′
SEQ ID NO: 297





201889_at
5′-GGCAGCACTTAAATTTCGAACCTAA-3′
SEQ ID NO: 298





201889_at
5′-TTACCTTCAGATGTTCACTAAATAA-3′
SEQ ID NO: 299





201889_at
5′-TTGACCCCAAATGACTTTATACCCA-3′
SEQ ID NO: 300





201889_at
5′-TTGGGATTTTTGGTGCTTATATGCT-3′
SEQ ID NO: 301





201889_at
5′-TTTGGAGTACTGTTTCTTCCTTCAA-3′
SEQ ID NO: 302





202551_s_at
5′-ACCCATTTGTGCATTGAGTTTTCTT-3′
SEQ ID NO: 303





202551_s_at
5′-AGCACTTTTATACTAATTAACCCAT-3′
SEQ ID NO: 304





202551_s_at
5′-GAGCAGTCAGCATTGCACCTGCTAT-3′
SEQ ID NO: 305





202551_s_at
5′-GATACCCAGTATGCTTAACGTGAAA-3′
SEQ ID NO: 306





202551_s_at
5′-GATGGCAGTTCTTATCTGCATCACT-3′
SEQ ID NO: 307





202551_s_at
5′-GCATTGCACCTGCTATGGAGAAGGG-3′
SEQ ID NO: 308





202551_s_at
5′-GCTCACTGGCCAGAGACATTGATGG-3′
SEQ ID NO: 309





202551_s_at
5′-GGAAGTTTGTTGTAGTATGCCTCAA-3′
SEQ ID NO: 310





202551_s_at
5′-GTAAATACTTGGACAGAGGTTGCTG-3′
SEQ ID NO: 311





202551_s_at
5′-GTTTTCAATTTGCTCACTGGCCAGA-3′
SEQ ID NO: 312





202551_s_at
5′-TGGTAACTTTTCAAACAGCCCTTAG-3′
SEQ ID NO: 313





203139_at
5′-CAGAAGACCCCTGACTCATCATTTG-3′
SEQ ID NO: 314





203139_at
5′-CAGTCCCTTATAATTGGTGCATAGC-3′
SEQ ID NO: 315





203139_at
5′-CATTCCCTCTCATCTCAGGTAGAAG-3′
SEQ ID NO: 316





203139_at
5′-CCTCCTCCAGGGTGATTTTATGATC-3′
SEQ ID NO: 317





203139_at
5′-CTCATCATTTGTGGCAGTCCCTTAT-3′
SEQ ID NO: 318





203139_at
5′-GATCCTGGTTTCATAACTTCCTGTA-3′
SEQ ID NO: 319





203139_at
5′-GATGGTTTCCACATTTAGATCCTGG-3′
SEQ ID NO: 320





203139_at
5′-TACACACTGTCATGCTTCATCATTC-3′
SEQ ID NO: 321





203139_at
5′-TGATCAGTGTTGTTGCTCTAGGAAG-3′
SEQ ID NO: 322





203139_at
5′-TGTCCTAATTCTTCTGTCCTGAGAA-3′
SEQ ID NO: 323





203139_at
5′-TTTTCCGTTTGCTTTTGTTCCAATG-3′
SEQ ID NO: 324





204069_at
5′-AAGCCTTACAGTTATCCTGCAAGGG-3′
SEQ ID NO: 325





204069_at
5′-ATAGTCCCACCTTGGAGCATTTATG-3′
SEQ ID NO: 326





204069_at
5′-ATCAGCTGTTGCAGGCAGTGTCTTA-3′
SEQ ID NO: 327





204069_at
5′-CACCTTATACATCACTTCCTGTTTT-3′
SEQ ID NO: 328





204069_at
5′-CATCAAGCATCATTGTCCCCATGCA-3′
SEQ ID NO: 329





204069_at
5′-CGCCTAGGATTTCAGCCATGCGCGC-3′
SEQ ID NO: 330





204069_at
5′-GAAGCCTAATTGTCACATCAAGCAT-3′
SEQ ID NO: 331





204069_at
5′-GAGCAAAGCATCGGTCATGTGTGTA-3′
SEQ ID NO: 332





204069_at
5′-GCATGTCTAATTCATTTACTCACCA-3′
SEQ ID NO: 333





204069_at
5′-GTGTATTTTTTCATAGTCCCACCTT-3′
SEQ ID NO: 334





204069_at
5′-TCTTTCTTCTCGCCTAGGATTTCAG-3′
SEQ ID NO: 335





204304_s_at
5′-AACCTACAGCATATTCTTCACGCAG-3′
SEQ ID NO: 336





204304_s_at
5′-AAGATTGGCCATGTTCCACTTGGAA-3′
SEQ ID NO: 337





204304_s_at
5′-ACAATTCTTAGATCTGGTGTCCAGC-3′
SEQ ID NO: 338





204304_s_at
5′-ACAGATGCCAATTACGGTGTACAGT-3′
SEQ ID NO: 339





204304_s_at
5′-GAATTCCAGATGTAGGCATTCCCCC-3′
SEQ ID NO: 340





204304_s_at
5′-GAGAAGATCCTGTCACAATTCTTAG-3′
SEQ ID NO: 341





204304_s_at
5′-GAGTGCAGCTAACATGAGTATCATC-3′
SEQ ID NO: 342





204304_s_at
5′-GAGTTTGGTCCCTAAATTTGCATGA-3′
SEQ ID NO: 343





204304_s_at
5′-GCGTAACTCCATCTGACAAATTCAA-3′
SEQ ID NO: 344





204304_s_at
5′-TAGAGAAACCTGCGTAACTCCATCT-3′
SEQ ID NO: 345





204304_s_at
5′-TGCTTCAGGAGTTTCATGTTGGATC-3′
SEQ ID NO: 346





204753_s_at
5′-AGTTCCTGGAATGGCACGTTGCTGC-3′
SEQ ID NO: 347





204753_s_at
5′-ATTTTAAGCCCTATCACTGACACAT-3′
SEQ ID NO: 348





204753_s_at
5′-CACTGACACATCAGCATGTTTTCTG-3′
SEQ ID NO: 349





204753_s_at
5′-CTGCCACAAAAATGTTCACTTCGAA-3′
SEQ ID NO: 350





204753_s_at
5′-GAATGGCACGTTGCTGCCAGTGCCC-3′
SEQ ID NO: 351





204753_s_at
5′-GATGACGAATCCTGCTCTAAAATAC-3′
SEQ ID NO: 352





204753_s_at
5′-GGCCCGCACGTTTTATGAGGTTGAT-3′
SEQ ID NO: 353





204753_s_at
5′-GGCTTGTGATGACGAATCCTGCTCT-3′
SEQ ID NO: 354





204753_s_at
5′-GTCAGTTAACGTCACCCAAAAGCAC-3′
SEQ ID NO: 355





204753_s_at
5′-TATCGGTGCTATGTGTTTGGTTTAT-3′
SEQ ID NO: 356





204753_s_at
5′-TTATGACAGTATCGAGGCTTGTGAT-3′
SEQ ID NO: 357





204754_at
5′-AGTCCAAACCTTTATCTGTCTGTTA-3′
SEQ ID NO: 358





204754_at
5′-CAACACCACAAAGATCGCATCTGTT-3′
SEQ ID NO: 359





204754_at
5′-CAAGGCATGGGACCAGGCCTGCTTG-3′
SEQ ID NO: 360





204754_at
5′-CCACTGGCAAGGCCAAGGTCTCCTC-3′
SEQ ID NO: 361





204754_at
5′-GAGCAAAGCCTTATCCGAATCGGAT-3′
SEQ ID NO: 362





204754_at
5′-GGATTTAGCACTGGGGTCTCAGCAC-3′
SEQ ID NO: 363





204754_at
5′-GGCCTGCTTGCCTATGTGTGATGGC-3′
SEQ ID NO: 364





204754_at
5′-GTCAATTAGAGCGATCCCAAGGCAT-3′
SEQ ID NO: 365





204754_at
5′-GTCTGAGACTAAGTGATCTGCCCTC-3′
SEQ ID NO: 366





204754_at
5′-GTCTTTAATTTTGAGCACCTTACCA-3′
SEQ ID NO: 367





204754_at
5′-TCCTCCACGTTTTTTCTGCAATTAA-3′
SEQ ID NO: 368





204755_x_at
5′-AAGGTGTTCATTTTGTCACAAGCTG-3′
SEQ ID NO: 369





204755_x_at
5′-ATGAGCATCTCAAATGTTTTCTGCA-3′
SEQ ID NO: 370





204755_x_at
5′-ATGGCCGTATCAAATGGTAGCTGAA-3′
SEQ ID NO: 371





204755_x_at
5′-ATGGGATTTTCTAGTTTCCTGCCTT-3′
SEQ ID NO: 372





204755_x_at
5′-ATTTGAGCACTGGTCTCTCTTGGAA-3′
SEQ ID NO: 373





204755_x_at
5′-CTCGTCAATCCATCAGCAATGCTTC-3′
SEQ ID NO: 374





204755_x_at
5′-GCAATGCTTCTCTCATAGTGTCATA-3′
SEQ ID NO: 375





204755_x_at
5′-GGACCATCCAAATTTATGGCCGTAT-3′
SEQ ID NO: 376





204755_x_at
5′-GGACGTAGAGTTGGCCTTTTTACAG-3′
SEQ ID NO: 377





204755_x_at
5′-TCCTGCCTTCAGAGTATCTAATCCT-3′
SEQ ID NO: 378





204755_x_at
5′-TTAATGATCTGGTGGTCTCCTCGTC-3′
SEQ ID NO: 379





204917_s_at
5′-ATGCATATTCAACACACTGCCTTAT-3′
SEQ ID NO: 380





204917_s_at
5′-CCAAGTCCTTTAACTCGTTGCAGTC-3′
SEQ ID NO: 381





204917_s_at
5′-CCAGTCCTTGGCTGTATCCATGTAA-3′
SEQ ID NO: 382





204917_s_at
5′-GAAATCCCCGGGAAGAGTTAGCCTG-3′
SEQ ID NO: 383





204917_s_at
5′-GAATTGCTGTCTAGCCTTAGTCAAT-3′
SEQ ID NO: 384





204917_s_at
5′-GAGTTAGCCTGGATAGCCTTGAAAA-3′
SEQ ID NO: 385





204917_s_at
5′-GTATCATGTATCTCTCTGTGGTGGT-3′
SEQ ID NO: 386





204917_s_at
5′-GTGGTGGTTCATTCCACAGGACGAA-3′
SEQ ID NO: 387





204917_s_at
5′-TAAGTACTTGGTCCCGTGGATGCTC-3′
SEQ ID NO: 388





204917_s_at
5′-TGAAAGTTGGGGCCCAGTCCTTGGC-3′
SEQ ID NO: 389





204917_s_at
5′-TGGATGCTCTTTCAATGCAGCACCC-3′
SEQ ID NO: 390





205376_at
5′-AAATCTCCTTCAAAATATCCAATCC-3′
SEQ ID NO: 391





205376_at
5′-AAGCTGACACCTAAGTTTACCAACA-3′
SEQ ID NO: 392





205376_at
5′-ACATGCTACAGCTGATGGCTTTCCC-3′
SEQ ID NO: 393





205376_at
5′-CAAGGACTTCTTTATCCGAGCGCTG-3′
SEQ ID NO: 394





205376_at
5′-CCGAGCGCTGGATTGCATGAGAAGA-3′
SEQ ID NO: 395





205376_at
5′-CTGGCTGCAACGATTTGCCGCAAAC-3′
SEQ ID NO: 396





205376_at
5′-GAATGGTATTCGTTTCACCTGTTGT-3′
SEQ ID NO: 397





205376_at
5′-GATGAGCACCAGTTACACAAGGACT-3′
SEQ ID NO: 398





205376_at
5′-GATGCCTCCTGATTATATTTCACAT-3′
SEQ ID NO: 399





205376_at
5′-GTAGAAATTATGTGGCTGGCTGCAA-3′
SEQ ID NO: 400





205376_at
5′-GTCAGTGACACTTGAACAATGCTCA-3′
SEQ ID NO: 401





205984_at
5′-AAATATCTGATCTTACCCTGGGACA-3′
SEQ ID NO: 402





205984_at
5′-AGATGACGCCTTTAGCTGATCTCTG-3′
SEQ ID NO: 403





205984_at
5′-ATCGTCAGCTGGAGCCGTACGAGCT-3′
SEQ ID NO: 404





205984_at
5′-GAAACTGCAGCTTCTCCATAATTTA-3′
SEQ ID NO: 405





205984_at
5′-GAGGGAACTGGATTGGACCCTTCCA-3′
SEQ ID NO: 406





205984_at
5′-GCTGTGACAACACTGTGGTGCGCAT-3′
SEQ ID NO: 407





205984_at
5′-GGAATTCTGTTTGTCTGGTCTTTGA-3′
SEQ ID NO: 408





205984_at
5′-GTGCGCATGGTCTCCAGTGGAAAAC-3′
SEQ ID NO: 409





205984_at
5′-TAACCAACCCAGTGATTTACATGCT-3′
SEQ ID NO: 410





205984_at
5′-TCATACCAGTCAGTATTTCCCAGCC-3′
SEQ ID NO: 411





205984_at
5′-TTCATGGCCCGGCCCAGATGAAAGT-3′
SEQ ID NO: 412





206385_s_at
5′-AAAGCCCTTCATCTAATATTTGTTG-3′
SEQ ID NO: 413





206385_s_at
5′-AAATGCTTGCCGCTTTAGAGGTGGA-3′
SEQ ID NO: 414





206385_s_at
5′-AAGCCAATCATTTGTAACCATTCTA-3′
SEQ ID NO: 415





206385_s_at
5′-ACCATACACTGGATGACCTAGTCGA-3′
SEQ ID NO: 416





206385_s_at
5′-GCATTCATTGACACATAGCTCTAAT-3′
SEQ ID NO: 417





206385_s_at
5′-GCTAGTAGAATGGCAGCACGCTGTA-3′
SEQ ID NO: 418





206385_s_at
5′-GTAACCATTCTAGCAGTGTCATATT-3′
SEQ ID NO: 419





206385_s_at
5′-GTAGACACCTTTCAGTAAGCCAATC-3′
SEQ ID NO: 420





206385_s_at
5′-TATACGGTAGTTGCTTTAGGGGGTG-3′
SEQ ID NO: 421





206385_s_at
5′-TGGTGCTCATAAAAGGCCCCAGTCG-3′
SEQ ID NO: 422





206385_s_at
5′-TTACTGTATTGTGTACTGGCTATAA-3′
SEQ ID NO: 423





206478_at
5′-ACACACTCTTACTCCCGTGATGTGT-3′
SEQ ID NO: 424





206478_at
5′-AGTCAAAGGCTGATGTCCTGTTTCT-3′
SEQ ID NO: 425





206478_at
5′-ATTTGACCACGTCCATTGTTTCCAT-3′
SEQ ID NO: 426





206478_at
5′-CAAGCCATGGCAATATCTGTCCCAC-3′
SEQ ID NO: 427





206478_at
5′-CATCTACATCCATATCATGCCCATG-3′
SEQ ID NO: 428





206478_at
5′-CATGCCCATGCATCTGTAACTTGCT-3′
SEQ ID NO: 429





206478_at
5′-GAGTTTGTTCAATGCATGTGTCTGT-3′
SEQ ID NO: 430





206478_at
5′-GTGATGTGTGTTAAGGGCTCCGATG-3′
SEQ ID NO: 431





206478_at
5′-TGAATTTCTGCACGCTGTTGTCTGT-3′
SEQ ID NO: 432





206478_at
5′-TGTAACTTGCTTTTCCCGTGTAAGA-3′
SEQ ID NO: 433





206478_at
5′-TGTTTCCATCTTTTGGGCTGTTCTT-3′
SEQ ID NO: 434





206683_at
5′-AAAACCTTCCGAGTGAGCTCACATC-3′
SEQ ID NO: 435





206683_at
5′-AACATGCAGCAGTTTTCAGTGGAGA-3′
SEQ ID NO: 436





206683_at
5′-ACATCTTATTCGACACTTTAGAATT-3′
SEQ ID NO: 437





206683_at
5′-AGAGCTCAAACCTTAGTCAACACCA-3′
SEQ ID NO: 438





206683_at
5′-AGCTCAAAACTTGCTAGGCATCAGA-3′
SEQ ID NO: 439





206683_at
5′-GAACTCACATCTTATCAGGCATCAG-3′
SEQ ID NO: 440





206683_at
5′-GCTCAGATCTTACTAGACATCGGCG-3′
SEQ ID NO: 441





206683_at
5′-GCTTTCAGGCACAGCTCAAAACTTG-3′
SEQ ID NO: 442





206683_at
5′-GCTTTGCAGAGAGCTCAGATCTTAC-3′
SEQ ID NO: 443





206683_at
5′-GGAGAGCATTCAACCTGAACTCACA-3′
SEQ ID NO: 444





206683_at
5′-TAGACATCGGCGAATTCACACTGGG-3′
SEQ ID NO: 445





208892_s_at
5′-ATGGCGAAGTCTTTAGTCTTTTTCA-3′
SEQ ID NO: 446





208892_s_at
5′-ATTTGCAGCATGCTTGACTTTACCA-3′
SEQ ID NO: 447





208892_s_at
5′-CACTAAGACCTTGTTATGGCGAAGT-3′
SEQ ID NO: 448





208892_s_at
5′-CGGACACTATTATCACTAAGACCTT-3′
SEQ ID NO: 449





208892_s_at
5′-GACTTTACCAATTCTGATGACATCT-3′
SEQ ID NO: 450





208892_s_at
5′-GATAATCTGGGAAAGACACCAAATC-3′
SEQ ID NO: 451





208892_s_at
5′-GATGACATCTTTACGGACACTATTA-3′
SEQ ID NO: 452





208892_s_at
5′-GTTGTCGCAAAGGGGATAATCTGGG-3′
SEQ ID NO: 453





208892_s_at
5′-TATGCCTTACCTTTGTAAATATTTT-3′
SEQ ID NO: 454





208892_s_at
5′-TGCTTGTGTTGTCGCAAAGGGGATA-3′
SEQ ID NO: 455





208892_s_at
5′-TTAGTCTTTTTCATGTATTTTCCTC-3′
SEQ ID NO: 456





209487_at
5′-AACTATTTCTTGGCGACCTTTGAGA-3′
SEQ ID NO: 457





209487_at
5′-AATTAGATTTGTCTCTGGGAATGTG-3′
SEQ ID NO: 458





209487_at
5′-CTTTCACCAAAACTATTTCTTGGCG-3′
SEQ ID NO: 459





209487_at
5′-GGAGCTCCCATGTTGAATTTGTTTG-3′
SEQ ID NO: 460





209487_at
5′-GTGTTTCTCTCCTGAGGCAAAGCCC-3′
SEQ ID NO: 461





209487_at
5′-GTGTTTGTAACATACCAACCTACTG-3′
SEQ ID NO: 462





209487_at
5′-TCTTGGCGACCTTTGAGAGATTTCA-3′
SEQ ID NO: 463





209487_at
5′-TGTAACATACCAACCTACTGCAGAC-3′
SEQ ID NO: 464





209487_at
5′-TTGTCCACTTCTCCAGCAAATTAGA-3′
SEQ ID NO: 465





209487_at
5′-TTGTCTCTGGGAATGTGTTTGTAAC-3′
SEQ ID NO: 466





209487_at
5′-TTTTGTCCACTTCTCCAGCAAATTA-3′
SEQ ID NO: 467





209560_s_at
5′-AATCTGGTGAACGCTACGCTTACAT-3′
SEQ ID NO: 468





209560_s_at
5′-CAAGTGCGAGACCTGGGTGTCCAAC-3′
SEQ ID NO: 469





209560_s_at
5′-GAGGAGATCTAAGCAGCGTTCCCAC-3′
SEQ ID NO: 470





209560_s_at
5′-GAGTTCCGCAGAGCTTACTATACGC-3′
SEQ ID NO: 471





209560_s_at
5′-GTATCGTCTTCCTCAACAAGTGCGA-3′
SEQ ID NO: 472





209560_s_at
5′-GTTCGCTATCTCTTGTGTCAAATCT-3′
SEQ ID NO: 473





209560_s_at
5′-TACTATACGCGGTCTGTCCTAATCT-3′
SEQ ID NO: 474





209560_s_at
5′-TCGACATGACCACCTTCAGCAAGGA-3′
SEQ ID NO: 475





209560_s_at
5′-TGCAAAAACAATCCTCTTTCTCTCT-3′
SEQ ID NO: 476





209560_s_at
5′-TGCGCTACAACCACATGCTGCGGAA-3′
SEQ ID NO: 477





209560_s_at
5′-TGTCCTAATCTTTGTGGTGTTCGCT-3′
SEQ ID NO: 478





209993_at
5′-AAAGCGCCAGTGAACTCTGACTGTA-3′
SEQ ID NO: 479





209993_at
5′-AACAACGCATTGCCATAGCTCGTGC-3′
SEQ ID NO: 480





209993_at
5′-AGCCACGTCAGCTCTGGATACAGAA-3′
SEQ ID NO: 481





209993_at
5′-CAAAGGAACTCAGCTCTCTGGTGGC-3′
SEQ ID NO: 482





209993_at
5′-CAGCCTCATATTTTGCTTTTGGATG-3′
SEQ ID NO: 483





209993_at
5′-GAGTGAGAGACATCATCAAGTGGAG-3′
SEQ ID NO: 484





209993_at
5′-GCCCTTGTTAGACAGCCTCATATTT-3′
SEQ ID NO: 485





209993_at
5′-GTCACTGCCTAATAAATATAGCACT-3′
SEQ ID NO: 486





209993_at
5′-TCCTCAGTCAAGTTCAGAGTCTTCA-3′
SEQ ID NO: 487





209993_at
5′-TCTGTTTAACATTTCCTCAGTCAAG-3′
SEQ ID NO: 488





209993_at
5′-TTTGGATGAAGCCACGTCAGCTCTG-3′
SEQ ID NO: 489





211597_s_at
5′-AAGCTATGTGTATCTTCTGTGTAAA-3′
SEQ ID NO: 490





211597_s_at
5′-AATGGTGTGGCTAGCATTTCCCTTT-3′
SEQ ID NO: 491





211597_s_at
5′-ACTTCCTTGGAATATAGCTGCATTA-3′
SEQ ID NO: 492





211597_s_at
5′-AGTCACTTTCCTTATGTATCATCTA-3′
SEQ ID NO: 493





211597_s_at
5′-CTTCCCTAAGTCACTTTCCTTATGT-3′
SEQ ID NO: 494





211597_s_at
5′-GAAGCCTGTTGGGCCAGAAGACAGA-3′
SEQ ID NO: 495





211597_s_at
5′-GAAGGGAACACATTTCCTTCTGAAC-3′
SEQ ID NO: 496





211597_s_at
5′-GCAATCCAGGCCTCTGTTGAAAAGA-3′
SEQ ID NO: 497





211597_s_at
5′-TAAGTTTGCTTTTGACCATCACCTC-3′
SEQ ID NO: 498





211597_s_at
5′-TAATCCATTTAGCAATCCAGGCCTC-3′
SEQ ID NO: 499





211597_s_at
5′-TCACCTCCCAGTAGCAATTTGCTTT-3′
SEQ ID NO: 500





212071_s_at
5′-AAACCATTTGTATCTGGCATCACTT-3′
SEQ ID NO: 501





212071_s_at
5′-AATTTTCATCTTACTGCACAATCAA-3′
SEQ ID NO: 502





212071_s_at
5′-ACATGCGGCTTTTCTGCATCAACTG-3′
SEQ ID NO: 503





212071_s_at
5′-GAGGCTGGGCCTGAACAGGGAGGTG-3′
SEQ ID NO: 504





212071_s_at
5′-GTGCTCAGTCGTACGACCTGTACCT-3′
SEQ ID NO: 505





212071_s_at
5′-TAACACACGACATGCGGCTTTTCTG-3′
SEQ ID NO: 506





212071_s_at
5′-TAATTTGCTTCATTTCCTTGCTATT-3′
SEQ ID NO: 507





212071_s_at
5′-TAGGAATGAACTCCAGAGGCTGGGC-3′
SEQ ID NO: 508





212071_s_at
5′-TCTAATGGTTACTTGCTCGTGCGTT-3′
SEQ ID NO: 509





212071_s_at
5′-TCTGGCATCACTTACTAACACACGA-3′
SEQ ID NO: 510





212071_s_at
5′-TGCATTTCTCTGTCACTGTAACTAT-3′
SEQ ID NO: 511





212488_at
5′-AAAAGCCATAGCCGAGGACTGTCCC-3′
SEQ ID NO: 512





212488_at
5′-AACACCGCCAGCGTGGATTTTCCAA-3′
SEQ ID NO: 513





212488_at
5′-ACCACCAGAATGCAGTTCCAGCTTA-3′
SEQ ID NO: 514





212488_at
5′-CAGACCACTCTAGCCACAGTATATT-3′
SEQ ID NO: 515





212488_at
5′-CCGTGGACTGCGTCTAGGTCATGTG-3′
SEQ ID NO: 516





212488_at
5′-CTCTGTGGTCCCTTCAAAGTTGTTA-3′
SEQ ID NO: 517





212488_at
5′-GAAAGGCGATCTCTTCACTGTGAAA-3′
SEQ ID NO: 518





212488_at
5′-GAGAGTCTCTGGAGCCCAGGATGCC-3′
SEQ ID NO: 519





212488_at
5′-GGATGCCAGCATGTGCCAATGACTG-3′
SEQ ID NO: 520





212488_at
5′-TGCCAATGACTGTCACCTTCATCTC-3′
SEQ ID NO: 521





212488_at
5′-TGGAAAGTAAGTCTCGCTCTTGCCA-3′
SEQ ID NO: 522





212750_at
5′-AAAATCTTCGCAGATCTTTGATATC-3′
SEQ ID NO: 523





212750_at
5′-AAGGCCTGTGACAGAATTCGCTGTT-3′
SEQ ID NO: 524





212750_at
5′-ATGGGCATTGCAAGTGCCACCGTGC-3′
SEQ ID NO: 525





212750_at
5′-CCTGCTTCCCATGGGCATTGCAAGT-3′
SEQ ID NO: 526





212750_at
5′-CTCCCCAACAGGTCTCTCTTGTTGG-3′
SEQ ID NO: 527





212750_at
5′-CTCCGCAATAATTCACCAGACCAGA-3′
SEQ ID NO: 528





212750_at
5′-CTGCCCCAGGGCACATAAGAGCAAA-3′
SEQ ID NO: 529





212750_at
5′-GGATGACTCTGCAAAAGTGACCCCC-3′
SEQ ID NO: 530





212750_at
5′-GTATACTGTATCAGCAGCTTTGTGT-3′
SEQ ID NO: 531





212750_at
5′-TAACTTGGGGATGGTCTCCCCTGCC-3′
SEQ ID NO: 532





212750_at
5′-TACTGAGGTAACTTCCACGTAGCCC-3′
SEQ ID NO: 533





213094_at
5′-AATTCAGACTCTCTTTTCATTATGT-3′
SEQ ID NO: 534





213094_at
5′-AGAGTCATAGTCTAGGATCCTGAGA-3′
SEQ ID NO: 535





213094_at
5′-GATTGAGCCAAATTCTGTTGTCAGT-3′
SEQ ID NO: 536





213094_at
5′-GTTCTAAGCATGCAGTTCTCACCTC-3′
SEQ ID NO: 537





213094_at
5′-TAGCTAATTTGCCATTTTACTTAAA-3′
SEQ ID NO: 538





213094_at
5′-TAGCTGGGGAGCCTAAATTTAGTTC-3′
SEQ ID NO: 539





213094_at
5′-TCCTTTCTTAGCTTGATATTGCCTA-3′
SEQ ID NO: 540





213094_at
5′-TGTCACCATTCACTTGCATTGTAAA-3′
SEQ ID NO: 541





213094_at
5′-TTCTGTTGTCAGTTCTAAGCATGCA-3′
SEQ ID NO: 542





213094_at
5′-TTGATATTGCCTAGCTTTGTTGTTT-3′
SEQ ID NO: 543





213094_at
5′-TTTTCTTTGTCTGTTGTTGGCATAG-3′
SEQ ID NO: 544





213510_x_at
5′-AATATCTAGTTCTCAGAGCATTTGG-3′
SEQ ID NO: 545





213510_x_at
5′-ACTTGTTGACAATGCACTGACTTTA-3′
SEQ ID NO: 546





213510_x_at
5′-ATATAAAATCTGTCCTTTCCTACCT-3′
SEQ ID NO: 547





213510_x_at
5′-CTACTAATGTTGTTTGATCTGTGTT-3′
SEQ ID NO: 548





213510_x_at
5′-GATCTGTGTTTGTTATACTGGTTGT-3′
SEQ ID NO: 549





213510_x_at
5′-GGAGTGGCCTAAATTATCTAATGTA-3′
SEQ ID NO: 550





213510_x_at
5′-GGTTATCTTAAATGGCTACCTAAAT-3′
SEQ ID NO: 551





213510_x_at
5′-TAACCACATTCACCTTGTAAATGAC-3′
SEQ ID NO: 552





213510_x_at
5′-TGGCTACCTAAATTGAAATCCTTTT-3′
SEQ ID NO: 553





213510_x_at
5′-TTTATCTGTAACTGTTATCCAAACA-3′
SEQ ID NO: 554





213510_x_at
5′-TTTCCTACCTGGACATGTCCCATTA-3′
SEQ ID NO: 555





213844_at
5′-AAATAGCACATGCTCTTTGCCTCTC-3′
SEQ ID NO: 556





213844_at
5′-AGGTGACTTTCTGAAACTCCCTTGT-3′
SEQ ID NO: 557





213844_at
5′-AGTAGATCTGCTTTCTGTTCATCTC-3′
SEQ ID NO: 558





213844_at
5′-CCCTGGATGCGCAAGCTGCACATAA-3′
SEQ ID NO: 559





213844_at
5′-CGTCCCTGAGTATCTGAGCGTTTAA-3′
SEQ ID NO: 560





213844_at
5′-CGTTACCTGACCCGCAGAAGGAGGA-3′
SEQ ID NO: 561





213844_at
5′-GTTCATCTCTTTGTCCTGAATGGCT-3′
SEQ ID NO: 562





213844_at
5′-GTTTATTGCCATTATAGCGCCTGTA-3′
SEQ ID NO: 563





213844_at
5′-TAGCGGATCCCGCGTAGTGTCAGTA-3′
SEQ ID NO: 564





213844_at
5′-TCATGACAACATAGGCGGCCCGGAA-3′
SEQ ID NO: 565





213844_at
5′-TCGTTGCCCTAATTCATCTTTTAAT-3′
SEQ ID NO: 566





218379_at
5′-AGCATAAATCCCCTTTTCAGGAAGA-3′
SEQ ID NO: 567





218379_at
5′-AGCCTTTAAGTGCTGCTTCTGTCAG-3′
SEQ ID NO: 568





218379_at
5′-ATCCCATTTGAGGTATAAGTCACTC-3′
SEQ ID NO: 569





218379_at
5′-CAGTGTTAGCATAAATCCCCTTTTC-3′
SEQ ID NO: 570





218379_at
5′-CCACAGCATTTGTACTGTTCCTTTT-3′
SEQ ID NO: 571





218379_at
5′-GAGCTTTACCCTAGTTGAACATACA-3′
SEQ ID NO: 572





218379_at
5′-GATTTACACATACTGTTTCATTCTA-3′
SEQ ID NO: 573





218379_at
5′-GGAAGTTAAAATATCTCTACACGTA-3′
SEQ ID NO: 574





218379_at
5′-GTGACATGCTCTTGAGCTTTACCCT-3′
SEQ ID NO: 575





218379_at
5′-GTGCTGCTTCTGTCAGTCAAACGTT-3′
SEQ ID NO: 576





218379_at
5′-TTCAAAGTGCCCAGACTGTGTACAA-3′
SEQ ID NO: 577





218723_s_at
5′-ACTGAATTCTCCAACAGACTCTACC-3′
SEQ ID NO: 578





218723_s_at
5′-CAGGCTCACCTTAAAATCAGCCCTT-3′
SEQ ID NO: 579





218723_s_at
5′-CCACTGTCACTCCTCAGAAAGCTAA-3′
SEQ ID NO: 580





218723_s_at
5′-GAACAGACGATCCATGCTAATATTG-3′
SEQ ID NO: 581





218723_s_at
5′-GAAGCCTTCATTGCTGATCTTGACA-3′
SEQ ID NO: 582





218723_s_at
5′-GAGGACCTGCTAAAATCAGCTACTA-3′
SEQ ID NO: 583





218723_s_at
5′-GCTTCAGAAAGTTCCGAGGACCTGC-3′
SEQ ID NO: 584





218723_s_at
5′-GGACAAAGACGTGCACTCAACCTTC-3′
SEQ ID NO: 585





218723_s_at
5′-TAGCAGTAAGCTTTCCCATTATAAT-3′
SEQ ID NO: 586





218723_s_at
5′-TCAGCTACTAGAATCTGCTGCCAGA-3′
SEQ ID NO: 587





218723_s_at
5′-TCTGGGTCCTTTCATCATAAGGGAG-3′
SEQ ID NO: 588





218899_s_at
5′-AATGCATCTGGCTACTTTTTCATGT-3′
SEQ ID NO: 589





218899_s_at
5′-ACAAGACTTTACCATACACGCAACT-3′
SEQ ID NO: 590





218899_s_at
5′-ACTGGCATTACTCAGCAGGAGCCCC-3′
SEQ ID NO: 591





218899_s_at
5′-AGAAACTAATCCTTACTATCCTATT-3′
SEQ ID NO: 592





218899_s_at
5′-ATTAGGATACCACTTTTCATTGCAA-3′
SEQ ID NO: 593





218899_s_at
5′-CAAGTTCAAGGGCTCTTTCTCCCTG-3′
SEQ ID NO: 594





218899_s_at
5′-CTGCATCAGTTCACTGCTGCATGTT-3′
SEQ ID NO: 595





218899_s_at
5′-GAAACACTTTCTCACTTACAGGGGA-3′
SEQ ID NO: 596





218899_s_at
5′-GGATTTCACGGAGACAGCAACCAGA-3′
SEQ ID NO: 597





218899_s_at
5′-TGGCTTCTCTTTACAGCTTTGTTTC-3′
SEQ ID NO: 598





218899_s_at
5′-TTCATATGTCCCCACTGGCATTACT-3′
SEQ ID NO: 599





218966_at
5′-AAGAATCCCAATTGCACCTTCTGTT-3′
SEQ ID NO: 600





218966_at
5′-ACTTTCGCTCTCTAATCAGCATTTC-3′
SEQ ID NO: 601





218966_at
5′-ATTGTGTCGGACCCTACTTTTGAGA-3′
SEQ ID NO: 602





218966_at
5′-GCAACCTAAATTACTTTCGCTCTCT-3′
SEQ ID NO: 603





218966_at
5′-GCACCTTCTGTTTCTGACAGTCACA-3′
SEQ ID NO: 604





218966_at
5′-GCATCACCCTGCTAATACATAATAA-3′
SEQ ID NO: 605





218966_at
5′-TAGTCTCTGGCCTGTGGATCCAGTG-3′
SEQ ID NO: 606





218966_at
5′-TCTTACCTGCCAACATATTCACCAT-3′
SEQ ID NO: 607





218966_at
5′-TGGATCCAGTGCTATTCTGTCACCA-3′
SEQ ID NO: 608





218966_at
5′-TGGGAACTGGCTATTCCTTGTCCCG-3′
SEQ ID NO: 609





218966_at
5′-TTGATAAGCACTCCTAGTCTCTGGC-3′
SEQ ID NO: 610





219497_s_at
5′-ATGGTGCTTTATATTTAGATTGGAA-3′
SEQ ID NO: 611





219497_s_at
5′-ATTATTGCTTATGTGCCCTGTTCAA-3′
SEQ ID NO: 612





219497_s_at
5′-ATTCCAGCATCTTACCTTCATATGC-3′
SEQ ID NO: 613





219497_s_at
5′-GAAAGCCCGCTTTAGTCAATACTTT-3′
SEQ ID NO: 614





219497_s_at
5′-GAAAGCTGTTTGTCGTAACTTGAAA-3′
SEQ ID NO: 615





219497_s_at
5′-GGCAGTTGTCTGCATTAACCTGTTC-3′
SEQ ID NO: 616





219497_s_at
5′-GGCCTTTTCTATTCCTGTAATGAAA-3′
SEQ ID NO: 617





219497_s_at
5′-TATCTTTTACTATGGGAGTCACTAT-3′
SEQ ID NO: 618





219497_s_at
5′-TATGTAGTGTGCTTTTTGTCCCTTT-3′
SEQ ID NO: 619





219497_s_at
5′-TATTTGTTTCTGGTCTTTGTTAAGT-3′
SEQ ID NO: 620





219497_s_at
5′-TGTTATTGGCCTTTTCTATTCCTGT-3′
SEQ ID NO: 621





220416_at
5′-AAACCTCAGTTCTGTCACTTCTTAC-3′
SEQ ID NO: 622





220416_at
5′-AAGTGATTCGGGCATATTTGTGTGA-3′
SEQ ID NO: 623





220416_at
5′-AGCTCAAATTTCAGTCCACATATGA-3′
SEQ ID NO: 624





220416_at
5′-CAATGGTTTTTCTAACAACCTCAGT-3′
SEQ ID NO: 625





220416_at
5′-CATCATCCAGACCATTAATAGAATC-3′
SEQ ID NO: 626





220416_at
5′-GAAATGTGAGAGAGGCTCGCCACTA-3′
SEQ ID NO: 627





220416_at
5′-GAGGCTCGCCACTAAGTATTCTAAA-3′
SEQ ID NO: 628





220416_at
5′-GATACTCAGCTGTCATGTTTATAAT-3′
SEQ ID NO: 629





220416_at
5′-GCTCTCAGTCTGTGTCATGTAAGGA-3′
SEQ ID NO: 630





220416_at
5′-TAGTTGCTTTTGATACTCAGCTGTC-3′
SEQ ID NO: 631





220416_at
5′-TTCAAAAAGCTCTCAGTCTGTGTCA-3′
SEQ ID NO: 632





221841_s_at
5′-AAACTGCTGCATACTTTGACAAGGA-3′
SEQ ID NO: 633





221841_s_at
5′-AAAGATCACCTTGTATTCTCTTTAC-3′
SEQ ID NO: 634





221841_s_at
5′-AATCTATATTTGTCTTCCGATCAAC-3′
SEQ ID NO: 635





221841_s_at
5′-ATACCTGGTTTACTTCTTTAGCATT-3′
SEQ ID NO: 636





221841_s_at
5′-ATCCGACTTGAATATTCCTGGACTT-3′
SEQ ID NO: 637





221841_s_at
5′-CAGACAGTCTGTTATGCACTGTGGT-3′
SEQ ID NO: 638





221841_s_at
5′-GATGGTGCTTGGTGAGTCTTGGTTC-3′
SEQ ID NO: 639





221841_s_at
5′-GCCAAGGGGGTGACTGGAAGTTGTG-3′
SEQ ID NO: 640





221841_s_at
5′-GGAAGACCAGAATTCCCTTGAATTG-3′
SEQ ID NO: 641





221841_s_at
5′-GGTTTATTCCCAAGTATGCCTTAAG-3′
SEQ ID NO: 642





221841_s_at
5′-TTTTCTATATAGTTCCTTGCCTTAA-3′
SEQ ID NO: 643





222164_at
5′-AGAAAACACCTGTGAAGCTGGAGGT-3′
SEQ ID NO: 644





222164_at
5′-AGTTGACTTCCATCAGTGTTGAGCC-3′
SEQ ID NO: 645





222164_at
5′-ATAAGAAAATCTCCTTGTGGTGAAG-3′
SEQ ID NO: 646





222164_at
5′-CACTCATCGCTGTTCCGAACAAGTC-3′
SEQ ID NO: 647





222164_at
5′-GAATGTCTAAGTGAAGGGACCAGTT-3′
SEQ ID NO: 648





222164_at
5′-GAGATTGTTAAGCAGTTGACTTCCA-3′
SEQ ID NO: 649





222164_at
5′-GGTGTGTGCTGACTGGATTCAGAGG-3′
SEQ ID NO: 650





222164_at
5′-GGTTCAGAGACATGGGATCGTTTCC-3′
SEQ ID NO: 651





222164_at
5′-TCCATCAGTGTTGAGCCAGGAATTG-3′
SEQ ID NO: 652





222164_at
5′-TCGCTGTTCCGAACAAGTCAGCCAG-3′
SEQ ID NO: 653





222164_at
5′-TGAAGCTGGAGGTGACCATTCACCA-3′
SEQ ID NO: 654





226206_at
5′-AAACAGATCACATGTGGGCCCGTGT-3′
SEQ ID NO: 655





226206_at
5′-AAGAGATCCAGGTCTTTGCGTTTCC-3′
SEQ ID NO: 656





226206_at
5′-AAGCACGGTGTGTTCTGCTTTTCTT-3′
SEQ ID NO: 657





226206_at
5′-AGACGAGGGACTCTTTGTCACGTGG-3′
SEQ ID NO: 658





226206_at
5′-CACCTAATTTATTGCCGTGCGTCCT-3′
SEQ ID NO: 659





226206_at
5′-GCCGGGGAAGCACGGTGTGTTCTGC-3′
SEQ ID NO: 660





226206_at
5′-GTGACTGCTTTTGTACCTTTGCAAT-3′
SEQ ID NO: 661





226206_at
5′-TGCGGCCACCACCTAATTTATTGCC-3′
SEQ ID NO: 662





226206_at
5′-TGTGCTACTTGGCAGTTCCATTTCA-3′
SEQ ID NO: 663





226206_at
5′-TTCTTGGTGTCCACGTCTTGTGGGC-3′
SEQ ID NO: 664





226206_at
5′-TTTTGTGCTGCTTTTTATCATGATA-3′
SEQ ID NO: 665





226420_at
5′-AAATAGCACTGTTCCAGTCAGCCAC-3′
SEQ ID NO: 666





226420_at
5′-AATGAAGTGTTCCCAACCTTATGTT-3′
SEQ ID NO: 667





226420_at
5′-ACTCCATATTTTATGCTGGTTGTCT-3′
SEQ ID NO: 668





226420_at
5′-ACTGTATTCAGTTATTTTGCCCTTT-3′
SEQ ID NO: 669





226420_at
5′-ACTTTATGACGTCTGAGGCACACCC-3′
SEQ ID NO: 670





226420_at
5′-ATGGTGTTTGGCTTTTCTTAACATT-3′
SEQ ID NO: 671





226420_at
5′-GCCTTTCAGTGCATTACTATGGGAG-3′
SEQ ID NO: 672





226420_at
5′-GTCAGCCACTACTTTATGACGTCTG-3′
SEQ ID NO: 673





226420_at
5′-GTTGTCTGCAAGCTTGTGCGATGTT-3′
SEQ ID NO: 674





226420_at
5′-TGAGGTACTTTCTTCAAATGCTTTG-3′
SEQ ID NO: 675





226420_at
5′-TTTTGCCCTTTATTGAGGAACCAGA-3′
SEQ ID NO: 676





229344_x_at
5′-AATGCACCGGTTTGGATTCAGGCAC-3′
SEQ ID NO: 677





229344_x_at
5′-ATAACTCCAACCTGTTTGATTCCGT-3′
SEQ ID NO: 678





229344_x_at
5′-CTTCCCCCAATAATGCAGCTGTATA-3′
SEQ ID NO: 679





229344_x_at
5′-CTTCTGCGTCTGTGAGGCCAATGCA-3′
SEQ ID NO: 680





229344_x_at
5′-GACTAAGATTCCTGCATTTTGACTC-3′
SEQ ID NO: 681





229344_x_at
5′-GAGGCCAATGCAAATCCTTTTCAGG-3′
SEQ ID NO: 682





229344_x_at
5′-GATTTGACTGTGTGCTTTTTCAAGT-3′
SEQ ID NO: 683





229344_x_at
5′-GTTTGATTCCGTCTGTTTTCTAAAT-3′
SEQ ID NO: 684





229344_x_at
5′-TCCCCCTTCCTGATGATGAGTGAGA-3′
SEQ ID NO: 685





229344_x_at
5′-TGAGAACTTTCGGGGTCAGTGCCCT-3′
SEQ ID NO: 686





229344_x_at
5′-TTTTTTGCTTACCCTCATCAACAGA-3′
SEQ ID NO: 687





235490_at
5′-CAGGAGTGCACGGCGCAGATGTATA-3′
SEQ ID NO: 688





235490_at
5′-GATAACTTTAATCCTCACTTCTCAG-3′
SEQ ID NO: 689





235490_at
5′-GCACATCAGTAAATATCTGCAGTCT-3′
SEQ ID NO: 690





235490_at
5′-GTCGTTTGATAACTTTAATCCTCAC-3′
SEQ ID NO: 691





235490_at
5′-GTGCACGGCGCAGATGTATATACAT-3′
SEQ ID NO: 692





235490_at
5′-GTGGTTGCCCTCAGGATGGTATTCA-3′
SEQ ID NO: 693





235490_at
5′-TAATACAAATGGGCTCTTTGTTTTT-3′
SEQ ID NO: 694





235490_at
5′-TCTGCAGTCTTGTGCACATGGTGGT-3′
SEQ ID NO: 695





235490_at
5′-TTAATCCTCACTTCTCAGGAAACAT-3′
SEQ ID NO: 696





235490_at
5′-TTCTCAGGAAACATTGCACATCAGT-3′
SEQ ID NO: 697





235490_at
5′-TTGGTCTGTCGCCAAGGCAGGAGTG-3′
SEQ ID NO: 698





239328_at
5′-AAATGGTAGCAACAGACAGCCCTCT-3′
SEQ ID NO: 699





239328_at
5′-AGCATGGAATTGTCTACGCCTTTTG-3′
SEQ ID NO: 700





239328_at
5′-CTTTTGATTGGAATGCACTCCCCCT-3′
SEQ ID NO: 701





239328_at
5′-GAAAGACCATCAATCCTGGGTTTTA-3′
SEQ ID NO: 702





239328_at
5′-GGAGGTGAACGTCTTTGTGGCTATG-3′
SEQ ID NO: 703





239328_at
5′-GGTGAAAGTCGGCCTGTGAGTAACA-3′
SEQ ID NO: 704





239328_at
5′-TAGGTTCAGGGTCAGTTACCAGCCT-3′
SEQ ID NO: 705





239328_at
5′-TCACCATTCTTTCCCATAAGGCTTG-3′
SEQ ID NO: 706





239328_at
5′-TCAGTTCCGTGCTCTGTAAAACCGA-3′
SEQ ID NO: 707





239328_at
5′-TGCTTTACCTACCTTCCAAGGTTAT-3′
SEQ ID NO: 708





239328_at
5′-TTGTACATAAGCCCTACCTTTTGTC-3′
SEQ ID NO: 709





239451_at
5′-ACACCTATCCAGGACCTAGTTTCCA-3′
SEQ ID NO: 710





239451_at
5′-AGGATAGGGCAATCATTCCCAAGGA-3′
SEQ ID NO: 711





239451_at
5′-ATTTTGTTGGAAGCTCCATTCCCAA-3′
SEQ ID NO: 712





239451_at
5′-CAGGACCTAGTTTCCATGACCATGC-3′
SEQ ID NO: 713





239451_at
5′-CCCTTTTCTCATTGTCCATGTGATC-3′
SEQ ID NO: 714





239451_at
5′-GAACGATGGCTGCTAACACCTATCC-3′
SEQ ID NO: 715





239451_at
5′-GCTCCATTCCCAAAGCTTAACACTT-3′
SEQ ID NO: 716





239451_at
5′-TAAACAGGACAGTTCCATGCAGGGA-3′
SEQ ID NO: 717





239451_at
5′-TCCTTTGCCCACTTCTTAAATGTTA-3′
SEQ ID NO: 718





239451_at
5′-TTCTCCAAGTTAAGTTTCAGCCCTT-3′
SEQ ID NO: 719





239451_at
5′-TTTATGTAGTCTTATCCACTGCCAC-3′
SEQ ID NO: 720





241756_at
5′-AAACTTCTTAATTATGGAGGTACAT-3′
SEQ ID NO: 721





241756_at
5′-AAGAAGAAATCTTACCTTGCTCTGT-3′
SEQ ID NO: 722





241756_at
5′-AAGCCCATTTCTAATTGGTGATTGT-3′
SEQ ID NO: 723





241756_at
5′-AGAAATCTTACCTTGCTCTGTATCT-3′
SEQ ID NO: 724





241756_at
5′-ATGGAGGTACATCTCCAATACCTAA-3′
SEQ ID NO: 725





241756_at
5′-CATCCCCCTGTCAAAATGTTTGCTT-3′
SEQ ID NO: 726





241756_at
5′-GGCACACACTGTAGTTTCCTAAGCA-3′
SEQ ID NO: 727





241756_at
5′-GTACATCTCCAATACCTAAAATTAA-3′
SEQ ID NO: 728





241756_at
5′-GTATTGTCATTTAAGCCCATTTCTA-3′
SEQ ID NO: 729





241756_at
5′-GTTTCCTAAGCAGTTTGTTCTAATT-3′
SEQ ID NO: 730





241756_at
5′-TTCACATCCCCCTGTCAAAATGTTT-3′
SEQ ID NO: 731





244447_at
5′-AAAGACCTCATACCATACCTGTAAT-3′
SEQ ID NO: 732





244447_at
5′-AATGGTAGTAGGTGTGCCTCTCTCC-3′
SEQ ID NO: 733





244447_at
5′-ATTGCCACTACTGTGAGGTTTGGGT-3′
SEQ ID NO: 734





244447_at
5′-CAGTTGCAGGTAGCTACTCTGGAAA-3′
SEQ ID NO: 735





244447_at
5′-CCTCTCTCCCATGAACGGATATCGC-3′
SEQ ID NO: 736





244447_at
5′-GTCAGAACCCATAACAACAGGCCAG-3′
SEQ ID NO: 737





244447_at
5′-GTCTTAGTCCCCTTAATGGTAGTAG-3′
SEQ ID NO: 738





244447_at
5′-GTGTAGCTGAACTTCCTTAGTATCA-3′
SEQ ID NO: 739





244447_at
5′-TCTTCTTAGCCAAATACTTCTCCTT-3′
SEQ ID NO: 740





244447_at
5′-TGCCGCACTCTTAGTTTTTTTGCCC-3′
SEQ ID NO: 741





244447_at
5′-TTGATAATTTTCGTCTTAGTCCCCT-3′
SEQ ID NO: 742





41577_at
5′-AACTCTGTATACTGTATCAGCAGCT-3′
SEQ ID NO: 743





41577_at
5′-AATTCACCAGACCAGAAGCCACTGG-3′
SEQ ID NO: 744





41577_at
5′-ACACCCAGGAAAAGTCTGCAGACCC-3′
SEQ ID NO: 745





41577_at
5′-ACATGTCCCTGGAGTTGCTTCCAGC-3′
SEQ ID NO: 746





41577_at
5′-ACTGTATCAGCAGCTTTGTGTAAAA-3′
SEQ ID NO: 747





41577_at
5′-ATGGGCATTGCAAGTGCCACCGTGC-3′
SEQ ID NO: 748





41577_at
5′-CACCAGACCAGAAGCCACTGGTGTA-3′
SEQ ID NO: 749





41577_at
5′-CAGAAGCCACTGGTGTACAGAGAAC-3′
SEQ ID NO: 750





41577_at
5′-CCACTGGTGTACAGAGAACACTTAA-3′
SEQ ID NO: 751





41577_at
5′-CCCAAAGGGGGCACATGTCCCTGGA-3′
SEQ ID NO: 752





41577_at
5′-CGCAATAATTCACCAGACCAGAAGC-3′
SEQ ID NO: 753





41577_at
5′-CTTCCCATGGGCATTGCAAGTGCCA-3′
SEQ ID NO: 754





41577_at
5′-GAGGTAACTTCCACGTAGCCCCTTG-3′
SEQ ID NO: 755





41577_at
5′-GCCTGGCTCTGCACACCCAGGAAAA-3′
SEQ ID NO: 756





41577_at
5′-GCCTGTGACAGAATTCGCTGTTAAG-3′
SEQ ID NO: 757





41577_at
5′-TTTGATATCGTACTGAGGTAACTTC-3′
SEQ ID NO: 758
















TABLE 4







HSC gene signature















Entrez

Representative





Gene

Public ID


Probe Set ID
Gene Symbol
Gene Title
ID
UniGene ID
NCBI Accession















200672_x_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
Hs.503178
NM_003128


201889_at
FAM3C
family with sequence similarity 3, member C
10447
Hs.434053
NM_014888


202551_s_at
CRIM1
cysteine rich transmembrane BMP regulator 1 (chordin-like)
51232
Hs.699247
BG546884


203139_at
DAPK1
death-associated protein kinase 1
1612
Hs.380277
NM_004938


204069_at
MEIS1
Meis homeobox 1
4211
Hs.526754
NM_002398


204304_s_at
PROM1
prominin 1
8842
Hs.614734
NM_006017


204753_s_at
HLF
hepatic leukemia factor
3131
Hs.196952
AI810712


204754_at
HLF
hepatic leukemia factor
3131
Hs.196952
W60800


204755_x_at
HLF
hepatic leukemia factor
3131
Hs.196952
M95585


204917_s_at
MLLT3
myeloid/lymphoid or mixed-lineage leukemia (trithorax
4300
Hs.591085
AV756536




homolog, Drosophila); translocated to, 3


205376_at
INPP4B
inositol polyphosphate-4-phosphatase, type II, 105 kDa
8821
Hs.658245
NM_003866


205984_at
CRHBP
corticotropin releasing hormone binding protein
1393
Hs.115617
NM_001882


206385_s_at
ANK3
ankyrin 3, node of Ranvier (ankyrin 6)
288
Hs.499725
NM_020987


206478_at
KIAA0125
KIAA0125
9834
Hs.649259
NM_014792


206683_at
ZNF165
zinc finger protein 165
7718
Hs.535177
NM_003447


208892_s_at
DUSP6
dual specificity phosphatase 6
1848
Hs.298654
BC003143


209487_at
RBPMS
RNA binding protein with multiple splicing
11030
Hs.334587
D84109


209560_s_at
DLK1
delta-like 1 homolog (Drosophila)
8788
Hs.533717
U15979


209993_at
ABCB1
ATP-binding cassette, sub-family B (MDR/TAP), member 1
5243
Hs.489033
AF016535


211597_s_at
HOPX
HOP homeobox
84525
Hs.654864
AB059408


212071_s_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
Hs.705692
BE968833


212488_at
COL5A1
collagen, type V, alpha 1
1289
Hs.210283
N30339


212750_at
PPP1R16B
protein phosphatase 1, regulatory (inhibitor) subunit 16B
26051
Hs.45719
AB020630


213094_at
GPR126
G protein-coupled receptor 126
57211
Hs.715560
AL033377


213510_x_at
LOC220594
TL132 protein
220594
Hs.462475
AW194543


213844_at
HOXA5
homeobox A5
3202
Hs.655218
NM_019102


218379_at
RBM7
RNA binding motif protein 7
10179

NM_016090


218723_s_at
C13orf15
chromosome 13 open reading frame 15
28984
Hs.507866
NM_014059


218899_s_at
BAALC
brain and acute leukemia, cytoplasmic
79870
Hs.533446
NM_024812


218966_at
MYO5C
myosin VC
55930
Hs.487036
NM_018728


219497_s_at
BCL11A
B-cell CLL/lymphoma 11A (zinc finger protein)
53335
Hs.370549
NM_022893


220416_at
ATP8B4
ATPase, class I, type 8B, member 4
79895
Hs.511311
NM_024837


221841_s_at
KLF4
Kruppel-like factor 4 (gut)
9314
Hs.376206
BF514079


222164_at
FGFR1
fibroblast growth factor receptor 1
2260
Hs.264887
AU145411


41577_at
PPP1R16B
protein phosphatase 1, regulatory (inhibitor) subunit 16B
26051
Hs.45719
AB020630


226206_at
MAFK
v-maf musculoaponeurotic fibrosarcoma oncogene homolog K
7975
Hs.520612
BG231691




(avian)


226420_at
MECOM
MDS1 and EVI1 complex locus
2122
Hs.719216
BG261252


229344_x_at
RIMKLB
ribosomal modification protein rimK-like family member B
57494
Hs.504670
AW135012


235490_at
TMEM107
transmembrane protein 107
84314
Hs.513933
AV743951


239328_at



Hs.668429
AW512339


239451_at



Hs.658060
AI684643


241756_at



Hs.655362
T51136


244447_at



Hs.666767
AW292830
















TABLE 5







LSC probe set (48)









Probe Set ID
probe sequence
Sequence ID No.













201242_s_at
5′-AACCTACTAGTCTTGAACAAACTGT-3′
SEQ ID NO: 1






201242_s_at
5′-AACTGTCATACGTATGGGACCTACA-3′
SEQ ID NO: 2





201242_s_at
5′-ACACTTAATCTATATGCTTTACACT-3′
SEQ ID NO: 3





201242_s_at
5′-AGAGCTGATCACAAGCACAAATCTT-3′
SEQ ID NO: 4





201242_s_at
5′-ATATGCTTTACACTAGCTTTCTGCA-3′
SEQ ID NO: 5





201242_s_at
5′-CTTTCCCACTAGCCATTTAATAAGT-3′
SEQ ID NO: 6





201242_s_at
5′-GCTTTACACTAGCTTTCTGCATTTA-3′
SEQ ID NO: 7





201242_s_at
5′-GCTTTCTGCATTTAATAGGTTAGAA-3′
SEQ ID NO: 8





201242_s_at
5′-GGACCTACACTTAATCTATATGCTT-3′
SEQ ID NO: 9





201242_s_at
5′-GTATGGGACCTACACTTAATCTATA-3′
SEQ ID NO: 10





201242_s_at
5′-TGATCACAAGCACAAATCTTTCCCA-3′
SEQ ID NO: 11





201243_s_at
5′-AAGCTGTGTCTGAGATCTGGATCTG-3′
SEQ ID NO: 12





201243_s_at
5′-CTTGTCCTCCGGTATGTTCTAAAGC-3′
SEQ ID NO: 13





201243_s_at
5′-GAATGCTGTCTTGACATCTCTTGCC-3′
SEQ ID NO: 14





201243_s_at
5′-GACTGGTGTTAAATGTTGTCTACAG-3′
SEQ ID NO: 15





201243_s_at
5′-GAGGCATCACATGCTGGTGCTGTGT-3′
SEQ ID NO: 16





201243_s_at
5′-GATCTTGTATTCAGTCAGGTTAAAA-3′
SEQ ID NO: 17





201243_s_at
5′-GGTGATGGGTTGTGTTATGCTTGTA-3′
SEQ ID NO: 18





201243_s_at
5′-GGTGCTGTGTCTTTATGAATGTTTT-3′
SEQ ID NO: 19





201243_s_at
5′-GTTATGCTTGTATTGAATGCTGTCT-3′
SEQ ID NO: 20





201243_s_at
5′-TCCGGTATGTTCTAAAGCTGTGTCT-3′
SEQ ID NO: 21





201243_s_at
5′-TCTGAGATCTGGATCTGCCCATCAC-3′
SEQ ID NO: 22





201702_s_at
5′-ACAACACCTAATGCCACCAAAGAGA-3′
SEQ ID NO: 23





201702_s_at
5′-AGAGGTGAAGGCTGAGACCCGGGCT-3′
SEQ ID NO: 24





201702_s_at
5′-AGCCTATGGAGGGCCTGGGCTTTCT-3′
SEQ ID NO: 25





201702_s_at
5′-AGCGACTGGATGGCTGTCATCCGCT-3′
SEQ ID NO: 26





201702_s_at
5′-CCAAGTTCCGTTCCACTGGACTAGA-3′
SEQ ID NO: 27





201702_s_at
5′-CCTTCCTGAGCGACCTTTGACAGAG-3′
SEQ ID NO: 28





201702_s_at
5′-GAAGAGCTCCGGAAATTGGCCTCAG-3′
SEQ ID NO: 29





201702_s_at
5′-GAATGCCAGCACAGTGGTGGTTTCT-3′
SEQ ID NO: 30





201702_s_at
5′-GCAACGTAGCTGCTCCAGGAGATGC-3′
SEQ ID NO: 31





201702_s_at
5′-GTCATCCGCTCTCAGAGCAGTACCC-3′
SEQ ID NO: 32





201702_s_at
5′-TAGAGCTGGAGACACCATCCTTGGT-3′
SEQ ID NO: 33





204028_s_at
5′-AAAGGCTGGGGTGGGTGACTTGACT-3′
SEQ ID NO: 34





204028_s_at
5′-AACCTCACTGTTCAGATGGGCTGTA-3′
SEQ ID NO: 35





204028_s_at
5′-AATATGCCCCGTTGACAGTGTTTAA-3′
SEQ ID NO: 36





204028_s_at
5′-ATAAATATCTTTCCCAATATGCCCC-3′
SEQ ID NO: 37





204028_s_at
5′-CACTCAAGGTTCATTGGGCTCTGCT-3′
SEQ ID NO: 38





204028_s_at
5′-GACTAGGACTGCTGATCTGCACAAT-3′
SEQ ID NO: 39





204028_s_at
5′-GCAGGGTGCACATGCTGCGAGGTCT-3′
SEQ ID NO: 40





204028_s_at
5′-GCGTGTCTGTAAATGTCTGCGCAGG-3′
SEQ ID NO: 41





204028_s_at
5′-GGAGCTGTGGACAGAGCTCCCTCAC-3′
SEQ ID NO: 42





204028_s_at
5′-GTATGCCTGGGTACAAACCTCACTG-3′
SEQ ID NO: 43





204028_s_at
5′-TCCTCCCTGCCATTACGGGAGCTGT-3′
SEQ ID NO: 44





205321_at
5′-AAATTGCCCTTAGCCGAAGAGTTGA-3′
SEQ ID NO: 45





205321_at
5′-ACGGCTTCTAGGTGTACGCACTGAA-3′
SEQ ID NO: 46





205321_at
5′-ATGATCTGCAATATGCTGCTCCAGG-3′
SEQ ID NO: 47





205321_at
5′-CAAAAATTGACCCCACTTTGTGCCG-3′
SEQ ID NO: 48





205321_at
5′-CCCACTTTGTGCCGGGCTGACAGAA-3′
SEQ ID NO: 49





205321_at
5′-GAGTTAGTGCTGTCAAGGCCGATTT-3′
SEQ ID NO: 50





205321_at
5′-GCAAGTACTTGGTGCAGTCGGAGCT-3′
SEQ ID NO: 51





205321_at
5′-GCTGCTCCAGGCGGTCTTATTGGAG-3′
SEQ ID NO: 52





205321_at
5′-GGTGAACATAGGATCCCTGTCAACA-3′
SEQ ID NO: 53





205321_at
5′-GTCGGAGCTTTACCTGAGATATTCA-3′
SEQ ID NO: 54





205321_at
5′-TATTTCCTGCTTAGACGGCTTCTAG-3′
SEQ ID NO: 55





206582_s_at
5′-AATTGGCCTTGGGGACTACTCGGCT-3′
SEQ ID NO: 56





206582_s_at
5′-ACAGAAATGTGGCTCCAGTTGCTCT-3′
SEQ ID NO: 57





206582_s_at
5′-CCCACCTGCCCATGTGATGAAGCAG-3′
SEQ ID NO: 58





206582_s_at
5′-CCCACGGGACTCAGAAGTGCGCCGC-3′
SEQ ID NO: 59





206582_s_at
5′-CTCAGCTCCCACGGGACTCAGAAGT-3′
SEQ ID NO: 60





206582_s_at
5′-CTTGGATCTTGAGGGTCTGGCACAT-3′
SEQ ID NO: 61





206582_s_at
5′-GCCGTTGCCATGGTGGACGGACTCC-3′
SEQ ID NO: 62





206582_s_at
5′-GGAAAGCCCAACGACCATGGAGAGA-3′
SEQ ID NO: 63





206582_s_at
5′-GTCAGCCGCAGACTTTGGAAAGCCC-3′
SEQ ID NO: 64





206582_s_at
5′-TGGAGAGATGGGCCGTTGCCATGGT-3′
SEQ ID NO: 65





206582_s_at
5′-TGGCACATCCTTAATCCTGTGCCCC-3′
SEQ ID NO: 66





207090_x_at
5′-AAATGTGGCTAGTCCAAATTCAAAT-3′
SEQ ID NO: 67





207090_x_at
5′-AATGGACTAGACCTGTACTAATATA-3′
SEQ ID NO: 68





207090_x_at
5′-CACTAGCAACCTGTTGAGCACTTGA-3′
SEQ ID NO: 69





207090_x_at
5′-CCGGCTCTCACTTCATATGTTTAAA-3′
SEQ ID NO: 70





207090_x_at
5′-CCTCAGACTTCCGAGTGGCTGGGAT-3′
SEQ ID NO: 71





207090_x_at
5′-CGCCACCACACCAGGTTGATTTTTG-3′
SEQ ID NO: 72





207090_x_at
5′-GAAATTGAGTTATTGAGCACTGAAA-3′
SEQ ID NO: 73





207090_x_at
5′-GCAATTACTACTGCTAAATGTGGGA-3′
SEQ ID NO: 74





207090_x_at
5′-GGTAGTCACTAGCAACCTGTTGAGC-3′
SEQ ID NO: 75





207090_x_at
5′-GTTAAGTATCTCAATTTTTCATATT-3′
SEQ ID NO: 76





207090_x_at
5′-TATATGTAGCTCACGTATTTCTATT-3′
SEQ ID NO: 77





207836_s_at
5′-ACTTCTCAGGGCTGGAAGTCCCGTC-3′
SEQ ID NO: 78





207836_s_at
5′-ATCTTCAGTGGTGGCTACTGTTCTC-3′
SEQ ID NO: 79





207836_s_at
5′-CAGGTGTGTGATGGCGGCTGCAATC-3′
SEQ ID NO: 80





207836_s_at
5′-CTAGCTGTTCTACAAAACTGGAGCA-3′
SEQ ID NO: 81





207836_s_at
5′-GAGGCTACTTCTCAGGGCTGGAAGT-3′
SEQ ID NO: 82





207836_s_at
5′-GCAATCTGTCTTGTGGGTATTAATG-3′
SEQ ID NO: 83





207836_s_at
5′-GCTGCAATCTGTCTTGTGGGTATTA-3′
SEQ ID NO: 84





207836_s_at
5′-GTCTTGTGGGTATTAATGCAATCTT-3′
SEQ ID NO: 85





207836_s_at
5′-TCTCAGGGCTGGAAGTCCCGTCAGT-3′
SEQ ID NO: 86





207836_s_at
5′-TCTCTAGCTGTTCTACAAAACTGGA-3′
SEQ ID NO: 87





207836_s_at
5′-TGCAATCTTCAGTGGTGGCTACTGT-3′
SEQ ID NO: 88





208993_s_at
5′-AACTCCTCATTTAGATGGGCATCAT-3′
SEQ ID NO: 89





208993_s_at
5′-AATTTCTCTTGTCAATGGCCAACAG-3′
SEQ ID NO: 90





208993_s_at
5′-CAGATGCAGCTAGCAAACCGTTTGC-3′
SEQ ID NO: 91





208993_s_at
5′-CATAACAACGAAACCAACTCCTCAT-3′
SEQ ID NO: 92





208993_s_at
5′-CCTCTGATTCCGAAAGTGCTACTGA-3′
SEQ ID NO: 93





208993_s_at
5′-GAGTTGTCTCTTTCACAGAGTTGTC-3′
SEQ ID NO: 94





208993_s_at
5′-GATACAAATGGTTCACAGTTCTTCA-3′
SEQ ID NO: 95





208993_s_at
5′-GCGAGAACTTTCGTTGTCTTTGTAC-3′
SEQ ID NO: 96





208993_s_at
5′-GCGGAGGTACGGATACTCAGTTGTG-3′
SEQ ID NO: 97





208993_s_at
5′-GTGTGCCCCAAAACATGCGAGAACT-3′
SEQ ID NO: 98





208993_s_at
5′-GTTGTGGAGAGCTGATTCCCAAATC-3′
SEQ ID NO: 99





209272_at
5′-ACGTTTCCTGTATTCTAATCTATTT-3′
SEQ ID NO: 100





209272_at
5′-ATCTTCCAACTTCCAATATTTATCC-3′
SEQ ID NO: 101





209272_at
5′-CCCGAGTCTCTTACACTTTATTGTG-3′
SEQ ID NO: 102





209272_at
5′-GAGGTGGGACGAATGCACTTGCTTC-3′
SEQ ID NO: 103





209272_at
5′-GATGTCCACGTTTTTGTGACTCTTC-3′
SEQ ID NO: 104





209272_at
5′-GGTTACCTCAGTATTACAGCCAATA-3′
SEQ ID NO: 105





209272_at
5′-GTGGACCCACAGATTGCATCTTTAA-3′
SEQ ID NO: 106





209272_at
5′-TATAGTCCAAGGGACCATTTCTCCC-3′
SEQ ID NO: 107





209272_at
5′-TGCACTTGCTTCCTGTGGCAATAAA-3′
SEQ ID NO: 108





209272_at
5′-TTATGTTTCTAGTCTTTCAAGCTTA-3′
SEQ ID NO: 109





209272_at
5′-TTTATCCATTCGTTGTGGACCCACA-3′
SEQ ID NO: 110





209487_at
5′-AACTATTTCTTGGCGACCTTTGAGA-3′
SEQ ID NO: 111





209487_at
5′-AATTAGATTTGTCTCTGGGAATGTG-3′
SEQ ID NO: 112





209487_at
5′-CTTTCACCAAAACTATTTCTTGGCG-3′
SEQ ID NO: 113





209487_at
5′-GGAGCTCCCATGTTGAATTTGTTTG-3′
SEQ ID NO: 114





209487_at
5′-GTGTTTCTCTCCTGAGGCAAAGCCC-3′
SEQ ID NO: 115





209487_at
5′-GTGTTTGTAACATACCAACCTACTG-3′
SEQ ID NO: 116





209487_at
5′-TCTTGGCGACCTTTGAGAGATTTCA-3′
SEQ ID NO: 117





209487_at
5′-TGTAACATACCAACCTACTGCAGAC-3′
SEQ ID NO: 118





209487_at
5′-TTGTCCACTTCTCCAGCAAATTAGA-3′
SEQ ID NO: 119





209487_at
5′-TTGTCTCTGGGAATGTGTTTGTAAC-3′
SEQ ID NO: 120





209487_at
5′-TTTTGTCCACTTCTCCAGCAAATTA-3′
SEQ ID NO: 121





209488_s_at
5′-AAGCTCACATCTAAACAGCCTGTAG-3′
SEQ ID NO: 122





209488_s_at
5′-AATTCCGCAAACACTACGACTAGAG-3′
SEQ ID NO: 123





209488_s_at
5′-ACTGTACCTCAGTTCATTGCCAGAG-3′
SEQ ID NO: 124





209488_s_at
5′-CAAGAACAAACTCGTAGGGACTCCA-3′
SEQ ID NO: 125





209488_s_at
5′-CGCTTCGATCCTGAAATTCCGCAAA-3′
SEQ ID NO: 126





209488_s_at
5′-GAATGCTTTGAATGGCATCCGCTTC-3′
SEQ ID NO: 127





209488_s_at
5′-GCCATATGAGCTCACAGTGCCTGCA-3′
SEQ ID NO: 128





209488_s_at
5′-GTCAGTTTTGACAGTCGCTCAGAAG-3′
SEQ ID NO: 129





209488_s_at
5′-TAGCCCTGAAGTGTGGGCCCCGTAC-3′
SEQ ID NO: 130





209488_s_at
5′-TCTGTACCCAGCGGAGTTAGCGCCT-3′
SEQ ID NO: 131





209488_s_at
5′-TTTACCCCAGTAGCCCTGAAGTGTG-3′
SEQ ID NO: 132





211113_s_at
5′-AACTGCAAGCAGCCTCTCAGCTGAT-3′
SEQ ID NO: 133





211113_s_at
5′-CACCAGGCACCGTGGGTCCTGGATG-3′
SEQ ID NO: 134





211113_s_at
5′-CATTCCCCTTTCTAGCTTTAACTAG-3′
SEQ ID NO: 135





211113_s_at
5′-GATGAGAGGCTTCCTCAGTCCAGTC-3′
SEQ ID NO: 136





211113_s_at
5′-GGAAGATTAGACACTGTGGCCGAGG-3′
SEQ ID NO: 137





211113_s_at
5′-GGACTTCATCGTACTCGGGATTTTC-3′
SEQ ID NO: 138





211113_s_at
5′-GGCCGAGGGCACGTCTAGAATCGAG-3′
SEQ ID NO: 139





211113_s_at
5′-GGGTCCTGGATGGGGAACTGCAAGC-3′
SEQ ID NO: 140





211113_s_at
5′-GTCCTCAGGTACAAAATCCGGGCAG-3′
SEQ ID NO: 141





211113_s_at
5′-TACTCGGGATTTTCTTCATCTCCCT-3′
SEQ ID NO: 142





211113_s_at
5′-TAGAACCGCGTTGGGTTTGTGGGTG-3′
SEQ ID NO: 143





212676_at
5′-AAGACTGGTCAGCCTGCATTAGTAT-3′
SEQ ID NO: 144





212676_at
5′-AGAATTGCTGCTATACTGGTGGTAT-3′
SEQ ID NO: 145





212676_at
5′-ATATTTCACATTTATCCACACAGTA-3′
SEQ ID NO: 146





212676_at
5′-ATTTCTTTGTGGTACCTGCAGTTTA-3′
SEQ ID NO: 147





212676_at
5′-CAAAAAGATATTAATCCCTCTACTC-3′
SEQ ID NO: 148





212676_at
5′-GAGCATATTGGTATCTGGATGTTCC-3′
SEQ ID NO: 149





212676_at
5′-GAGTTTCCTGTAGTGCTGTTTCATT-3′
SEQ ID NO: 150





212676_at
5′-GGTGGTATGGATTATCATGGCATTG-3′
SEQ ID NO: 151





212676_at
5′-GTAATGCAGATCCAATTTCTTTGTG-3′
SEQ ID NO: 152





212676_at
5′-GTAGGGGGGCTGTTAGAATTGCTGC-3′
SEQ ID NO: 153





212676_at
5′-TACTCCCAGGTTCCCTTTATATGTT-3′
SEQ ID NO: 154





212976_at
5′-ATCTGTGTACAATTGTTTTTGCTTC-3′
SEQ ID NO: 155





212976_at
5′-ATGAATGCCTTCTGCATGTTGTACA-3′
SEQ ID NO: 156





212976_at
5′-CTTGTATAATACACTACTGCTGAGA-3′
SEQ ID NO: 157





212976_at
5′-GAATGGATGTGTTCGTGCATATATA-3′
SEQ ID NO: 158





212976_at
5′-GAGATGGCTTTCAGTTGAGTTTAAT-3′
SEQ ID NO: 159





212976_at
5′-GCATGTTGTACATTATCTCTAACAG-3′
SEQ ID NO: 160





212976_at
5′-GCATTTTTGGTGGTAAATCCCTTTG-3′
SEQ ID NO: 161





212976_at
5′-GCCACAGATTCAGTAGCTTTTGGTA-3′
SEQ ID NO: 162





212976_at
5′-GGTAAATCCCTTTGCCACAGATTCA-3′
SEQ ID NO: 163





212976_at
5′-GTAGCTTTTGGTAAACTTCACTGTT-3′
SEQ ID NO: 164





212976_at
5′-TGGGCCAATCTGGAATAGAGACATT-3′
SEQ ID NO: 165





213056_at
5′-AAAGCAAATGATTTCCATATTCCTG-3′
SEQ ID NO: 166





213056_at
5′-AAAGCTCCAAGCTGCAGTGGATTTA-3′
SEQ ID NO: 167





213056_at
5′-AACAACGACAAAAAGCTCCAAGCTG-3′
SEQ ID NO: 168





213056_at
5′-AACTGGTCCTTAGTCATTTGTATAA-3′
SEQ ID NO: 169





213056_at
5′-ACAAGTTTCTTGTTCATATTGTGAA-3′
SEQ ID NO: 170





213056_at
5′-ACTACCTCATACTTTCCTTGGAAGA-3′
SEQ ID NO: 171





213056_at
5′-ATTTCCATATTCCTGATTGATCTTT-3′
SEQ ID NO: 172





213056_at
5′-ATTTGTATAGCCTTCTAGAATCAGA-3′
SEQ ID NO: 173





213056_at
5′-GAAATAACCTTTTTGCATATTCTTT-3′
SEQ ID NO: 174





213056_at
5′-GATTTGTTAAACTGGTCCTTAGTCA-3′
SEQ ID NO: 175





213056_at
5′-GGCTAAAACTACCTCATACTTTCCT-3′
SEQ ID NO: 176





214252_s_at
5′-AATGGGACATTAGTTCAAGTAGCAA-3′
SEQ ID NO: 177





214252_s_at
5′-ACCTGAAATGGATGCCCCTTTCTGG-3′
SEQ ID NO: 178





214252_s_at
5′-ACTTGGCAACTGTACATTTCCCCAT-3′
SEQ ID NO: 179





214252_s_at
5′-ATCTCCGACCTGAAATGGATGCCCC-3′
SEQ ID NO: 180





214252_s_at
5′-ATGCCCCTTTCTGGTGTAATCAAGG-3′
SEQ ID NO: 181





214252_s_at
5′-GGATTCAGAAGTACATTAACTGGCA-3′
SEQ ID NO: 182





214252_s_at
5′-TAACTGGCAAGAACTACACAATGGA-3′
SEQ ID NO: 183





214252_s_at
5′-TATGCATGATGCCATTGGATTCAGA-3′
SEQ ID NO: 184





214252_s_at
5′-TGCTTTTTTGAGGGAATTGATGATG-3′
SEQ ID NO: 185





214252_s_at
5′-TGGTATGAACTTTTCCAACTTGGCA-3′
SEQ ID NO: 186





214252_s_at
5′-TTCTGGTGTAATCAAGGCGCTGCCT-3′
SEQ ID NO: 187





215411_s_at
5′-AAACCATTGCAGGTGCCAGTGTCCC-3′
SEQ ID NO: 188





215411_s_at
5′-AGTGGAGTCTGTGACTGCTCTGCAT-3′
SEQ ID NO: 189





215411_s_at
5′-ATAAAAAAAACATCCTGCTGCGGCT-3′
SEQ ID NO: 190





215411_s_at
5′-CAGAACACTCATGTCTACAGCTGGC-3′
SEQ ID NO: 191





215411_s_at
5′-GAAACCTGTTGTGCAGAGCTCTTCC-3′
SEQ ID NO: 192





215411_s_at
5′-GAGGCCAGGCCATGTTTGGGGCCTT-3′
SEQ ID NO: 193





215411_s_at
5′-GCTTGTGTATCCTCAGACCAAACTG-3′
SEQ ID NO: 194





215411_s_at
5′-GGCCTTGTTCTGACAGCATTCTGGC-3′
SEQ ID NO: 195





215411_s_at
5′-GTTAGCCAGATGCTTGTGTATCCTC-3′
SEQ ID NO: 196





215411_s_at
5′-TCCACACACCCTGGCTTTGAAGTGG-3′
SEQ ID NO: 197





215411_s_at
5′-TGGCCCCCAGGAAACCTGTTGTGCA-3′
SEQ ID NO: 198





216262_s_at
5′-ATCCAGGTTAACTGATGCTGCCATT-3′
SEQ ID NO: 199





216262_s_at
5′-CCGTGTGCCCCAGGGGGATCAGGGA-3′
SEQ ID NO: 200





216262_s_at
5′-CTGGTTGGCATTTCCCCATTATGTA-3′
SEQ ID NO: 201





216262_s_at
5′-GAACATGGCTTCATCCAGGTTAACT-3′
SEQ ID NO: 202





216262_s_at
5′-GCTTTGCTCTCTCTAGGTGGGCAAG-3′
SEQ ID NO: 203





216262_s_at
5′-GGATGCCTGTAGTAGGGAACTCTGG-3′
SEQ ID NO: 204





216262_s_at
5′-GTGAGGGAGCCATGCTGCTGAATTC-3′
SEQ ID NO: 205





216262_s_at
5′-GTGGGAGTGTGAACGGATCGCTGAA-3′
SEQ ID NO: 206





216262_s_at
5′-GTGTTGGGTAGGGCAGACTCTGCTT-3′
SEQ ID NO: 207





216262_s_at
5′-TCGCCCATCTGTTGCTGTGGGAGTG-3′
SEQ ID NO: 208





216262_s_at
5′-TGGGCTGAGGTGGGATTTTCCCTCC-3′
SEQ ID NO: 209





218183_at
5′-ATGGCATCCACGCATGGGATCTGCA-3′
SEQ ID NO: 210





218183_at
5′-ATGGGATCTGCAAGCTGGAGCCCTC-3′
SEQ ID NO: 211





218183_at
5′-CATCTCTGCACTAACTCATCTGAAT-3′
SEQ ID NO: 212





218183_at
5′-CGGCAGTGGCTGTAAGGTCACCTTC-3′
SEQ ID NO: 213





218183_at
5′-CTGTGACTGGGCCAGGGCACACGTT-3′
SEQ ID NO: 214





218183_at
5′-GACAGACTGGGCTGAGGCTGACAGG-3′
SEQ ID NO: 215





218183_at
5′-GGCTGCAGGCAGTCTACTGGCAGGA-3′
SEQ ID NO: 216





218183_at
5′-GGTGGCAGTCTTGGTCAGTAGTTTA-3′
SEQ ID NO: 217





218183_at
5′-GGTGTAGACCAGCCCTGGGATTTCC-3′
SEQ ID NO: 218





218183_at
5′-TCAGTGCTGATGCCATGCCAACTGC-3′
SEQ ID NO: 219





218183_at
5′-TCTGCACACGCAGGTTCTGGGCGAC-3′
SEQ ID NO: 220





218907_s_at
5′-CCTGCACACTGGGCTATTGCTTTAT-3′
SEQ ID NO: 221





218907_s_at
5′-CTCCACATGCTGCAAGGACAGACTG-3′
SEQ ID NO: 222





218907_s_at
5′-CTGGGCTATTGCTTTATCCCTATCC-3′
SEQ ID NO: 223





218907_s_at
5′-GAAAGGTAGGGATGGGCCAGCCTCC-3′
SEQ ID NO: 224





218907_s_at
5′-GAAGGGCTGTGAGCAGGTGTAAGGG-3′
SEQ ID NO: 225





218907_s_at
5′-GACAGTAGGCAGGCTGAGTGGCCCA-3′
SEQ ID NO: 226





218907_s_at
5′-GAGCAGGTGTAAGGGCTCCCACATC-3′
SEQ ID NO: 227





218907_s_at
5′-GCTTTATCCCTATCCTGAGAGCAGC-3′
SEQ ID NO: 228





218907_s_at
5′-TCAGCTGTTGGGAGACAGTAGGCAG-3′
SEQ ID NO: 229





218907_s_at
5′-TGCTCCAGCCTGCAACTTAGTGGAA-3′
SEQ ID NO: 230





218907_s_at
5′-TTAGTGGAAGGAATTACTTCCTCCT-3′
SEQ ID NO: 231





219871_at
5′-AACAGATTCATCATTATTCCTAAAG-3′
SEQ ID NO: 232





219871_at
5′-AGTGCCTACTTTTCTTCGATATCAT-3′
SEQ ID NO: 233





219871_at
5′-GAACATTGTCATTTAGCCAAGCAAA-3′
SEQ ID NO: 234





219871_at
5′-GAGATTTCTCATATGTTTGCGTATA-3′
SEQ ID NO: 235





219871_at
5′-GAGCCAGCAGGTTCACCAGAAAGCT-3′
SEQ ID NO: 236





219871_at
5′-GAGCGTTTGCTGGAACACATTATGC-3′
SEQ ID NO: 237





219871_at
5′-GATATCATTAGCTGTTTTTCGAAAC-3′
SEQ ID NO: 238





219871_at
5′-GGAGCCAGTCGAAGATCCTGTTCAA-3′
SEQ ID NO: 239





219871_at
5′-GGCAGGCATTTCTTGAACATTGTCA-3′
SEQ ID NO: 240





219871_at
5′-TAGAAAGTATCCACCAGTGCCTACT-3′
SEQ ID NO: 241





219871_at
5′-TATGCTTCTGTGGCAGGCATTTCTT-3′
SEQ ID NO: 242





220128_s_at
5′-ACAGCCCCTGCACAAGGCTGACACA-3′
SEQ ID NO: 243





220128_s_at
5′-ACTAATGCTATCAAAGTCCTCCTTT-3′
SEQ ID NO: 244





220128_s_at
5′-AGCCCGGCTGCTCTAGCAGGAATGT-3′
SEQ ID NO: 245





220128_s_at
5′-AGGACTCTGCTTGTTTCAGTAGCCC-3′
SEQ ID NO: 246





220128_s_at
5′-CCTTGACTGGTGGGCTTTTTACGTG-3′
SEQ ID NO: 247





220128_s_at
5′-GCTTCTCCCACGGGTAGTGTCAGTT-3′
SEQ ID NO: 248





220128_s_at
5′-GGACCTCTCCCTAGTGATTATCTAG-3′
SEQ ID NO: 249





220128_s_at
5′-TAAGACACCTTTTATAAGCCTCCCT-3′
SEQ ID NO: 250





220128_s_at
5′-TACATTTGCGGTTTGGCCACAGGTC-3′
SEQ ID NO: 251





220128_s_at
5′-TTAAAAAGTCACTTCAGCCCCACAA-3′
SEQ ID NO: 252





220128_s_at
5′-TTATCTAGCCAGCTACACCTTACTC-3′
SEQ ID NO: 253





221621_at
5′-AAGTGTATATTGACATTTCTGGAAT-3′
SEQ ID NO: 254





221621_at
5′-CACTCACAAGAGTGTATACCCTGTG-3′
SEQ ID NO: 255





221621_at
5′-GCACAATTTGGGCCACTCACAAGAG-3′
SEQ ID NO: 256





221621_at
5′-GGAAATGTATTAATTGCCCAAAGTA-3′
SEQ ID NO: 257





221621_at
5′-GGCAGGAGAGCCGAGGTAAGACTTA-3′
SEQ ID NO: 258





221621_at
5′-GGTAAGACTTACTGTAGGCTGTCGT-3′
SEQ ID NO: 259





221621_at
5′-GTTTTTTGTCTTTGCGATGGAGTCT-3′
SEQ ID NO: 260





221621_at
5′-TAAACAGTTACCTACATTCTCCTCT-3′
SEQ ID NO: 261





221621_at
5′-TACTGTAGGCTGTCGTTTTTTTTGT-3′
SEQ ID NO: 262





221621_at
5′-TCCTCTGCATGCTTGTCTTTAGAGG-3′
SEQ ID NO: 263





221621_at
5′-TGTTTGCACAATTTGGGCCACTCAC-3′
SEQ ID NO: 264





41113_at
5′-AAGTCGTAGGGCAGCTATGGAAACC-3′
SEQ ID NO: 265





41113_at
5′-AGAAGCCTTCACCTTCCAGCTTTTG-3′
SEQ ID NO: 266





41113_at
5′-AGACAAGCAGTGTGATAGAGTCCTT-3′
SEQ ID NO: 267





41113_at
5′-AGTCACTGTATATACGTGCACATTT-3′
SEQ ID NO: 268





41113_at
5′-CCAGCTTTTGTCTGGCCTGTGCTGC-3′
SEQ ID NO: 269





41113_at
5′-CGTGGGAGCCACTGGTCTGTGCACA-3′
SEQ ID NO: 270





41113_at
5′-GCCTGGGATGCTCCATTGCATTTGT-3′
SEQ ID NO: 271





41113_at
5′-GGCAGCTATGGAAACCACTGGGTTC-3′
SEQ ID NO: 272





41113_at
5′-GGTGGGTTTAGTCATCTCGGAAGTC-3′
SEQ ID NO: 273





41113_at
5′-GTCCTTGGTGGGTTTAGTCATCTCG-3′
SEQ ID NO: 274





41113_at
5′-TCACCTAGTCACTGTATATACGTGC-3′
SEQ ID NO: 275





41113_at
5′-TCGTAGGGCAGCTATGGAAACCACT-3′
SEQ ID NO: 276





41113_at
5′-TCTCGGAAGTCGTAGGGCAGCTATG-3′
SEQ ID NO: 277





41113_at
5′-TGAGTGGCCAAGACAAGCAGTGTGA-3′
SEQ ID NO: 278





41113_at
5′-TGGTCTGTGCACATCCACGGTGGGT-3′
SEQ ID NO: 279





41113_at
5′-TTCATCCCAGCCTGGGATGCTCCAT-3′
SEQ ID NO: 280





202646_s_at
5′-ATAAGTAGCCGCCTGGTTACTGTGT-3′
SEQ ID NO: 759





202646_s_at
5′-CGCCTGGTTACTGTGTCCTGTAAAA-3′
SEQ ID NO: 760





202646_s_at
5′-AAAATACAGACACTTGACCCTTGGT-3′
SEQ ID NO: 761





202646_s_at
5′-CCTTGGTGTAGCTTCTGTTCAACTT-3′
SEQ ID NO: 762





202646_s_at
5′-TGGATGGGTCTGATTTCTTGGCCCT-3′
SEQ ID NO: 763





202646_s_at
5′-TTCTTGGCCCTCTTCTTGAATTGGC-3′
SEQ ID NO: 764





202646_s_at
5′-GAATTGGCCATATACAGGGTCCCTG-3′
SEQ ID NO: 765





202646_s_at
5′-CCAGTGGACTGAAGGCTTTGTCTAA-3′
SEQ ID NO: 766





202646_s_at
5′-GATGTGGGGGAGGGCGGTTTTATCT-3′
SEQ ID NO: 767





202646_s_at
5′-TTGAGGTTTTGATCTCTGGGTAAAG-3′
SEQ ID NO: 768





202646_s_at
5′-GAGGCCGTTTATCTTTGTAAACACG-3′
SEQ ID NO: 769





202956_at
5′-GGTAGGTGGTGATTTTGAGGCTGTA-3′
SEQ ID NO: 770





202956_at
5′-TGAGGCTGTAACATGCCCAGAAGCT-3′
SEQ ID NO: 771





202956_at
5′-GAAGCTGTTGTGGCCGACACTTCAA-3′
SEQ ID NO: 772





202956_at
5′-GTGGCCGACACTTCAACAATAGGGA-3′
SEQ ID NO: 773





202956_at
5′-ATATCCCTACTGACAGTAACTACCT-3′
SEQ ID NO: 774





202956_at
5′-GTAACTACCTGTCACATATTTCTCT-3′
SEQ ID NO: 775





202956_at
5′-CTTTTGGGTGGTGGGGCTTGATGTA-3′
SEQ ID NO: 776





202956_at
5′-GGCATGGTTTGCGGAGGTTAGATTT-3′
SEQ ID NO: 777





202956_at
5′-GTGAATTGTGCTCTGATGGTTAAAA-3′
SEQ ID NO: 778





202956_at
5′-AGATTGTCAAGCATTCCGTATTAAC-3′
SEQ ID NO: 779





202956_at
5′-ATTGATTCCCATCTGGCATATTCTA-3′
SEQ ID NO: 780





203474_at
5′-ACTGTGATATAGGTACTCTGATTTA-3′
SEQ ID NO: 781





203474_at
5′-AACTTTGGACATCCTGTGATCTGTT-3′
SEQ ID NO: 782





203474_at
5′-GGGGGTGGGAAATTTAGCTGACTAG-3′
SEQ ID NO: 783





203474_at
5′-GACAAACATGTAAACCTATTTTCCT-3′
SEQ ID NO: 784





203474_at
5′-AAATGTCCCACTTGAATAACGTAAT-3′
SEQ ID NO: 785





203474_at
5′-CTGTCTTCTGGGAGTTATCAATTTT-3′
SEQ ID NO: 786





203474_at
5′-GAAAGTGCACTACTGCCTCATGTAA-3′
SEQ ID NO: 787





203474_at
5′-TACTGCCTCATGTAAAGACTCTTGC-3′
SEQ ID NO: 788





203474_at
5′-AAGACTCTTGCACGCAGAGCCTTTA-3′
SEQ ID NO: 789





203474_at
5′-GCACGCAGAGCCTTTAAGTGACTAA-3′
SEQ ID NO: 790





203474_at
5′-TGAATACTTCAATTGTGCCTCTCAA-3′
SEQ ID NO: 791





205256_at
5′-TTTTGCTAGTGTTGAATTTTCTTCT-3′
SEQ ID NO: 792





205256_at
5′-CAAGCCCAAGACTGCTTAACTTCCA-3′
SEQ ID NO: 793





205256_at
5′-GGTATGGGAGTGGGCTCTATGGGGT-3′
SEQ ID NO: 794





205256_at
5′-CTCTATGGGGTGGTCTGCACCCATC-3′
SEQ ID NO: 795





205256_at
5′-TGGGACTCTTTTCCCTAAATCCTGC-3′
SEQ ID NO: 796





205256_at
5′-GGCAGGGTGCACAGCATTAGTTTCA-3′
SEQ ID NO: 797





205256_at
5′-CGCCCCCACCTTGAATAGCTAAAGT-3′
SEQ ID NO: 798





205256_at
5′-GAGTTGTTGACGTCTAACTCCTTCC-3′
SEQ ID NO: 799





205256_at
5′-GTCTAACTCCTTCCATTAAATTAAT-3′
SEQ ID NO: 800





205256_at
5′-AAGTACTGACCTCCTAATATTTAAG-3′
SEQ ID NO: 801





205256_at
5′-GATTCTTTTATATTCCATTGTTCAG-3′
SEQ ID NO: 802





207837_at
5′-TCTGCTGAATACTATACCCTTCAGC-3′
SEQ ID NO: 803





207837_at
5′-GAATACTATACCCTTCAGCAATGGC-3′
SEQ ID NO: 804





207837_at
5′-TCAGCAATGGCTACTAGAAGGACGA-3′
SEQ ID NO: 805





207837_at
5′-CTAGAAGGACGAACAATTGCCCTCC-3′
SEQ ID NO: 806





207837_at
5′-AAGGACGAACAATTGCCCTCCTTTG-3′
SEQ ID NO: 807





207837_at
5′-TTGGAAGTACGGCTAATAGAAGCCC-3′
SEQ ID NO: 808





207837_at
5′-ATAGAAGCCCTAGATCCGAATAAGA-3′
SEQ ID NO: 809





207837_at
5′-GCCCTAGATCCGAATAAGATCCGAA-3′
SEQ ID NO: 810





207837_at
5′-TAAGAATATGTAATGGACCAGGCGC-3′
SEQ ID NO: 811





207837_at
5′-ATGTAATGGACCAGGCGCAGTGCCT-3′
SEQ ID NO: 812





207837_at
5′-TGATGACAGAAGTGTGAGACCAGCC-3′
SEQ ID NO: 813





207753_at
5′-CAACATTGAGGCAGGGCTCACTCTC-3′
SEQ ID NO: 814





207753_at
5′-AGGGCTCACTCTCCTAAATTGTAGG-3′
SEQ ID NO: 815





207753_at
5′-GACAGATCTAACTTTCCTAGTGGAA-3′
SEQ ID NO: 816





207753_at
5′-GTTTCAGCATGTGTGTACACCTATG-3′
SEQ ID NO: 817





207753_at
5′-TACACCTATGAAACCACCACAGTCA-3′
SEQ ID NO: 818





207753_at
5′-ACCACAGTCAAGATATCCAACACAA-3′
SEQ ID NO: 819





207753_at
5′-AAGATTGTCCCTTTATAATCCTCAA-3′
SEQ ID NO: 820





207753_at
5′-TATAATCCTCAATTTTTCCTTATCT-3′
SEQ ID NO: 821





207753_at
5′-TTTCCACAATTCACAAGCAACAGCA-3′
SEQ ID NO: 822





207753_at
5′-GGTTAATCCATTATCTTGTTGCATG-3′
SEQ ID NO: 823





207753_at
5′-GAATCAATTGTTTGCTCATTTGTAT-3′
SEQ ID NO: 824





208883_at
5′-AACCTCTGTATGCACATGATGGGAT-3′
SEQ ID NO: 825





208883_at
5′-AGGACATTTGAAACCCTAATTGTGA-3′
SEQ ID NO: 826





208883_at
5′-AGGCACTATGCTTTTATTATATAAC-3′
SEQ ID NO: 827





208883_at
5′-ATGCACAATGTCTTAAGTCTTCCTA-3′
SEQ ID NO: 828





208883_at
5′-GATATTCTCAGCCCTGTTAACACTA-3′
SEQ ID NO: 829





208883_at
5′-GCCTTGAGGATAGTCTTCATGTTCA-3′
SEQ ID NO: 830





208883_at
5′-GTAGTGACTCATTGTATTACTTAAA-3′
SEQ ID NO: 831





208883_at
5′-GTCTTCATGTTCAAAGGCACTATGC-3′
SEQ ID NO: 832





208883_at
5′-TAAAACTTATATAACACGCTGTATT-3′
SEQ ID NO: 833





208883_at
5′-TACATCACCTTAACCTCTGTATGCA-3′
SEQ ID NO: 834





208883_at
5′-TGAACCACATGATATTCTCAGCCCT-3′
SEQ ID NO: 835





209740_s_at
5′-ACTCTAGAGTAATGATGGTCCCTGT-3′
SEQ ID NO: 836





209740_s_at
5′-ATAAACACCAACGATGGCCTCTTTT-3′
SEQ ID NO: 837





209740_s_at
5′-CATATGTATTTGACCCTGTGGGAGG-3′
SEQ ID NO: 838





209740_s_at
5′-CCCCTTCCTTTGATCATTTCATGTG-3′
SEQ ID NO: 839





209740_s_at
5′-GATTCTCAATTGTTATGTCCACTTA-3′
SEQ ID NO: 840





209740_s_at
5′-GGAGTTATGCATAGACCCACTCTAG-3′
SEQ ID NO: 841





209740_s_at
5′-GGTCCCTGTGGTATATACTTTCTCC-3′
SEQ ID NO: 842





209740_s_at
5′-GGTTCTCAGAAGCCAAAATACACAA-3′
SEQ ID NO: 843





209740_s_at
5′-GTCCACTTATTCACTAGGTAAATTT-3′
SEQ ID NO: 844





209740_s_at
5′-TAAATTCCTTGTTGATGTACCCTTA-3′
SEQ ID NO: 845





209740_s_at
5′-TACTTTCTCCTACTCTAGCAAACAT-3′
SEQ ID NO: 846





211536_x_at
5′-AGGTGAGCAGTAGGTCATCCAGTCC-3′
SEQ ID NO: 847





211536_x_at
5′-CAACTCGAAGTCATCCATGGACCCC-3′
SEQ ID NO: 848





211536_x_at
5′-CACAGCCTATTCCAAGCCTAAACGG-3′
SEQ ID NO: 849





211536_x_at
5′-CAGCCAAGACGTAGATCCATCCAAG-3′
SEQ ID NO: 850





211536_x_at
5′-CCATCCCAATGGCTTATCTTACACT-3′
SEQ ID NO: 851





211536_x_at
5′-CCTTTCTACTTACTACCAGCAATGC-3′
SEQ ID NO: 852





211536_x_at
5′-GCAAAATACATCTCGCCTGGTACAG-3′
SEQ ID NO: 853





211536_x_at
5′-GGACCCCTGATGATTCCACAGATAC-3′
SEQ ID NO: 854





211536_x_at
5′-GGGAGCAGTGTGGAGAGCTTGCCCC-3′
SEQ ID NO: 855





211536_x_at
5′-TCTGGATGTCCCTGAGATCGTCATA-3′
SEQ ID NO: 856





211536_x_at
5′-TGATTACTACCTCAGGACCAACCTC-3′
SEQ ID NO: 857





211537_x_at
5′-AGGTGAGCAGTAGGTCATCCAGTCC-3′
SEQ ID NO: 858





211537_x_at
5′-CAAAAGCCTTTCTACTTACTACCAG-3′
SEQ ID NO: 859





211537_x_at
5′-CAACTCGAAGTCATCCATGGACCCC-3′
SEQ ID NO: 860





211537_x_at
5′-CAGCCAAGACGTAGATCCATCCAAG-3′
SEQ ID NO: 861





211537_x_at
5′-CCATCCCAATGGCTTATCTTACACT-3′
SEQ ID NO: 862





211537_x_at
5′-GACAAGGCACTTCATGATTCTCTGG-3′
SEQ ID NO: 863





211537_x_at
5′-GACCAACCTCAGAAAAGCCAACTCG-3′
SEQ ID NO: 864





211537_x_at
5′-GATTCTCTGGGACCGTTACATTTTG-3′
SEQ ID NO: 865





211537_x_at
5′-GCAAAATACATCTCGCCTGGTACAG-3′
SEQ ID NO: 866





211537_x_at
5′-GGACCCCTGATGATTCCACAGATAC-3′
SEQ ID NO: 867





211537_x_at
5′-TGATTACTACCTCAGGACCAACCTC-3′
SEQ ID NO: 868





212114_at
5′-AAGTAGTCCATCCTATACAGATAGC-3′
SEQ ID NO: 869





212114_at
5′-AGAGGGTACATACTCCTTTCTGGGG-3′
SEQ ID NO: 870





212114_at
5′-CCAGGGACCACTGCCTGGCATTATC-3′
SEQ ID NO: 871





212114_at
5′-GAATGCTCCCTACCATATAGTTGAC-3′
SEQ ID NO: 872





212114_at
5′-GATTATGTGTATTGATCACCCTGCA-3′
SEQ ID NO: 873





212114_at
5′-GTATAAGGTGGGCTTGGTCCAACAG-3′
SEQ ID NO: 874





212114_at
5′-TAGCTGATTAACTGTATTCCCCTTT-3′
SEQ ID NO: 875





212114_at
5′-TGATCACCCTGCAATCCTATTATGT-3′
SEQ ID NO: 876





212114_at
5′-TGCCTGGCATTATCGCATGCTGGGA-3′
SEQ ID NO: 877





212114_at
5′-TGGCCCCTCTACCAATAGGGCAGTA-3′
SEQ ID NO: 878





212114_at
5′-TTTCTTCCATACATTAGTTCCCACC-3′
SEQ ID NO: 879





212875_s_at
5′-AAAGCAGCCTGCACAGGGCAAGGCC-3′
SEQ ID NO: 880





212875_s_at
5′-CAAACCGGCCTAGACACGAAGACCA-3′
SEQ ID NO: 881





212875_s_at
5′-CCTCGTTCTCTCAGTTAGCAGCTGG-3′
SEQ ID NO: 882





212875_s_at
5′-GAAACACAATACACTGCCTCGTTCT-3′
SEQ ID NO: 883





212875_s_at
5′-GATTGTATTCCTCAGTAGCACTTTA-3′
SEQ ID NO: 884





212875_s_at
5′-GCAGCGCACCATTCATCATTTAGGC-3′
SEQ ID NO: 885





212875_s_at
5′-GGCAGGACACGTATCTCTGTCTGAC-3′
SEQ ID NO: 886





212875_s_at
5′-GGCTTGTGGTTTGTTGTTTACTCTA-3′
SEQ ID NO: 887





212875_s_at
5′-GTCCATGACCGTTTGCATTCGAAAC-3′
SEQ ID NO: 888





212875_s_at
5′-TAATCTCACGGCTCTTGATCTGGAA-3′
SEQ ID NO: 889





212875_s_at
5′-TTGGCCTGACGCTGGAGTGCGGTGA-3′
SEQ ID NO: 890





213433_at
5′-AAGTCAGCGATTATGCCGGCGGTTA-3′
SEQ ID NO: 891





213433_at
5′-ATGTCGGTGCACAGCTGAAAGTCAG-3′
SEQ ID NO: 892





213433_at
5′-ATTCCCGTCAGAGTTTGCTTTGATT-3′
SEQ ID NO: 893





213433_at
5′-CACTCCATGTGGTTTCAGGGTTCAG-3′
SEQ ID NO: 894





213433_at
5′-GCCGGCGGTTAGAAATGTGCCAGGG-3′
SEQ ID NO: 895





213433_at
5′-GGGTGTCATTGATGTGGGCTGAGCT-3′
SEQ ID NO: 896





213433_at
5′-GGTTAAAGGAGTCCGCAGCTCCCAC-3′
SEQ ID NO: 897





213433_at
5′-TGAGCTGGGGAACATGTCGGTGCAC-3′
SEQ ID NO: 898





213433_at
5′-TGGCCTGGAGGGTGACACCATGTCA-3′
SEQ ID NO: 899





213433_at
5′-TTATTTTTAGCTCTGCACTCCATGT-3′
SEQ ID NO: 900





213433_at
5′-TTCTTTATTCCCCTCTGGACTAAAG-3′
SEQ ID NO: 901





213557_at
5′-CAGAGGAGGCTAAGCCCGGGCAGCT-3′
SEQ ID NO: 902





213557_at
5′-CCCAGTGCCCAGAAACAATGCCTAG-3′
SEQ ID NO: 903





213557_at
5′-CCCAGTTACACACTTCCATGGTACT-3′
SEQ ID NO: 904





213557_at
5′-CTCATTCTCAACTCCTTAGACTCAG-3′
SEQ ID NO: 905





213557_at
5′-CTTTCCATACCTGTACTCACAACTA-3′
SEQ ID NO: 906





213557_at
5′-GTACTATATATCATTCCTTCAGAGC-3′
SEQ ID NO: 907





213557_at
5′-GTCCTTTGCAAACTCATTCTCAACT-3′
SEQ ID NO: 908





213557_at
5′-TATTTCCTATGTATTTGTCCAGTCA-3′
SEQ ID NO: 909





213557_at
5′-TCCTTAGACTCAGTCAAGTCCCCCA-3′
SEQ ID NO: 910





213557_at
5′-TGACCATTTCTATCTGTGTTCACCA-3′
SEQ ID NO: 911





213557_at
5′-TGTTCACCAATGTGTTCCCAGTGCC-3′
SEQ ID NO: 912





213861_s_at
5′-AAATTACCTTCCTATTGCATTTCCT-3′
SEQ ID NO: 913





213861_s_at
5′-AGGGTAGGGCTGTGGTTTACTCCTG-3′
SEQ ID NO: 914





213861_s_at
5′-CTTTCCTGAGCCTCTTGCTTGAATG-3′
SEQ ID NO: 915





213861_s_at
5′-GACATTTGTGATTCTCATTTTCTCA-3′
SEQ ID NO: 916





213861_s_at
5′-GATGTACTCTTTGTTCTCTAAAACC-3′
SEQ ID NO: 917





213861_s_at
5′-GCTTGAATGTGATTTCTTTCTCCCT-3′
SEQ ID NO: 918





213861_s_at
5′-TATTGCCACCTGTCAAAATCTTCAT-3′
SEQ ID NO: 919





213861_s_at
5′-TGGACAAATTCTCGAACCCATTCAC-3′
SEQ ID NO: 920





213861_s_at
5′-TGTCTAAACCCCTGAAGCCTAACAC-3′
SEQ ID NO: 921





213861_s_at
5′-TTGCTACGTGTATTGGACCTCTGGC-3′
SEQ ID NO: 922





213861_s_at
5′-TTTCTCCCTGAGACCCATAAGGTTC-3′
SEQ ID NO: 923





214004_s_at
5′-ACACGTGGCTCCAGATCAAAGCGGC-3′
SEQ ID NO: 924





214004_s_at
5′-CAAAGCGGCCAAGGACGGAGCATCC-3′
SEQ ID NO: 925





214004_s_at
5′-CAAAGCTCTGGGTGACACGTGGCTC-3′
SEQ ID NO: 926





214004_s_at
5′-CAAGAATTACAAGGAGCCCGAGCCG-3′
SEQ ID NO: 927





214004_s_at
5′-CCACCTGTGACCCCGTGGTGGAGGA-3′
SEQ ID NO: 928





214004_s_at
5′-CCTCCTCCAACAACACGTGGATCTG-3′
SEQ ID NO: 929





214004_s_at
5′-CGTGGATCTGCATGGTTTGCCTGAG-3′
SEQ ID NO: 930





214004_s_at
5′-GACGACCACTTTGCCAAAGCTCTGG-3′
SEQ ID NO: 931





214004_s_at
5′-GGTTTGCCTGAGCTTTGAACAGTCA-3′
SEQ ID NO: 932





214004_s_at
5′-GTGGTGGAGGAGCATTTCCGCAGGA-3′
SEQ ID NO: 933





214004_s_at
5′-TGTGGTCTCCTGAAGGGAGCGCCTC-3′
SEQ ID NO: 934





214197_s_at
5′-CAAGCTGTATGTGGGCAGTCGGGTG-3′
SEQ ID NO: 935





214197_s_at
5′-CAGTCGGGTGGTCGCCAAATACAAA-3′
SEQ ID NO: 936





214197_s_at
5′-CCATTTGCCGGCCACTGAAAAAGAC-3′
SEQ ID NO: 937





214197_s_at
5′-GAAGGCACGTGGTGGAAGTCCCGAG-3′
SEQ ID NO: 938





214197_s_at
5′-GCCCCATGGTACTGCTCAAGAGTGG-3′
SEQ ID NO: 939





214197_s_at
5′-GCTCAAGAGTGGCCAGCTTATCAAG-3′
SEQ ID NO: 940





214197_s_at
5′-GGAAGTCCCGAGTTGAGGAGGTGGA-3′
SEQ ID NO: 941





214197_s_at
5′-GGACATAGAAGACATCTCCTGCCGT-3′
SEQ ID NO: 942





214197_s_at
5′-GGATGGCAGCCTAGTCAGGATCCTC-3′
SEQ ID NO: 943





214197_s_at
5′-TAGAGGAGTATGTCACTGCCTACCC-3′
SEQ ID NO: 944





214197_s_at
5′-TCTCCTGCCGTGACTTCATAGAGGA-3′
SEQ ID NO: 945





214745_at
5′-ACTGACATGCATTATTTTCACTGTG-3′
SEQ ID NO: 946





214745_at
5′-GAATAGGCCGTGAGGGTGTGAGGAA-3′
SEQ ID NO: 947





214745_at
5′-GAATGAGGGACTTCCATCAGACTCT-3′
SEQ ID NO: 948





214745_at
5′-GAGTTGCCAAACTACCTGTTGTACT-3′
SEQ ID NO: 949





214745_at
5′-GCAATGATGTTCTTCCTGGAATTCA-3′
SEQ ID NO: 950





214745_at
5′-GTTCTTATCCCACCCATAATGAGAG-3′
SEQ ID NO: 951





214745_at
5′-TACAGACTGCGAACAACGGCTTTCA-3′
SEQ ID NO: 952





214745_at
5′-TGCCCTTCCCACTTTTTGGAATAGG-3′
SEQ ID NO: 953





214745_at
5′-TTCAGGGAACCAAGCAACTCTATTT-3′
SEQ ID NO: 954





214745_at
5′-TTTAGGATGTTCTTATCCCACCCAT-3′
SEQ ID NO: 955





214745_at
5′-TTTTGCTAATGGCTTTGTATGTAAC-3′
SEQ ID NO: 956





214860_at
5′-ACACCACTGAGTGCCATGCAGAGAA-3′
SEQ ID NO: 957





214860_at
5′-ACATTAAGTATTTTCAGCCCACTAG-3′
SEQ ID NO: 958





214860_at
5′-AGAGTCCGAGTGTCTTTACACCACT-3′
SEQ ID NO: 959





214860_at
5′-AGCATTCAACTTTTGAGGGCTACCA-3′
SEQ ID NO: 960





214860_at
5′-AGGACTGAAGTATCTACTCTGGGTT-3′
SEQ ID NO: 961





214860_at
5′-CTGCTGCACCAGCTTAACATGTGGG-3′
SEQ ID NO: 962





214860_at
5′-CTTTCTGGATGAGCTGTTCTGTCTG-3′
SEQ ID NO: 963





214860_at
5′-GAAACCTACAAGGCACCAGGCTAGA-3′
SEQ ID NO: 964





214860_at
5′-GAATTCCAAACTTTGAGCCGACGAA-3′
SEQ ID NO: 965





214860_at
5′-GATTTCAGTGGCCACCTGAGGAATC-3′
SEQ ID NO: 966





214860_at
5′-GTCATTTTCCTTGTATCTGGGGAGG-3′
SEQ ID NO: 967





215557_at
5′-ACAGAGGCATGCTACCATACCTGGT-3′
SEQ ID NO: 968





215557_at
5′-ACCTCCTAATACCAACACCTTGAAG-3′
SEQ ID NO: 969





215557_at
5′-AGAGCGGTAGGTTACTCTGGGCACA-3′
SEQ ID NO: 970





215557_at
5′-CAGAGGCTCTGGCTCGAAGGAAGCG-3′
SEQ ID NO: 971





215557_at
5′-CCAAGGCCTTCCTTGGTGTTGCCTC-3′
SEQ ID NO: 972





215557_at
5′-GAAGGAAGCGGAGGGCGTGGCTGCT-3′
SEQ ID NO: 973





215557_at
5′-GCCTTTTCTTAGTGCCTTAGAGGGC-3′
SEQ ID NO: 974





215557_at
5′-GGCTGCTGAGACAGCCAACACCTCT-3′
SEQ ID NO: 975





215557_at
5′-GTGTGCTCTTCCCAGTAGAGCGGTA-3′
SEQ ID NO: 976





215557_at
5′-TTGCCTCCATTCCCTGGAAAGGTCT-3′
SEQ ID NO: 977





215557_at
5′-TTTTACATTTCAGTGTGCTCTTCCC-3′
SEQ ID NO: 978





219236_at
5′-AACCAGGCCGAGAGGCCACACACTT-3′
SEQ ID NO: 979





219236_at
5′-ATGCATGCGTGTCCAGGCTGAAGAT-3′
SEQ ID NO: 980





219236_at
5′-CCATCCCCACAAACCAGGTAATGCC-3′
SEQ ID NO: 981





219236_at
5′-CTGAATGCTTCTTGCTAACCAGGCC-3′
SEQ ID NO: 982





219236_at
5′-CTTCTGGAAGTCTCTGCTCAGCACA-3′
SEQ ID NO: 983





219236_at
5′-GAAGATGCCCCTATATTCTGTCAAA-3′
SEQ ID NO: 984





219236_at
5′-GACCGTGAGGGGGCTCTTGATGGGA-3′
SEQ ID NO: 985





219236_at
5′-GCTCAAGGTGTCCAGGCTTTTGGGG-3′
SEQ ID NO: 986





219236_at
5′-GTCCTGGTCATAACTGTGTGCTCAA-3′
SEQ ID NO: 987





219236_at
5′-GTTTGCCAGCAGCTATTTGCCTATA-3′
SEQ ID NO: 988





219236_at
5′-TGGGCCTATCTGGGTGCATTATGGA-3′
SEQ ID NO: 989





219658_at
5′-AACAGAATACTAAGGGCCCCTACTG-3′
SEQ ID NO: 990





219658_at
5′-AGGTGTTTGCTGAATCCAGGTCTGA-3′
SEQ ID NO: 991





219658_at
5′-CACTGTACCACATTATCTCTTTTCA-3′
SEQ ID NO: 992





219658_at
5′-CCAGGTCTGAGATCACAATCCCACC-3′
SEQ ID NO: 993





219658_at
5′-CTCTGCCCTCATAGAATCCTAATTG-3′
SEQ ID NO: 994





219658_at
5′-GAAACATTGAACAGCCCCATTTAGA-3′
SEQ ID NO: 995





219658_at
5′-GAGGCCCAATCTCAACTGTAGACTG-3′
SEQ ID NO: 996





219658_at
5′-GATTCCTAGTCTAGTATCCTTCCCA-3′
SEQ ID NO: 997





219658_at
5′-GGATCCGCATATGAGAGTCGCACAT-3′
SEQ ID NO: 998





219658_at
5′-TACCGACCTCTTAGGCTTGGTGTGA-3′
SEQ ID NO: 999





219658_at
5′-TCTTGTCCTTGTGCTCTGTGAAACA-3′
SEQ ID NO: 1000





221483_s_at
5′-ACTTCGCCTGTACTGAAAGGGCCAA-3′
SEQ ID NO: 1001





221483_s_at
5′-CAACCTTCTAATTAGGTAGGCCTCT-3′
SEQ ID NO: 1002





221483_s_at
5′-CCCTTGGATCTGTTACTGCATCACT-3′
SEQ ID NO: 1003





221483_s_at
5′-GATCACTGCTGGTCTTGATAGCCAT-3′
SEQ ID NO: 1004





221483_s_at
5′-GATGCAATAGAACACTTCGCCTGTA-3′
SEQ ID NO: 1005





221483_s_at
5′-GCTGAATTTGTCAAATACCCCTTCC-3′
SEQ ID NO: 1006





221483_s_at
5′-TAATTTGAGCCACATTCCCAACTCT-3′
SEQ ID NO: 1007





221483_s_at
5′-TAGGCCTCTAGGTATTCTGCAGATC-3′
SEQ ID NO: 1008





221483_s_at
5′-TATCTCACTCTGTCATTGTTAATCT-3′
SEQ ID NO: 1009





221483_s_at
5′-TGTTACTGCATCACTAGCACTTGTG-3′
SEQ ID NO: 1010





221483_s_at
5′-TTCCCCACCACACCTTATAAAATTG-3′
SEQ ID NO: 1011
















TABLE 6







LSC gene signature (48)















Entrez

Representative


Probe Set ID
Gene Symbol
Gene Title
Gene ID
UniGene ID
Public ID















201242_s_at
ATP1B1
“ATPase, Na+/K+ transporting, beta 1 polypeptide”
481
Hs.291196
BC000006


201243_s_at
ATP1B1
“ATPase, Na+/K+ transporting, beta 1 polypeptide”
481
Hs.291196
NM_001677


201702_s_at
PPP1R10
“protein phosphatase 1, regulatory (inhibitor) subunit 10”
5514
Hs.106019
AI492873


202646_s_at
CSDE1
“cold shock domain containing E1, RNA-binding”
7812
Hs.69855
AA167775


202956_at
ARFGEF1
ADP-ribosylation factor guanine nucleotide-exchange factor
10565
Hs.656902
NM_006421




1(brefeldin A-inhibited)


203474_at
IQGAP2
IQ motif containing GTPase activating protein 2
10788
Hs.291030
NM_006633


204028_s_at
RABGAP1
RAB GTPase activating protein 1
23637
Hs.271341
NM_012197


205256_at
ZBTB39
zinc finger and BTB domain containing 39
9880
Hs.591025
NM_014830


205321_at
EIF2S3
“eukaryotic translation initiation factor 2, subunit 3 gamma,
1968
Hs.539684
NM_001415




52 kDa”


206582_s_at
GPR56
G protein-coupled receptor 56
9289
Hs.513633
NM_005682


207090_x_at
ZFP30
zinc finger protein 30 homolog (mouse)
22835
Hs.716719
NM_014898


207753_at
ZNF304
zinc finger protein 304
57343
Hs.287374
NM_020657


207836_s_at
RBPMS
RNA binding protein with multiple splicing
11030
Hs.334587
NM_006867


207837_at
RBPMS
RNA binding protein with multiple splicing
11030
Hs.334587
NM_006867


208883_at
UBR5
ubiquitin protein ligase E3 component n-recognin 5
51366
Hs.591856
BF515424


208993_s_at
PPIG
peptidylprolyl isomerase G (cyclophilin G)
9360
Hs.470544
AW340788


209272_at
NAB1
NGFI-A binding protein 1 (EGR1 binding protein 1)
4664
Hs.570078
AF045451


209487_at
RBPMS
RNA binding protein with multiple splicing
11030
Hs.334587
D84109


209488_s_at
RBPMS
RNA binding protein with multiple splicing
11030
Hs.334587
D84109


209740_s_at
PNPLA4
patatin-like phospholipase domain containing 4
8228
Hs.264
U03886


211113_s_at
ABCG1
“ATP-binding cassette, sub-family G (WHITE), member 1”
9619
Hs.124649
U34919


211536_x_at
MAP3K7
mitogen-activated protein kinase kinase kinase 7
6885
Hs.719192
AB009358


211537_x_at
MAP3K7
mitogen-activated protein kinase kinase kinase 7
6885
Hs.719192
AF218074


212114_at
LOC552889
hypothetical protein LOC552889
552889
Hs.213541
BE967207


212676_at
NF1
neurofibromin 1
4763
Hs.113577
AW293356


212875_s_at
C2CD2
C2 calcium-dependent domain containing 2
25966
Hs.473894
AP001745


212976_at
LRRC8B
“leucine rich repeat containing 8 family, member B”
23507
Hs.482017
R41498


213056_at
FRMD4B
FERM domain containing 4B
23150
Hs.709671
AU145019


213433_at
ARL3
ADP-ribosylation factor-like 3
403
Hs.182215
AF038193


213557_at
CRKRS
“Cdc2-related kinase, arginine/serine-rich”
51755
Hs.416108
AW305119


213861_s_at
FAM119B
“family with sequence similarity 119, member B”
25895
Hs.632720
N67741


214004_s_at
VGLL4
vestigial like 4 (Drosophila)
9686
Hs.38032
AI806207


214197_s_at
SETDB1
“SET domain, bifurcated 1”
9869
Hs.643565
AI762193


214252_s_at
CLN5
“ceroid-lipofuscinosis, neuronal 5”
1203
Hs.30213
AV700514


214745_at
PLCH1
“phospholipase C, eta 1”
23007
Hs.567423
AW665865


214860_at
SLC9A7
“solute carrier family 9 (sodium/hydrogen exchanger),
84679
Hs.496057
AL022165




member 7”


215411_s_at
TRAF3IP2
TRAF3 interacting protein 2
10758
Hs.654708
AL008730


215557_at



Hs.658129
AU144900


216262_s_at
TGIF2
TGFB-induced factor homeobox 2
60436
Hs.632264
AL050318


218183_at
C16orf5
chromosome 16 open reading frame 5
29965
Hs.654653
NM_013399


218907_s_at
LRRC61
leucine rich repeat containing 61
65999
Hs.647119
NM_023942


219236_at
PAQR6
progestin and adipoQ receptor family member VI
79957
Hs.235873
NM_024897


219658_at
PTCD2
pentatricopeptide repeat domain 2
79810
Hs.126906
NM_024754


219871_at
FLJ13197
hypothetical FLJ13197
79667
Hs.29725
NM_024614


220128_s_at
NIPAL2
NIPA-like domain containing 2
79815
Hs.309489
NM_024759


221483_s_at
ARPP19
“cAMP-regulated phosphoprotein, 19 kDa”
10776
Hs.512908
AF084555


221621_at
C17orf86
chromosome 17 open reading frame 86
654434

AF130050


41113_at
ZNF500
zinc finger protein 500
26048
Hs.513316
AI871396
















TABLE 7







Summary of Patient Data












AML
Relapse or



Karyotype and Molecular


#
Diagnosis
FAB
Age
Sex
Marker















1
Relapse
M2
48
f
46, t(2; 21)(p21; q22)[4]/46, 9



(AML #9)



(1; 21)(q22; q22)


2
Diag
M5a
58
f
normal, FLT3ITD


3
Diag
unclass
52
f
+8


4
Diag
unclass
62
m
normal


5
Diag
M5a
39
f
+8


6
Diag
unclass
80
f
normal


7
Diag
M5
48
m
no data


8
Diag
M1
72
f
normal


9
Diag
M2
47
f
46, t(2:21)[4]/t(6:21)[2]/t(15:







21)[2]


10
Diag
M2
62
f
trisomy 13


11
Diag
M1
45
f
normal


12
Diag
M4eo
39
m
46, inv(16)(p13; q22)


13
Diag
M5a
40
m
normal, FLT3ITD


14
Diag
M5a
75
m
normal


15
Diag
M4
23
m
normal


16
Diag
M5b
80
m
no data
















TABLE 8







Frequency of LSC in each fraction of 16 AML















CD34−/CD38−



CD34+/CD38−
CD34+/CD38+
CD34−/CD38+
Frequency



Frequency
Frequency
Frequency
1 LSC per X



1 LSC per X cells
1 LSC per X cells
1 LSC per X cells
cells


AML
(95% CI)
(95% CI)
(95% CI)
(95% CI)














1
1.6 × 103
1.3 × 105
0
0



(2.7 × 102-9.9 × 103)
(4.6 × 104-3.7 × 105)


2
5.8 × 103
4.2 × 103
0
0



(1.8 × 103-1.8 × 104)
(1.4 × 103-1.3 × 104)


3
6.2 × 103*
7.6 × 103*
9.6 × 103
7.7 × 103*



(1-6.2 × 103)
(1-7.6 × 103)
(2.5 × 103-3.7 × 104)
(1-7.7 × 103)


4
7.1 × 103
9.2 × 104
0
4.4 × 105*



(1.1 × 103-4.6 × 104)
(2.7 × 104-3.1 × 105)

(1-4.4 × 105)


5
1.1 × 104
4.5 × 104
0
0



(3.7 × 103-3.4 × 104)
(1.8 × 104-1.2 × 105)


6
1.7 × 105
1.5 × 105
0
0



(6.9 × 104-4.2 × 105)
(5.8 × 104-4.1 × 105)


7
1.7 × 105*
nt
nt
9.1 × 105*



(1-1.7 × 105)


(1-9.1 × 105)


8
2.1 × 105
0
0
0



(9.3 × 104-4.9 × 105)


9
2.6 × 105*
nt
nt
nt



(1-2.6 × 105)


10
2.5 × 105
nt
nt
nt



(6.0 × 104-1.0 × 106)


11
4.5 × 105
4.9 × 104
0
0



(6.4 × 104-3.1 × 106)
(1.9 × 104-1.3 × 105)


12
4.9 × 105
0
0
0



(6.9 × 104-3.5 × 106)


13
1.1 × 106
2.4 × 105
0
0



(2.7 × 105-4.3 × 106)
(9.0 × 104-6.3 × 105)


14
**
0
0
0


15
***
0
0
0


16
***
0
0
0


Total
13/14 (93%)
8/13 (62%)
1/13 (8%)
3/14 (21%)
















TABLE 9







Secondary engraftment of samples with LSC in multiple fractions


Secondary Transplantation/Primary Mice











AML
34+ 38−
34+ 38+
34− 38+
34− 38−














1
3/3
2/2




2
3/5
3/6


4
3/3
1/2

2/2


5
0/2
0/2


11
0/1
1/2





Note:


“Number of primary mice with secondary engraftment”/“total number of primary mice tested”













TABLE 10







Percentage of each CD34 and CD38 sorted populations


in 16 primary human AML samples










Percentage of Each Sorted Fraction












AML
+/−
+/+
−/+
−/−














1
5.9
80.4
13.1
0.6


2
15.3
50.3
31.0
3.4


3
8.6
65.4
24.1
2.0


4
10.9
17.2
62.2
9.7


5
3.7
18.0
72.4
5.9


6
90.8
3.0
2.9
3.3


7
49.8
15.3
29.0
5.9


8
1.0
31.1
66.1
1.9


9
4.2
62.1
33.1
0.6


10
4.8
60.0
19.5
15.7


11
11.8
39.8
39.8
8.5


12
1.2
48.6
48.8
1.5


13
12.3
5.3
67.0
15.3


14
0.4
71.3
22.6
5.8


15
0.1
46.2
43.3
10.5


16
0.7
7.7
86.6
4.9
















TABLE 11







Percentage of total LSC in each sorted fraction of primary human AML










Percentage of Total LSC in Each Fraction*













+/−
+/+
−/+
−/−


AML
(%)
(%)
(%)
(%)














1
85
15
0
0


2
18
82
0
0


3
 13**
 79**
 6**
 2**


4
 75**
 18**
0
 7**


5
46
54
0
0


6
96
 4
0
0


8
100 
 0
0
0


11
 3
97
0
0


12
100 
 0
0
0


13
33
67
0
0





*estimated by multiplying LSC frequency by the percentage of total patient cells each fraction represents


**Estimate from lower 95% interval













TABLE 12







Complete LSC-R Probe List, including FDR<=0.05












Gene

Entrez
Representative


Probe Set ID
Symbol
Gene Title
Gene ID
Public ID














201018_at
EIF1AX
eukaryotic translation
1964
AL079283




initiation factor 1A, X-




linked


201080_at
PIP4K2B
phosphatidylinositol-5-
8396
BF338509




phosphate 4-kinase, type




II, beta


201242_s_at
ATP1B1
ATPase, Na+/K+
481
BC000006




transporting, beta 1




polypeptide


201243_s_at
ATP1B1
ATPase, Na+/K+
481
NM_001677




transporting, beta 1




polypeptide


201702_s_at
PPP1R10
protein phosphatase 1,
5514
AI492873




regulatory (inhibitor)




subunit 10


202599_s_at
NRIP1
nuclear receptor
8204
NM_003489




interacting protein 1


202646_s_at
CSDE1
cold shock domain
7812
AA167775




containing E1, RNA-




binding


202956_at
ARFGEF1
ADP-ribosylation factor
10565
NM_006421




guanine nucleotide-




exchange factor




1(brefeldin A-inhibited)


203106_s_at
VPS41
vacuolar protein sorting
27072
NM_014396




41 homolog (S. cerevisiae)


203474_at
IQGAP2
IQ motif containing
10788
NM_006633




GTPase activating protein 2


204028_s_at
RABGAP1
RAB GTPase activating
23637
NM_012197




protein 1


204837_at
MTMR9
myotubularin related
66036
AL080178




protein 9


205094_at
PEX12
peroxisomal biogenesis
5193
NM_000286




factor 12


205256_at
ZBTB39
zinc finger and BTB
9880
NM_014830




domain containing 39


205321_at
EIF2S3
eukaryotic translation
1968
NM_001415




initiation factor 2, subunit




3 gamma, 52 kDa


205608_s_at
ANGPT1
angiopoietin 1
284
U83508


205702_at
PHTF1
putative homeodomain
10745
NM_006608




transcription factor 1


206582_s_at
GPR56
G protein-coupled
9289
NM_005682




receptor 56


206874_s_at
SLK
STE20-like kinase (yeast)
9748
AL138761


206945_at
LCT
lactase
3938
NM_002299


207090_x_at
ZFP30
zinc finger protein 30
22835
NM_014898




homolog (mouse)


207737_at



NM_021981


207753_at
ZNF304
zinc finger protein 304
57343
NM_020657


207836_s_at
RBPMS
RNA binding protein with
11030
NM_006867




multiple splicing


207837_at
RBPMS
RNA binding protein with
11030
NM_006867




multiple splicing


207968_s_at
MEF2C
myocyte enhancer factor
4208
NM_002397




2C


208634_s_at
MACF1
microtubule-actin
23499
AB029290




crosslinking factor 1


208883_at
UBR5
ubiquitin protein ligase E3
51366
BF515424




component n-recognin 5


208993_s_at
PPIG
peptidylprolyl isomerase
9360
AW340788




G (cyclophilin G)


209200_at
MEF2C
myocyte enhancer factor
4208
AL536517




2C


209272_at
NAB1
NGFI-A binding protein 1
4664
AF045451




(EGR1 binding protein 1)


209425_at
AMACR ///
alpha-methylacyl-CoA
114899
AA888589



C1QTNF3
racemase /// C1q and
///




tumor necrosis factor
23600




related protein 3


209487_at
RBPMS
RNA binding protein with
11030
D84109




multiple splicing


209488_s_at
RBPMS
RNA binding protein with
11030
D84109




multiple splicing


209740_s_at
PNPLA4
patatin-like
8228
U03886




phospholipase domain




containing 4


210132_at
EFNA3
ephrin-A3
1944
AW189015


211113_s_at
ABCG1
ATP-binding cassette,
9619
U34919




sub-family G (WHITE),




member 1


211255_x_at
DEDD
death effector domain
9191
AF064605




containing


211536_x_at
MAP3K7
mitogen-activated
6885
AB009358




protein kinase kinase




kinase 7


211537_x_at
MAP3K7
mitogen-activated
6885
AF218074




protein kinase kinase




kinase 7


211877_s_at
PCDHGA11
protocadherin gamma
56105
AF152505




subfamily A, 11


212114_at
ATXN7L3B
ataxin 7-like 3B
552889
BE967207


212397_at
RDX
radixin
5962
AL137751


212676_at
NF1
neurofibromin 1
4763
AW293356


212851_at
DCUN1D4
DCN1, defective in cullin
23142
AA194584




neddylation 1, domain




containing 4 (S. cerevisiae)


212875_s_at
C2CD2
C2 calcium-dependent
25966
AP001745




domain containing 2


212976_at
LRRC8B
leucine rich repeat
23507
R41498




containing 8 family,




member B


213056_at
FRMD4B
FERM domain containing
23150
AU145019




4B


213313_at
RABGAP1
RAB GTPase activating
23637
AI922519




protein 1


213433_at
ARL3
ADP-ribosylation factor-
403
AF038193




like 3


213557_at
CDK12
cyclin-dependent kinase
51755
AW305119




12


213639_s_at
ZNF500
zinc finger protein 500
26048
AI871396


213861_s_at
FAM119B
family with sequence
25895
N67741




similarity 119, member B


214004_s_at
VGLL4
vestigial like 4
9686
AI806207




(Drosophila)


214197_s_at
SETDB1
SET domain, bifurcated 1
9869
AI762193


214252_s_at
CLN5
ceroid-lipofuscinosis,
1203
AV700514




neuronal 5


214738_s_at
NEK9
NIMA (never in mitosis
91754
BE792298




gene a)-related kinase 9


214745_at
PLCH1
phospholipase C, eta 1
23007
AW665865


214820_at
BRWD1
bromodomain and WD
54014
AJ002572




repeat domain containing 1


214860_at
SLC9A7
solute carrier family 9
84679
AL022165




(sodium/hydrogen




exchanger), member 7


215411_s_at
TRAF3IP2
TRAF3 interacting protein 2
10758
AL008730


215557_at



AU144900


216262_s_at
TGIF2
TGFB-induced factor
60436
AL050318




homeobox 2


218183_at
C16orf5
chromosome 16 open
29965
NM_013399




reading frame 5


218907_s_at
LRRC61
leucine rich repeat
65999
NM_023942




containing 61


219232_s_at
EGLN3
egl nine homolog 3 (C. elegans)
112399
NM_022073


219236_at
PAQR6
progestin and adipoQ
79957
NM_024897




receptor family member




VI


219383_at
PRR5L
proline rich 5 like
79899
NM_024841


219658_at
PTCD2
pentatricopeptide repeat
79810
NM_024754




domain 2


219718_at
FGGY
FGGY carbohydrate
55277
NM_018291




kinase domain containing


219871_at
FLJ13197
hypothetical FLJ13197
79667
NM_024614


220128_s_at
NIPAL2
NIPA-like domain
79815
NM_024759




containing 2


220360_at
THAP9
THAP domain containing 9
79725
NM_024672


221020_s_at
SLC25A32
solute carrier family 25,
81034
NM_030780




member 32


221294_at
GPR21
G protein-coupled
2844
NM_005294




receptor 21


221483_s_at
ARPP19
cAMP-regulated
10776
AF084555




phosphoprotein, 19 kDa


221621_at
C17orf86
chromosome 17 open
654434
AF130050




reading frame 86


34408_at
RTN2
reticulon 2
6253
AF004222


34726_at
CACNB3
calcium channel, voltage-
784
U07139




dependent, beta 3




subunit


41113_at
ZNF500
zinc finger protein 500
26048
AI871396




















TABLE 13








Entrez
Representative


Probe Set ID
Gene Symbol
Gene Title
Gene ID
Public ID



















200672_x_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
NM_003128


201917_s_at
SLC25A36
solute carrier family 25, member 36
55186
AI694452


201952_at
ALCAM
activated leukocyte cell adhesion molecule
214
AA156721


202932_at
YES1
v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
7525
NM_005433


203139_at
DAPK1
death-associated protein kinase 1
1612
NM_004938


203372_s_at
SOCS2
suppressor of cytokine signaling 2
8835
AB004903


203875_at
SMARCA1
SWI/SNF related, matrix associated, actin dependent
6594
NM_003069




regulator of chromatin, subfamily a, member 1


204753_s_at
HLF
hepatic leukemia factor
3131
AI810712


204754_at
HLF
hepatic leukemia factor
3131
W60800


204755_x_at
HLF
hepatic leukemia factor
3131
M95585


205376_at
INPP4B
inositol polyphosphate-4-phosphatase, type II, 105 kDa
8821
NM_003866


205453_at
HOXB2
homeobox B2
3212
NM_002145


205984_at
CRHBP
corticotropin releasing hormone binding protein
1393
NM_001882


206099_at
PRKCH
protein kinase C, eta
5583
NM_006255


206310_at
SPINK2
serine peptidase inhibitor, Kazal type 2 (acrosin-trypsin
6691
NM_021114




inhibitor)


206478_at
KIAA0125
KIAA0125
9834
NM_014792


206674_at
FLT3
fms-related tyrosine kinase 3
2322
NM_004119


206683_at
ZNF165
zinc finger protein 165
7718
NM_003447


209487_at
RBPMS
RNA binding protein with multiple splicing
11030
D84109


209676_at
TFPI
tissue factor pathway inhibitor (lipoprotein-associated
7035
J03225




coagulation inhibitor)


209728_at
HLA-DRB4
major histocompatibility complex, class II, DR beta 4
3126
BC005312


209994_s_at
ABCB1 ///
ATP-binding cassette, sub-family B (MDR/TAP), member 1 ///
5243 ///
AF016535



ABCB4
ATP-binding cassette, sub-family B (MDR/TAP), member 4
5244


210664_s_at
TFPI
tissue factor pathway inhibitor (lipoprotein-associated
7035
AF021834




coagulation inhibitor)


210665_at
TFPI
tissue factor pathway inhibitor (lipoprotein-associated
7035
AF021834




coagulation inhibitor)


212071_s_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
BE968833


212750_at
PPP1R16B
protein phosphatase 1, regulatory (inhibitor) subunit 16B
26051
AB020630


213056_at
FRMD4B
FERM domain containing 4B
23150
AU145019


213094_at
GPR126
G protein-coupled receptor 126
57211
AL033377


213714_at
CACNB2
calcium channel, voltage-dependent, beta 2 subunit
783
AI040163


213844_at
HOXA5
homeobox A5
3202
NM_019102


215388_s_at
CFH ///
complement factor H /// complement factor H-related 1
3075 ///
X56210



CFHR1

3078


217975_at
WBP5
WW domain binding protein 5
51186
NM_016303


218627_at
DRAM1
DNA-damage regulated autophagy modulator 1
55332
NM_018370


218764_at
PRKCH
protein kinase C, eta
5583
NM_024064


218772_x_at
TMEM38B
transmembrane protein 38B
55151
NM_018112


218901_at
PLSCR4
phospholipid scramblase 4
57088
NM_020353


218966_at
MYO5C
myosin VC
55930
NM_018728


219497_s_at
BCL11A
B-cell CLL/lymphoma 11A (zinc finger protein)
53335
NM_022893


221458_at
HTR1F
5-hydroxytryptamine (serotonin) receptor 1F
3355
NM_000866


221773_at
ELK3
ELK3, ETS-domain protein (SRF accessory protein 2)
2004
AW575374


221942_s_at
GUCY1A3
guanylate cyclase 1, soluble, alpha 3
2982
AI719730


41577_at
PPP1R16B
protein phosphatase 1, regulatory (inhibitor) subunit 16B
26051
AB020630


222735_at
TMEM38B
transmembrane protein 38B
55151
AW452608


226547_at
MYST3
MYST histone acetyltransferase (monocytic leukemia) 3
7994
AI817830


228904_at
HOXB3
homeobox B3
3213
AW510657


235199_at
RNF125
ring finger protein 125
54941
AI969697
















TABLE 14







HSC-R FDR = 0.05 Probe List












Gene

Entrez
Representative


Probe Set ID
Symbol
Gene Title
Gene ID
Public ID














200033_at
DDX5
DEAD (Asp-Glu-Ala-Asp) box
1655
NM_004396




polypeptide 5


200672_x_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
NM_003128


200962_at
RPL31
ribosomal protein L31
6160
AI348010


201466_s_at
JUN
jun oncogene
3725
NM_002228


201625_s_at
INSIG1
insulin induced gene 1
3638
BE300521


201695_s_at
PNP
purine nucleoside phosphorylase
4860
NM_000270


201889_at
FAM3C
family with sequence similarity 3,
10447
NM_014888




member C


201917_s_at
SLC25A36
solute carrier family 25, member
55186
AI694452




36


201952_at
ALCAM
activated leukocyte cell adhesion
214
AA156721




molecule


202551_s_at
CRIM1
cysteine rich transmembrane BMP
51232
BG546884




regulator 1 (chordin-like)


202724_s_at
FOXO1
forkhead box O1
2308
NM_002015


202822_at
LPP
LIM domain containing preferred
4026
BF221852




translocation partner in lipoma


202842_s_at
DNAJB9
DnaJ (Hsp40) homolog, subfamily
4189
AL080081




B, member 9


202932_at
YES1
v-yes-1 Yamaguchi sarcoma viral
7525
NM_005433




oncogene homolog 1


203139_at
DAPK1
death-associated protein kinase 1
1612
NM_004938


203372_s_at
SOCS2
suppressor of cytokine signaling 2
8835
AB004903


203394_s_at
HES1
hairy and enhancer of split 1,
3280
BE973687




(Drosophila)


203875_at
SMARCA1
SWI/SNF related, matrix
6594
NM_003069




associated, actin dependent




regulator of chromatin, subfamily




a, member 1


204069_at
MEIS1
Meis homeobox 1
4211
NM_002398


204304_s_at
PROM1
prominin 1
8842
NM_006017


204753_s_at
HLF
hepatic leukemia factor
3131
AI810712


204754_at
HLF
hepatic leukemia factor
3131
W60800


204755_x_at
HLF
hepatic leukemia factor
3131
M95585


204917_s_at
MLLT3
myeloid/lymphoid or mixed-
4300
AV756536




lineage leukemia (trithorax




homolog, Drosophila);




translocated to, 3


205376_at
INPP4B
inositol polyphosphate-4-
8821
NM_003866




phosphatase, type II, 105 kDa


205453_at
HOXB2
homeobox B2
3212
NM_002145


205501_at
PDE10A
phosphodiesterase 10A
10846
AI143879


205984_at
CRHBP
corticotropin releasing hormone
1393
NM_001882




binding protein


206099_at
PRKCH
protein kinase C, eta
5583
NM_006255


206310_at
SPINK2
serine peptidase inhibitor, Kazal
6691
NM_021114




type 2 (acrosin-trypsin inhibitor)


206385_s_at
ANK3
ankyrin 3, node of Ranvier (ankyrin
288
NM_020987




G)


206478_at
KIAA0125
KIAA0125
9834
NM_014792


206674_at
FLT3
fms-related tyrosine kinase 3
2322
NM_004119


206683_at
ZNF165
zinc finger protein 165
7718
NM_003447


207563_s_at
OGT
O-linked N-acetylglucosamine
8473
U77413




(GlcNAc) transferase (UDP-N-




acetylglucosamine:polypeptide-N-




acetylglucosaminyl transferase)


207564_x_at
OGT
O-linked N-acetylglucosamine
8473
NM_003605




(GlcNAc) transferase (UDP-N-




acetylglucosamine:polypeptide-N-




acetylglucosaminyl transferase)


208523_x_at
HIST1H2BI
histone cluster 1, H2bi
8346
NM_003525


208527_x_at
HIST1H2BE
histone cluster 1, H2be
8344
NM_003523


208707_at
EIF5
eukaryotic translation initiation
1983
BE552334




factor 5


208820_at
PTK2
PTK2 protein tyrosine kinase 2
5747
AL037339


208891_at
DUSP6
dual specificity phosphatase 6
1848
BC003143


208892_s_at
DUSP6
dual specificity phosphatase 6
1848
BC003143


208988_at
KDM2A
lysine (K)-specific demethylase 2A
22992
BE675843


209020_at
C20orf111
chromosome 20 open reading
51526
AF217514




frame 111


209146_at
SC4MOL
sterol-C4-methyl oxidase-like
6307
AV704962


209487_at
RBPMS
RNA binding protein with multiple
11030
D84109




splicing


209560_s_at
DLK1
delta-like 1 homolog (Drosophila)
8788
U15979


209676_at
TFPI
tissue factor pathway inhibitor
7035
J03225




(lipoprotein-associated




coagulation inhibitor)


209728_at
HLA-
major histocompatibility complex,
3126
BC005312



DRB4
class II, DR beta 4


209907_s_at
ITSN2
intersectin 2
50618
AF182198


209911_x_at
HIST1H2BD
histone cluster 1, H2bd
3017
BC002842


209993_at
ABCB1
ATP-binding cassette, sub-family B
5243
AF016535




(MDR/TAP), member 1


209994_s_at
ABCB1
ATP-binding cassette, sub-family B
5243 ///
AF016535



///
(MDR/TAP), member 1 /// ATP-
5244



ABCB4
binding cassette, sub-family B




(MDR/TAP), member 4


210664_s_at
TFPI
tissue factor pathway inhibitor
7035
AF021834




(lipoprotein-associated




coagulation inhibitor)


210665_at
TFPI
tissue factor pathway inhibitor
7035
AF021834




(lipoprotein-associated




coagulation inhibitor)


210942_s_at
ST3GAL6
ST3 beta-galactoside alpha-2,3-
10402
AB022918




sialyltransferase 6


211597_s_at
HOPX
HOP homeobox
84525
AB059408


212071_s_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
BE968833


212176_at
SFRS18
splicing factor, arginine/serine-rich
25957
AA902326




18


212179_at
SFRS18
splicing factor, arginine/serine-rich
25957
AW157501




18


212314_at
SEL1L3
sel-1 suppressor of lin-12-like 3 (C. elegans)
23231
AB018289


212488_at
COL5A1
collagen, type V, alpha 1
1289
N30339


212750_at
PPP1R16B
protein phosphatase 1, regulatory
26051
AB020630




(inhibitor) subunit 16B


212764_at
ZEB1
zinc finger E-box binding
6935
AI806174




homeobox 1


212958_x_at
PAM
peptidylglycine alpha-amidating
5066
AI022882




monooxygenase


213056_at
FRMD4B
FERM domain containing 4B
23150
AU145019


213094_at
GPR126
G protein-coupled receptor 126
57211
AL033377


213355_at
ST3GAL6
ST3 beta-galactoside alpha-2,3-
10402
AI989567




sialyltransferase 6


213510_x_at
LOC220594
TL132 protein
220594
AW194543


213541_s_at
ERG
v-ets erythroblastosis virus E26
2078
AI351043




oncogene homolog (avian)


213714_at
CACNB2
calcium channel, voltage-
783
AI040163




dependent, beta 2 subunit


213750_at
RSL1D1
ribosomal L1 domain containing 1
26156
AA928506


213844_at
HOXA5
homeobox A5
3202
NM_019102


214327_x_at
TPT1
tumor protein, translationally-
7178
AI888178




controlled 1


214349_at



AV764378


215388_s_at
CFH ///
complement factor H ///
3075 ///
X56210



CFHR1
complement factor H-related 1
3078


215779_s_at
HIST1H2BG
histone cluster 1, H2bg
8339
BE271470


217975_at
WBP5
WW domain binding protein 5
51186
NM_016303


218280_x_at
HIST2H2AA3
histone cluster 2, H2aa3 ///
723790
NM_003516



///
histone cluster 2, H2aa4
/// 8337



HIST2H2AA4


218332_at
BEX1
brain expressed, X-linked 1
55859
NM_018476


218379_at
RBM7
RNA binding motif protein 7
10179
NM_016090


218627_at
DRAM1
DNA-damage regulated autophagy
55332
NM_018370




modulator 1


218723_s_at
C13orf15
chromosome 13 open reading
28984
NM_014059




frame 15


218764_at
PRKCH
protein kinase C, eta
5583
NM_024064


218772_x_at
TMEM38B
transmembrane protein 38B
55151
NM_018112


218899_s_at
BAALC
brain and acute leukemia,
79870
NM_024812




cytoplasmic


218901_at
PLSCR4
phospholipid scramblase 4
57088
NM_020353


218966_at
MYO5C
myosin VC
55930
NM_018728


218971_s_at
WDR91
WD repeat domain 91
29062
NM_014149


219054_at
C5orf23
chromosome 5 open reading
79614
NM_024563




frame 23


219497_s_at
BCL11A
B-cell CLL/lymphoma 11A (zinc
53335
NM_022893




finger protein)


219559_at
SLC17A9
solute carrier family 17, member 9
63910
NM_022082


219648_at
MREG
melanoregulin
55686
NM_018000


220122_at
MCTP1
multiple C2 domains,
79772
NM_024717




transmembrane 1


220416_at
ATP8B4
ATPase, class I, type 8B, member 4
79895
NM_024837


221458_at
HTR1F
5-hydroxytryptamine (serotonin)
3355
NM_000866




receptor 1F


221773_at
ELK3
ELK3, ETS-domain protein (SRF
2004
AW575374




accessory protein 2)


221833_at
LONP2
Lon peptidase 2, peroxisomal
83752
AI971258


221841_s_at
KLF4
Kruppel-like factor 4 (gut)
9314
BF514079


221942_s_at
GUCY1A3
guanylate cyclase 1, soluble, alpha 3
2982
AI719730


222067_x_at
HIST1H2BD
histone cluster 1, H2bd
3017
AL353759


222164_at
FGFR1
fibroblast growth factor receptor 1
2260
AU145411


222315_at



AW972855


41577_at
PPP1R16B
protein phosphatase 1, regulatory
26051
AB020630




(inhibitor) subunit 16B


60084_at
CYLD
cylindromatosis (turban tumor
1540
AI453099




syndrome)


200033_at
DDX5
DEAD (Asp-Glu-Ala-Asp) box
1655
NM_004396




polypeptide 5


222735_at
TMEM38B
transmembrane protein 38B
55151
AW452608


222815_at
RLIM
ring finger protein, LIM domain
51132
BE966018




interacting


225629_s_at
ZBTB4
zinc finger and BTB domain
57659
AI669498




containing 4


226206_at
MAFK
v-maf musculoaponeurotic
7975
BG231691




fibrosarcoma oncogene homolog K




(avian)


226420_at
MECOM
MDS1 and EVI1 complex locus
2122
BG261252


226545_at
CD109
CD109 molecule
135228
AL110152


226547_at
MYST3
MYST histone acetyltransferase
7994
AI817830




(monocytic leukemia) 3


226985_at
FGD5
FYVE, RhoGEF and PH domain
152273
AW269340




containing 5


228465_at



T79942


228570_at
BTBD11
BTB (POZ) domain containing 11
121551
BF510581


228857_at
GNL1
guanine nucleotide binding
2794
AA775731




protein-like 1


228904_at
HOXB3
homeobox B3
3213
AW510657


228915_at
DACH1
dachshund homolog 1
1602
AI650353




(Drosophila)


229287_at
PCNX
pecanex homolog (Drosophila)
22990
BE326214


229344_x_at
RIMKLB
ribosomal modification protein
57494
AW135012




rimK-like family member B


230389_at
FNBP1
formin binding protein 1
23048
BE046511


230698_at
CALN1
calneuron 1
83698
AW072102


230788_at
GCNT2
glucosaminyl (N-acetyl)
2651
BF059748




transferase 2, I-branching enzyme




(I blood group)


232098_at
DST
dystonin
667
AK025142


232231_at
RUNX2
runt-related transcription factor 2
860
AL353944


234994_at
TMEM200A
transmembrane protein 200A
114801
AA088177


235048_at
FAM169A
family with sequence similarity
26049
AV720650




169, member A


235199_at
RNF125
ring finger protein 125
54941
AI969697


235252_at
KSR1
kinase suppressor of ras 1
8844
AI090141


235490_at
TMEM107
transmembrane protein 107
84314
AV743951


235826_at



AI693281


236193_at
HIST1H2BC
histone cluster 1, H2bc
8347
AA037483


238041_at
TCF12
transcription factor 12
6938
AA151712


238488_at
IPO11
importin 11 /// leucine rich repeat
100130733
BF511602



///
containing 70
///



LRRC70

51194


238633_at



W93523


238974_at
C2orf69
chromosome 2 open reading
205327
N47077




frame 69


239328_at



AW512339


239451_at



AI684643


239835_at
KBTBD8
kelch repeat and BTB (POZ)
84541
AA669114




domain containing 8


240165_at



AI678013


241756_at



T51136


243010_at
MSI2
musashi homolog 2 (Drosophila)
124540
BE000929


243092_at
LOC100288730
hypothetical LOC100288730
100288730
AI140189


243835_at
ZDHHC21
zinc finger, DHHC-type containing
340481
BE467787




21


244110_at
MLL
Myeloid/lymphoid or mixed-
4297
BE669782




lineage leukemia (trithorax




homolog, Drosophila)


244447_at



AW292830


244519_at
ASXL1
additional sex combs like 1
171023
AI829840




(Drosophila)
















TABLE 15







Summary of 7 additional patient samples used in generation


of CD34+/CD38− vs CD34+/CD38+ signature













Relapse or






AML #
Diagnosis
FAB
Age
Sex
Karyotype





17
Diag
M2
83
m
49xy, +3, +9, +12


18
No data
M4
No data
No data
No data


19
Diag
M5b
47
m
8


20
Diag
M0
70
f
complex


21
Relapse
M6
48
f
normal


22
Diag
M4
65
f
complex


23
Diag
M4
63
f
normal
















TABLE 16







Additive Correlation of LSC-R Probes and Patient Outcome











p value -


Rank in LSC-R

correlation with


gene list
LSC probeID
overall survival












1
220128_s_at
0.977682866


2
209488_s_at
0.194703224


3
215411_s_at
0.075914897


4
201702_s_at
0.138735935


5
201243_s_at
0.003708531


6
212676_at
7.47E−05


7
209487_at
7.14E−05


8
219871_at
0.000175004


9
207836_s_at
0.000151178


10
211113_s_at
0.000151178


11
214252_s_at
5.63E−06


12
212976_at
4.95E−05


13
213056_at
6.23E−05


14
207090_x_at
6.23E−05


15
221621_at
9.59E−05


16
218183_at
7.56E−05


17
216262_s_at
5.89E−05


18
204028_s_at
2.26E−05


19
208993_s_at
0.000107232


20
206582_s_at
0.000122344


21
205321_at
1.98E−05


22
209272_at
2.76E−06


23
218907_s_at
8.89E−06


24
201242_s_at
8.25E−06


25
41113_at
8.57E−07


26
202646_s_at
8.57E−07


27
215557_at
8.57E−07


28
212875_s_at
7.94E−06


29
219236_at
2.90E−06


30
213861_s_at
4.39E−06


31
221483_s_at
7.23E−07


32
214197_s_at
4.05E−06


33
205256_at
1.52E−06


34
207837_at
4.90E−07


35
214860_at
4.53E−07


36
211537_x_at
1.11E−06


37
213433_at
1.11E−06


38
207753_at
2.86E−06


39
212114_at
8.40E−06


40
214004_s_at
1.73E−05


41
208883_at
2.12E−06


42
219658_at
2.12E−06


43
213557_at
2.12E−06


44
203474_at
1.02E−05


45
214745_at
1.02E−05


46
202956_at
1.54E−06


47
211536_x_at
1.54E−06


48
209740_s_at
5.21E−06


49
34408_at
1.66E−05


50
201018_at
1.54E−06


51
214820_at
1.83E−06


52
212397_at
8.92E−07


53
221294_at
8.92E−07


54
219718_at
1.43E−06


55
209425_at
8.24E−07


56
220360_at
1.43E−06


57
213313_at
1.23E−06


58
204837_at
9.79E−07


59
205094_at
9.79E−07


60
211877_s_at
6.40E−06


61
205702_at
2.77E−05


62
212851_at
5.69E−05


63
206874_s_at
1.56E−05


64
219232_s_at
1.56E−05


65
201080_at
6.72E−05


66
209200_at
0.000222547


67
208634_s_at
0.001135991


68
205608_s_at
0.002585716


69
214738_s_at
0.002585716


70
207968_s_at
0.002585716


71
203106_s_at
0.002585716


72
213639_s_at
0.002585716


73
202599_s_at
0.0008893


74
211255_x_at
0.000836413


75
219383_at
0.000780115


76
207737_at
0.000615825


77
221020_s_at
0.000836413


78
206945_at
0.00057802


79
34726_at
0.000103453


80
210132_at
0.000103453


81
206061_s_at
0.00057802


82
212299_at
0.000992242


83
204592_at
0.000992242


84
209814_at
0.000714641


85
202629_at
0.000808658


86
205762_s_at
0.000808658


87
202817_s_at
0.000808658


88
218724_s_at
0.000714641


89
204217_s_at
0.00037038


90
219603_s_at
0.000808658


91
210694_s_at
0.000325071


92
212276_at
0.000325071


93
212678_at
0.000325071


94
207034_s_at
0.000191313


95
209199_s_at
0.002994201


96
208879_x_at
0.00038804


97
206822_s_at
0.00038804


98
212796_s_at
0.00036057


99
213322_at
0.000852069


100
213666_at
0.000504441


















TABLE 17





Probe Set Name
Probe Sequence
Sequence ID No:


















200033_at
AGAATGGTGTTTACAGTGCTGCAAA
SEQ ID NO: 1374






200033_at
CAGTGCTGCAAATTACACCAATGGG
SEQ ID NO: 1375





200033_at
GAAGTAATTTTGTGTCTGCTGGTAT
SEQ ID NO: 1376





200033_at
AGGACTGGTAATCCAACAGGGACTT
SEQ ID NO: 1377





200033_at
GAATGGTTATGATAGCACTCAGCAA
SEQ ID NO: 1378





200033_at
TGCATATCCTGCTACTGCAGCTGCA
SEQ ID NO: 1379





200033_at
GCAGCTGCACCTATGATTGGTTATC
SEQ ID NO: 1380





200033_at
TCCAATGCCAACAGGATATTCCCAA
SEQ ID NO: 1381





200033_at
GTCTGTTTTTCATAATTGCTCTTTA
SEQ ID NO: 1382





200033_at
TATGGTGCACTTTTTCGCTATTTAA
SEQ ID NO: 1383





200033_at
AGTTGGATATTTCTCTACATTCCTG
SEQ ID NO: 1384





200033_at
AGAATGGTGTTTACAGTGCTGCAAA
SEQ ID NO: 1385





200033_at
CAGTGCTGCAAATTACACCAATGGG
SEQ ID NO: 1386





200033_at
GAAGTAATTTTGTGTCTGCTGGTAT
SEQ ID NO: 1387





200033_at
AGGACTGGTAATCCAACAGGGACTT
SEQ ID NO: 1388





200033_at
GAATGGTTATGATAGCACTCAGCAA
SEQ ID NO: 1389





200033_at
TGCATATCCTGCTACTGCAGCTGCA
SEQ ID NO: 1390





200033_at
GCAGCTGCACCTATGATTGGTTATC
SEQ ID NO: 1391





200033_at
TCCAATGCCAACAGGATATTCCCAA
SEQ ID NO: 1392





200033_at
GTCTGTTTTTCATAATTGCTCTTTA
SEQ ID NO: 1393





200033_at
TATGGTGCACTTTTTCGCTATTTAA
SEQ ID NO: 1394





200033_at
AGTTGGATATTTCTCTACATTCCTG
SEQ ID NO: 1395





200962_at
GATATGAGTCTGCATGGCCTCAGGA
SEQ ID NO: 1396





200962_at
GATTTTAGGTTGTCTGCACTCTAGC
SEQ ID NO: 1397





200962_at
GCACTCTAGCTTTTTTGTCGTTTTC
SEQ ID NO: 1398





200962_at
ATACATCATATCTTAATTTCCACTG
SEQ ID NO: 1399





200962_at
TCTACACGGCCGGGGTTTCAACAAG
SEQ ID NO: 1400





200962_at
ACAAGGTACTGATGTCTTCTGCCCT
SEQ ID NO: 1401





200962_at
TGCCCTTGCCTCTTCGACAGGCAAG
SEQ ID NO: 1402





200962_at
ATTCTTTAGGCACACAAATTCACAT
SEQ ID NO: 1403





200962_at
CATTATACTTCCTGATCTGTGATTG
SEQ ID NO: 1404





200962_at
TCGTAACTAGTATGTCTGTCCCACC
SEQ ID NO: 1405





200962_at
TATGTCTGTCCCACCTTTAAAAAGT
SEQ ID NO: 1406





201466_s_at
AAATCACTCTCAGTGCTTCTTACTA
SEQ ID NO: 1407





201466_s_at
GCAGTAAAAACTGTTCTCTATTAGA
SEQ ID NO: 1408





201466_s_at
ATGTACCTGATGTACCTGATGCTAT
SEQ ID NO: 1409





201466_s_at
ATCTATATGGAATTGCTTACCAAAG
SEQ ID NO: 1410





201466_s_at
TAGTGCGATGTTTCAGGAGGCTGGA
SEQ ID NO: 1411





201466_s_at
AGCCCACTGAGAAGTCAAACATTTC
SEQ ID NO: 1412





201466_s_at
GTGGCATGTGCTGTGACCATTTATA
SEQ ID NO: 1413





201466_s_at
TTTACAATAGGTGCTTATTCTCAAA
SEQ ID NO: 1414





201466_s_at
AGGTGCTTATTCTCAAAGCAGGAAT
SEQ ID NO: 1415





201466_s_at
GCAGGAATTGGTGGCAGATTTTACA
SEQ ID NO: 1416





201466_s_at
CTTCTCTTTGACAATTCCTAGATAA
SEQ ID NO: 1417





201625_s_at
TAGCAGCCCTATCTTTGGGCCTTTG
SEQ ID NO: 1418





201625_s_at
GGGCCTTTGGTGGACATTTGATCGT
SEQ ID NO: 1419





201625_s_at
TGATCGTTCCAGAAGTGGCCTTGGG
SEQ ID NO: 1420





201625_s_at
GGCTGGGGATCACCATAGCTTTTCT
SEQ ID NO: 1421





201625_s_at
TAGCTACGCTGATCACGCAGTTTCT
SEQ ID NO: 1422





201625_s_at
TTCCTCTATATTCGTTCTTGGCTCC
SEQ ID NO: 1423





201625_s_at
TTTTCTCAGGAGGCGTCACGGTGGG
SEQ ID NO: 1424





201625_s_at
GTTCCTGAAAAGCCCCATAGTGATT
SEQ ID NO: 1425





201625_s_at
GGGCTGACTGTACAAATGACTCCTG
SEQ ID NO: 1426





201625_s_at
GATGACTTACCCTGAAGTCTTCCCT
SEQ ID NO: 1427





201625_s_at
CTTCCCAAGTATTCGATTTCATTCA
SEQ ID NO: 1428





201695_s_at
TCCCACACAAGACCCAAGTAGCTGC
SEQ ID NO: 1429





201695_s_at
CCAAGTAGCTGCTACCTTCTTTGGC
SEQ ID NO: 1430





201695_s_at
TCTACCAGACCCTTCTGGTGCCAGA
SEQ ID NO: 1431





201695_s_at
TCATTCCTGTTCTTTCTTACACAAG
SEQ ID NO: 1432





201695_s_at
GACTCGGGCCTTAGAACTTTGCATA
SEQ ID NO: 1433





201695_s_at
ATAGCAGCTGCTACTAGCTCTTTGA
SEQ ID NO: 1434





201695_s_at
ATACATTCCGAGGGGCTCAGTTCTG
SEQ ID NO: 1435





201695_s_at
GCTTCTCACTCATCACTAACAAGGT
SEQ ID NO: 1436





201695_s_at
GAACAGTTTGTCTCCATTCTTATGG
SEQ ID NO: 1437





201695_s_at
TCCATTCTTATGGCCAGCATTCCAC
SEQ ID NO: 1438





201695_s_at
ACTCCCTGACAAAGCCAGTTGACCT
SEQ ID NO: 1439





201917_s_at
TTCAGACTCTATCTTTGCTTGTTCA
SEQ ID NO: 1440





201917_s_at
TGGGTCTCTTTATCGTGGTCTGACA
SEQ ID NO: 1441





201917_s_at
CGTGGTCTGACAACTCATCTAGTGA
SEQ ID NO: 1442





201917_s_at
GAATTGGTGGTTTACCTACTCAATG
SEQ ID NO: 1443





201917_s_at
GCAGCACGAGGACTGCTGTACTGCA
SEQ ID NO: 1444





201917_s_at
ATCACACCACATTACTTGGCCTTTC
SEQ ID NO: 1445





201917_s_at
GGGCATGTCTGCTTCATATGCTGGT
SEQ ID NO: 1446





201917_s_at
ATCAGAGACTGTTATCCATTTTGTT
SEQ ID NO: 1447





201917_s_at
GTGGGAATGATGCTAGCTGCTGCCA
SEQ ID NO: 1448





201917_s_at
GCTGCCACCTCAAAAACTTGTGCCA
SEQ ID NO: 1449





201917_s_at
GCCACAACTATAGCATATCCACATG
SEQ ID NO: 1450





201952_at
ACCTGCTCTCCACAATAAATCACAA
SEQ ID NO: 1451





201952_at
ACAGCTGTCAGAACCTCGAGAGCAG
SEQ ID NO: 1452





201952_at
ACTCAGAGCTCTGGACCGAAAGCAG
SEQ ID NO: 1453





201952_at
ATTACCATCGATTCAGTGCCTGGAT
SEQ ID NO: 1454





201952_at
GCTTACTTGTTTAATGGCAGCCACA
SEQ ID NO: 1455





201952_at
GGCAGCCACATGCACGAAGATGCTA
SEQ ID NO: 1456





201952_at
GAATTCCAAATCCTCAACTTTTGAG
SEQ ID NO: 1457





201952_at
ACTTTTGAGGTTTCGGCTCTCCAAT
SEQ ID NO: 1458





201952_at
TTCGGCTCTCCAATTTAACTCTTTG
SEQ ID NO: 1459





201952_at
AGTTCAAGGTTCACTCCCTATATGT
SEQ ID NO: 1460





201952_at
GATTAACATACCCGTCTATGCCTAA
SEQ ID NO: 1461





202724_s_at
GAGCAGTAAATCAATGGAACATCCC
SEQ ID NO: 1462





202724_s_at
ACAAATTGGACTTGTTCAACTGCTG
SEQ ID NO: 1463





202724_s_at
CAGCCCCAACTTAAAATTCTTACAT
SEQ ID NO: 1464





202724_s_at
ACAGACCAACCTGGCATTACAGTTG
SEQ ID NO: 1465





202724_s_at
TTGGCCTCTCCTTGAGGTGGGCACA
SEQ ID NO: 1466





202724_s_at
GCCAGGGGTGGCCATGTAAGTCCCA
SEQ ID NO: 1467





202724_s_at
GCTACCCGAGTTTAGTAACAGTGCA
SEQ ID NO: 1468





202724_s_at
AACAGTGCAGATTCCACGTTCTTGT
SEQ ID NO: 1469





202724_s_at
CGTTCTTGTTCCGATACTCTGAGAA
SEQ ID NO: 1470





202724_s_at
GATGTTGATGTACTTACAGACACAA
SEQ ID NO: 1471





202724_s_at
GACACAAGAACAATCTTTGCTATAA
SEQ ID NO: 1472





202822_at
CTCTTGTCAAATCTGTGTCGGCTGC
SEQ ID NO: 1473





202822_at
CCCTGATCCTTCCATTATCAAGTTT
SEQ ID NO: 1474





202822_at
ACTGATGTAACCTCAAAGCCTCTCA
SEQ ID NO: 1475





202822_at
TCACCATTCCTCTTGGCTTGGAAAG
SEQ ID NO: 1476





202822_at
ACAAGCGATTGTCCATCTGTTGCCT
SEQ ID NO: 1477





202822_at
CCTGCTTTAGCCATCTGTGGGAAAC
SEQ ID NO: 1478





202822_at
GACACCTCTGCAAAATGTGCCTCAA
SEQ ID NO: 1479





202822_at
GTGCCTCAAGTCCATTTCTTGGGAT
SEQ ID NO: 1480





202822_at
CATTTCTTGGGATCGCTCGTTTGGT
SEQ ID NO: 1481





202822_at
GTTTGGTGCACTCTCGTGGGAGACA
SEQ ID NO: 1482





202822_at
AACATATACTTGTGCCTTATTTTCA
SEQ ID NO: 1483





202842_s_at
GTTTGATATTTACCACAGCGCTGTG
SEQ ID NO: 1484





202842_s_at
GCGCTGTGCCTTTCTACAGTAGAAC
SEQ ID NO: 1485





202842_s_at
GGTTTTATTGCCCATAGTCATTTAG
SEQ ID NO: 1486





202842_s_at
ATATTTCTTTCTTAGTTGTTGGCAC
SEQ ID NO: 1487





202842_s_at
GTTGTTGGCACTCTTAGGTCTTAGT
SEQ ID NO: 1488





202842_s_at
GTGTGTGTGTAGTTTATCCTCTCTC
SEQ ID NO: 1489





202842_s_at
GATTGACTGATACCTCATTCTGTTT
SEQ ID NO: 1490





202842_s_at
AATTTCTGTGCAACCTTACTATGTG
SEQ ID NO: 1491





202842_s_at
GTGTGCTTTTGTTTTCGGATAGACT
SEQ ID NO: 1492





202842_s_at
ATTTCTTTAGTTCTGCACTTTTCCA
SEQ ID NO: 1493





202842_s_at
CACTTTTCCACATTATACTCCATAT
SEQ ID NO: 1494





202932_at
TGGCAGTGGTTCTGGTACTAAAAAT
SEQ ID NO: 1495





202932_at
GTTCTGGTACTAAAAATTGTGGTTG
SEQ ID NO: 1496





202932_at
TTTTCTGTTTACGTAACCTGCTTAG
SEQ ID NO: 1497





202932_at
ACGTAACCTGCTTAGTATTGACACT
SEQ ID NO: 1498





202932_at
AACCTGCTTAGTATTGACACTCTCT
SEQ ID NO: 1499





202932_at
GCTTAGTATTGACACTCTCTACCAA
SEQ ID NO: 1500





202932_at
GACACTCTCTACCAAGAGGGTCTTC
SEQ ID NO: 1501





202932_at
CTCTACCAAGAGGGTCTTCCTAAGA
SEQ ID NO: 1502





202932_at
CTTCCTAAGAAGAGTGCTGTCATTA
SEQ ID NO: 1503





202932_at
GAGTGCTGTCATTATTTCCTCTTAT
SEQ ID NO: 1504





202932_at
TTTCCTCTTATCAACAACTTGTGAC
SEQ ID NO: 1505





203372_s_at
GAGATAGCTCGCATTCAGACTACCT
SEQ ID NO: 1506





203372_s_at
CTCGCATTCAGACTACCTACTAACA
SEQ ID NO: 1507





203372_s_at
TCAGCTGGACCAACTAATCTTCGAA
SEQ ID NO: 1508





203372_s_at
AAATTCAGATTGGACTCTATCATAT
SEQ ID NO: 1509





203372_s_at
ATCATATGTGTCAAATCCAAGCTTA
SEQ ID NO: 1510





203372_s_at
GTGTGGTTCATCTGATCGACTACTA
SEQ ID NO: 1511





203372_s_at
TCGACTACTATGTTCAGATGTGCAA
SEQ ID NO: 1512





203372_s_at
TAAGCGGACAGGTCCAGAAGCCCCC
SEQ ID NO: 1513





203372_s_at
ACTGTTCACCTTTATCTGACCAAAC
SEQ ID NO: 1514





203372_s_at
CTGACCAAACCGCTCTACACGTCAG
SEQ ID NO: 1515





203372_s_at
TTAACAAATGTACCGGTGCCATCTG
SEQ ID NO: 1516





203394_s_at
AGGATCCGGAGCTGGTGCTGATAAC
SEQ ID NO: 1517





203394_s_at
TGCTGATAACAGCGGAATCCCCCGT
SEQ ID NO: 1518





203394_s_at
TTGGTCCTGGAACAGCGCTACTGAT
SEQ ID NO: 1519





203394_s_at
GTCCTGGAACAGCGCTACTGATCAC
SEQ ID NO: 1520





203394_s_at
GGAACAGCGCTACTGATCACCAAGT
SEQ ID NO: 1521





203394_s_at
TCACCAAGTAGCCACAAAATATAAT
SEQ ID NO: 1522





203394_s_at
TATAATAAACCCTCAGCACTTGCTC
SEQ ID NO: 1523





203394_s_at
ATAAACCCTCAGCACTTGCTCAGTA
SEQ ID NO: 1524





203394_s_at
AACCCTCAGCACTTGCTCAGTAGTT
SEQ ID NO: 1525





203394_s_at
CAGCACTTGCTCAGTAGTTTTGTGA
SEQ ID NO: 1526





203394_s_at
GTAGTTTTGTGAAAGTCTCAAGTAA
SEQ ID NO: 1527





203875_at
GATTTAACATTGTTGGGCCATTTAA
SEQ ID NO: 1528





203875_at
AAATGTGCATATTGGAGCAGAACAT
SEQ ID NO: 1529





203875_at
ATCTGTTTCCATTTTAGTCACAGAA
SEQ ID NO: 1530





203875_at
ACAATGCTTTCTACCTGAAATGTGT
SEQ ID NO: 1531





203875_at
CCTCTCAGTCCTTGTTCTTTTGAAG
SEQ ID NO: 1532





203875_at
GTCCTTGTTCTTTTGAAGCTTGTGC
SEQ ID NO: 1533





203875_at
GCTTGTGCTGAGGTTTTAGCTTTTC
SEQ ID NO: 1534





203875_at
GTGCTGAGGTTTTAGCTTTTCTATG
SEQ ID NO: 1535





203875_at
GCCGCTGCTTTGAAAGAGAACCTAG
SEQ ID NO: 1536





203875_at
GAGAACCTAGATTCTATAGTTGTAT
SEQ ID NO: 1537





203875_at
TATTATTGTTGTTTCATACTTTAAA
SEQ ID NO: 1538





205453_at
GGTCCCTTTTTCCGAGGAAGAGCTG
SEQ ID NO: 1539





205453_at
ATTTTTTCACCAGTACGCTCTGTGC
SEQ ID NO: 1540





205453_at
CTCCTTGGCCGTCTACTGGAAAAAT
SEQ ID NO: 1541





205453_at
ACTGGAAAAATCGAGCCTCTCCCAC
SEQ ID NO: 1542





205453_at
CCACCCTCAGTCGCATAGACTTATG
SEQ ID NO: 1543





205453_at
GAATTAGCGTTTAATCCACTTCCTT
SEQ ID NO: 1544





205453_at
TATTGGGCACTCGGTTATCTTTTAA
SEQ ID NO: 1545





205453_at
TTCCGTTTGGTAGACTCCTTCCAAT
SEQ ID NO: 1546





205453_at
GGTAGACTCCTTCCAATGAAATCTC
SEQ ID NO: 1547





205453_at
CCCGGGCCATTGCCAGAAGACGTCT
SEQ ID NO: 1548





205453_at
GCCAGAAGACGTCTTCTCGGGGCGC
SEQ ID NO: 1549





205501_at
ATGCTTGCCCAACACACTGTGAAAT
SEQ ID NO: 1550





205501_at
ATGCAGCATCTTCATTCTTTCTGAG
SEQ ID NO: 1551





205501_at
GATGGTTTTCTTTACATGAACAAAT
SEQ ID NO: 1552





205501_at
GAGATCCTAGATCCATAACGTAGCT
SEQ ID NO: 1553





205501_at
AAGGCATCTAAGAGTTTGCTGTTGA
SEQ ID NO: 1554





205501_at
TGCTGTTGATAATCTTGCTGACCAA
SEQ ID NO: 1555





205501_at
GTAACACAGGTTATATGCCATCACA
SEQ ID NO: 1556





205501_at
ATGCCATCACAAATACAATGCTCAT
SEQ ID NO: 1557





205501_at
AGAGTCAATGAACCTGTGTCCAGAA
SEQ ID NO: 1558





205501_at
AGAGGTCTTAACTTTGCATTTATAA
SEQ ID NO: 1559





205501_at
TCATTTGCAGTCTTTGTATTTAAAA
SEQ ID NO: 1560





206099_at
ATGATGAGGTGGTCTACCCTACCTG
SEQ ID NO: 1561





206099_at
CCCTACCTGGCTCCATGAAGATGCC
SEQ ID NO: 1562





206099_at
CAGGGAGGCGAGCACGCCATCTTGA
SEQ ID NO: 1563





206099_at
GCCATCTTGAGACATCCTTTTTTTA
SEQ ID NO: 1564





206099_at
TTAAGGAAATCGACTGGGCCCAGCT
SEQ ID NO: 1565





206099_at
GAACCATCGCCAAATAGAACCGCCT
SEQ ID NO: 1566





206099_at
TCAGACCCAGAATCAAATCCCGAGA
SEQ ID NO: 1567





206099_at
AGAAACTTTTCCTATGTGTCTCCAG
SEQ ID NO: 1568





206099_at
GTGTCTCCAGAATTGCAACCATAGC
SEQ ID NO: 1569





206099_at
CCAGGAATTTCCTCTATCGGACCTT
SEQ ID NO: 1570





206099_at
CTTCCCAGCATCAGCCTTAGAACAA
SEQ ID NO: 1571





206310_at
CTCTGATCCCTCAATTTGGTCTGTT
SEQ ID NO: 1572





206310_at
ATAGAACGCCAAACTGCTCTCAGTA
SEQ ID NO: 1573





206310_at
TAGATTACCAGGATGTCCCAGACAC
SEQ ID NO: 1574





206310_at
TCCCAGACACTTTAACCCTGTGTGT
SEQ ID NO: 1575





206310_at
CCCTGTGTGTGGCAGTGACATGTCC
SEQ ID NO: 1576





206310_at
GTGACATGTCCACTTATGCCAATGA
SEQ ID NO: 1577





206310_at
CATTCGAAATGGACCCTGCTGATGG
SEQ ID NO: 1578





206310_at
GGCGCAGGTAACAGACCGCAGGGGC
SEQ ID NO: 1579





206310_at
AGAATCCTTGTTTCTTGGCTTTTGC
SEQ ID NO: 1580





206310_at
TCTTGGCTTTTGCTCCTGGAGTTAA
SEQ ID NO: 1581





206310_at
GAGTTAAGCTTACTGCCCAGGTGAC
SEQ ID NO: 1582





206674_at
GATGGCCGTGTTTCGGAATGTCCTC
SEQ ID NO: 1583





206674_at
TCCTCACACCTACCAAAACAGGCGA
SEQ ID NO: 1584





206674_at
AAACAGGCGACCTTTCAGCAGAGAG
SEQ ID NO: 1585





206674_at
AGATGGATTTGGGGCTACTCTCTCC
SEQ ID NO: 1586





206674_at
CTCCGCAGGCTCAGGTCGAAGATTC
SEQ ID NO: 1587





206674_at
TAGTTTTAAGGACTTCATCCCTCCA
SEQ ID NO: 1588





206674_at
CCACCTATCCCTAACAGGCTGTAGA
SEQ ID NO: 1589





206674_at
TTATCAACTGCTGCTTCACCAGACT
SEQ ID NO: 1590





206674_at
TTTCTCTAGAAGCCGTCTGCGTTTA
SEQ ID NO: 1591





206674_at
GGAGCATTGATCTGCATCCAAGGCC
SEQ ID NO: 1592





206674_at
GGCCGGCTTGAGTGAATTGTGTACC
SEQ ID NO: 1593





207563_s_at
AGCGTGTTCCCAATAGTGTACTCTG
SEQ ID NO: 1594





207563_s_at
TACTCTGGCTGTTGCGTTTTCCAGC
SEQ ID NO: 1595





207563_s_at
GCCCCAGAACCGTATCATTTTTTCA
SEQ ID NO: 1596





207563_s_at
GAGGAACACGTCAGGAGAGGCCAGC
SEQ ID NO: 1597





207563_s_at
GGACACTCCACTCTGTAATGGGCAC
SEQ ID NO: 1598





207563_s_at
GATGGATGTCCTCTGGGCAGGGACC
SEQ ID NO: 1599





207563_s_at
ACCCCCATGGTGACTATGCCAGGAG
SEQ ID NO: 1600





207563_s_at
AGGAGAGACTCTTGCTTCTCGAGTT
SEQ ID NO: 1601





207563_s_at
ATCCCAGCTCACTTGCTTAGGTTGT
SEQ ID NO: 1602





207563_s_at
GAGCGGCTCTATCTACAGATGTGGG
SEQ ID NO: 1603





207563_s_at
TGCAGCTGGCAACAAACCTGACCAC
SEQ ID NO: 1604





207564_x_at
TCAGTCTTCTGGATTTTTTTTTCTT
SEQ ID NO: 1605





207564_x_at
TAAGCTAAAATGTTACTCCCTGTTT
SEQ ID NO: 1606





207564_x_at
TACTCCCTGTTTTAGTTTCTGAACT
SEQ ID NO: 1607





207564_x_at
GGGACTTTGCTGGTGTAGTCTTTTT
SEQ ID NO: 1608





207564_x_at
ACCACTTGAGCCTATATCAGTCGTT
SEQ ID NO: 1609





207564_x_at
ATCAGTCGTTTTAGTGTCTGACCTA
SEQ ID NO: 1610





207564_x_at
GTCTGACCTAATATTTGGAGCTATC
SEQ ID NO: 1611





207564_x_at
GGAGCTATCAGTGCTTTGTTGATTT
SEQ ID NO: 1612





207564_x_at
AGATTTTTTCTGGTCCATTTCCCAT
SEQ ID NO: 1613





207564_x_at
TCACCCTTAAAATTCTCCTGTAACT
SEQ ID NO: 1614





207564_x_at
AAGCCTGATTCAAAACATCCTAGGG
SEQ ID NO: 1615





208523_x_at
GGAGAGCTATTCCGTGTACGTGTAC
SEQ ID NO: 1616





208523_x_at
CAAGGTGCTGAAGCAGGTCCACCCC
SEQ ID NO: 1617





208523_x_at
GCCTGAACCAGCTAAGTCAGCTCCC
SEQ ID NO: 1618





208523_x_at
CATCTCGTCCAAGGCTATGGGGATT
SEQ ID NO: 1619





208523_x_at
GATTATGAACTCCTTCGTCAACGAC
SEQ ID NO: 1620





208523_x_at
TTTTCGAGCGCATTGCAGGCGAGGC
SEQ ID NO: 1621





208523_x_at
TCCCGCCTGGCGCATTATAACAAGC
SEQ ID NO: 1622





208523_x_at
TTATAACAAGCGCTCGACCATCACT
SEQ ID NO: 1623





208523_x_at
CCAGGGAGATCCAAACGGCTGTGCG
SEQ ID NO: 1624





208523_x_at
AAACACGCGGTGTCGGAGGGCACCA
SEQ ID NO: 1625





208523_x_at
GAAGGGCTCCAAGAAGGCGGTGACC
SEQ ID NO: 1626





208527_x_at
AAGCGCAGCCGCAAGGAGAGCTACT
SEQ ID NO: 1627





208527_x_at
GAGAGCTACTCCGTATACGTGTACA
SEQ ID NO: 1628





208527_x_at
ATGCCTGAGCCAGCGAAATCCGCTC
SEQ ID NO: 1629





208527_x_at
GCATCTCCTCTAAAGCCATGGGGAT
SEQ ID NO: 1630





208527_x_at
TGTCAACGACATCTTCGAGCGCATC
SEQ ID NO: 1631





208527_x_at
GCATTACAACAAGCGCTCGACCATC
SEQ ID NO: 1632





208527_x_at
TCGACCATCACCTCCAGGGAGATCC
SEQ ID NO: 1633





208527_x_at
GGCCAAGCACGCTGTGTCAGAGGGC
SEQ ID NO: 1634





208527_x_at
GTCAGAGGGCACCAAGGCCGTTACC
SEQ ID NO: 1635





208527_x_at
TTACCAAGTACACCAGCTCCAAGTA
SEQ ID NO: 1636





208527_x_at
GAAGGGCTCCAAGAAGGCCGTGACC
SEQ ID NO: 1637





208707_at
GTTGACCCTGCAGTTCGGTTATGCA
SEQ ID NO: 1638





208707_at
GAGGATTCACTTGGGTGTTGGGATC
SEQ ID NO: 1639





208707_at
CAAATTTGGATTCTGTCCCAGGCCT
SEQ ID NO: 1640





208707_at
TTCTGTCCCAGGCCTTACTGTAAAA
SEQ ID NO: 1641





208707_at
ACTAGGGGATTGCCTTTCCATATCT
SEQ ID NO: 1642





208707_at
CATATCTGCTGGGGGTGGAGACCCT
SEQ ID NO: 1643





208707_at
CACTCAATCCCACTGGAAGCCTAAT
SEQ ID NO: 1644





208707_at
GAAGCAATGCCTGGCTGGGGCAGTA
SEQ ID NO: 1645





208707_at
ATTCCACCCAATTTTGCTATGAGCC
SEQ ID NO: 1646





208707_at
GCTATGAGCCTAAAACCTCTTTAAA
SEQ ID NO: 1647





208707_at
ACACTGTTTACAAGAGCATCACCTA
SEQ ID NO: 1648





208820_at
TGCAATATGCTAATCCCACTTTACA
SEQ ID NO: 1649





208820_at
ACCTGCCTTTTACTTTCGTGTGGAT
SEQ ID NO: 1650





208820_at
TATGTGAAGCATTGGGTCGGGAACT
SEQ ID NO: 1651





208820_at
GGGTCGGGAACTAGCTGTAGAACAC
SEQ ID NO: 1652





208820_at
GAATAATGTGCCAGTTTTTTGTAGC
SEQ ID NO: 1653





208820_at
AAATGCTTTGTACCAGAGCACCTCC
SEQ ID NO: 1654





208820_at
CAGAGCACCTCCAAACTGCATTGAG
SEQ ID NO: 1655





208820_at
AAAGCCATGTTGACTATTTTACAGC
SEQ ID NO: 1656





208820_at
ACAGCCACTGGAGTTAACTAACCCT
SEQ ID NO: 1657





208820_at
TTTCTTTTGATGTCCAGTTACACCA
SEQ ID NO: 1658





208820_at
GTTACACCATCCATTCTGTTAATTT
SEQ ID NO: 1659





208891_at
AATTGTGCTCTTTTCTAATCCAAAG
SEQ ID NO: 1660





208891_at
CAAAGGGTATATTTGCAGCATGCTT
SEQ ID NO: 1661





208891_at
AATAAAAAAACCTTCAGCTGTGCTA
SEQ ID NO: 1662





208891_at
CTGTGCTAAACAGTATATTACCTCT
SEQ ID NO: 1663





208891_at
ATATTACCTCTGTATAAAATTCTTC
SEQ ID NO: 1664





208891_at
AATTCTTCAGGGAGTGTCACCTCAA
SEQ ID NO: 1665





208891_at
GAGTGTCACCTCAAATGCAATACTT
SEQ ID NO: 1666





208891_at
TGCAATACTTTGGGTTGGTTTCTTT
SEQ ID NO: 1667





208891_at
GTGTGTGAGCATGGGTACCCATTTG
SEQ ID NO: 1668





208891_at
ATGGGTACCCATTTGATAAGAGAAA
SEQ ID NO: 1669





208891_at
AATTCTCCATTATGTTCGTGGTGTA
SEQ ID NO: 1670





208988_at
GTTGCTGATTTAGAGTCAATCTCCA
SEQ ID NO: 1671





208988_at
TAGAGTCAATCTCCAATGTTGTGCT
SEQ ID NO: 1672





208988_at
GGGATAAGTCTTATGCTATCTCAGT
SEQ ID NO: 1673





208988_at
TATGCTATCTCAGTTGACACATTGA
SEQ ID NO: 1674





208988_at
CAGTTGACACATTGAGGTTATTTTG
SEQ ID NO: 1675





208988_at
GAAGCTAGTTGGACTTTGTTTTGTT
SEQ ID NO: 1676





208988_at
TGTTTTCCAAAAGTTCTCCACTATT
SEQ ID NO: 1677





208988_at
AAGTTCTCCACTATTGGTTTTAGAG
SEQ ID NO: 1678





208988_at
AGCAAGGACATCTTTCCTCTGACAC
SEQ ID NO: 1679





208988_at
ACGTGGGAATGGGTGATATTTGTGT
SEQ ID NO: 1680





208988_at
GAAATAGCCTCCAATGGGAAATATT
SEQ ID NO: 1681





209020_at
GTGAGAAGACATCTCTTTCTGCTCA
SEQ ID NO: 1682





209020_at
CAGGGGCAGTCGTTGAGCCTTTGAG
SEQ ID NO: 1683





209020_at
CCCCAAGCAAGTCTCAAAGCCAGTG
SEQ ID NO: 1684





209020_at
CAGTGATCTCTCTGACTTTCAATCA
SEQ ID NO: 1685





209020_at
ACCAGGGGCAAGCCATGCACATGCA
SEQ ID NO: 1686





209020_at
TATTCCTTTTCAGGCCTGCAGAGTG
SEQ ID NO: 1687





209020_at
GGCTCCAGAACGAAGATCCACACTT
SEQ ID NO: 1688





209020_at
TTGAGGACTACTCTCAGTCGCTGCA
SEQ ID NO: 1689





209020_at
ACGCCAGAACTCTGTCTGGCTCTCC
SEQ ID NO: 1690





209020_at
CCGATCCTGTTCTGAGCAAGCTCGA
SEQ ID NO: 1691





209020_at
GCAAGCTCGAGTCTTCGTGGATGAT
SEQ ID NO: 1692





209146_at
GAACCTCATCAATTGATAGCAGTGA
SEQ ID NO: 1693





209146_at
GTGAGTGACTGAAGCTTCCAAATCA
SEQ ID NO: 1694





209146_at
ATCAAGAAAAGCCGGCACCAAGAAC
SEQ ID NO: 1695





209146_at
GGCACCAAGAACTTCCATTCTAATC
SEQ ID NO: 1696





209146_at
TAATCTAGAGCTGACCAGTTTGAGC
SEQ ID NO: 1697





209146_at
GATTGCAGTGCAGTACTGGCATTTC
SEQ ID NO: 1698





209146_at
TTACCCTTCCATTTTTGTATATCAA
SEQ ID NO: 1699





209146_at
GTATATCAAATTTCCATTGTCATTA
SEQ ID NO: 1700





209146_at
GTATCTTGAAACTTTGTGAACTGAC
SEQ ID NO: 1701





209146_at
GTGAACTGACTTGCTGTATTTGCAC
SEQ ID NO: 1702





209146_at
GTATTTGCACTTTGAGCTCTTGAAA
SEQ ID NO: 1703





209676_at
TTCTATGCTTATTGTACTTGTTATC
SEQ ID NO: 1704





209676_at
ACACGTTTGTATCAGAGTTGCTTTT
SEQ ID NO: 1705





209676_at
GTATCAGAGTTGCTTTTCTAATCTT
SEQ ID NO: 1706





209676_at
AAATTGCTTATTCTAGGTCTGTAAT
SEQ ID NO: 1707





209676_at
TAATTTATTAACTGGCTACTGGGAA
SEQ ID NO: 1708





209676_at
ATTACTTATTTTCTGGATCTATCTG
SEQ ID NO: 1709





209676_at
AAATTATCATACTACCGGCTACATC
SEQ ID NO: 1710





209676_at
TACCGGCTACATCAAATCAGTCCTT
SEQ ID NO: 1711





209676_at
TCAGTCCTTTGATTCCATTTGGTGA
SEQ ID NO: 1712





209676_at
ATTCAGTCATTGGGAAATGCCGCCC
SEQ ID NO: 1713





209676_at
AATGCCGCCCATTTAAGTACAGTGG
SEQ ID NO: 1714





209728_at
CCCCTTGTGCCACACATTGCATTAT
SEQ ID NO: 1715





209728_at
CCCTTGTGCCACACATTGCATTATT
SEQ ID NO: 1716





209728_at
CTTGTGCCACACATTGCATTATTAA
SEQ ID NO: 1717





209728_at
GTGCCACACATTGCATTATTAAATG
SEQ ID NO: 1718





209728_at
GCATCCAAGCATGATGAGCCCTCTC
SEQ ID NO: 1719





209728_at
CATCCAAGCATGATGAGCCCTCTCA
SEQ ID NO: 1720





209728_at
AGCCCTCTCACGGTGCAATGGAGTG
SEQ ID NO: 1721





209728_at
GCCCTCTCACGGTGCAATGGAGTGC
SEQ ID NO: 1722





209728_at
CCCTCTCACGGTGCAATGGAGTGCA
SEQ ID NO: 1723





209728_at
GCAATGGAGTGCACGGTCTGAATCT
SEQ ID NO: 1724





209728_at
AGCCAACAGGACTCTTGAGCTGAAG
SEQ ID NO: 1725





209907_s_at
ATCTATGCAAACACCTTTCCCATAA
SEQ ID NO: 1726





209907_s_at
AACCAAACCCCATAGTACAGTGCCT
SEQ ID NO: 1727





209907_s_at
TACAGTGCCTTGTCCTAGTGTTCAC
SEQ ID NO: 1728





209907_s_at
AGTGTTCACATGTTCAGCTCTGTTT
SEQ ID NO: 1729





209907_s_at
GATGCCAAGGTTTCCATTTTCAGGG
SEQ ID NO: 1730





209907_s_at
TTACCGCTCGGTTGAATGTGTCCAC
SEQ ID NO: 1731





209907_s_at
TTGGTGACGCTGTAACCATTCCACG
SEQ ID NO: 1732





209907_s_at
CACTTGGCGCGGCCTGATACTGAAA
SEQ ID NO: 1733





209907_s_at
TAGCGTCTACTCGTGCACTGAATAA
SEQ ID NO: 1734





209907_s_at
AGATTTTATCACTCTCTGCTAAGAC
SEQ ID NO: 1735





209907_s_at
AAGCTTTATCATTGCCCATATGTAC
SEQ ID NO: 1736





209911_x_at
CGTCAACGACATCTTCGAGCGCATC
SEQ ID NO: 1737





209911_x_at
CCCGCCTGGCGCATTACAACAAGCG
SEQ ID NO: 1738





209911_x_at
GCATTACAACAAGCGCTCGACCATC
SEQ ID NO: 1739





209911_x_at
TCGACCATCACCTCCAGGGAGATCC
SEQ ID NO: 1740





209911_x_at
TCACCAAGTACACCAGTTCCAAGTA
SEQ ID NO: 1741





209911_x_at
GAACTTAGGAAGTCTCATCTGCCTG
SEQ ID NO: 1742





209911_x_at
TGACTGTGTGGATCCCACCCAAATC
SEQ ID NO: 1743





209911_x_at
AAATCCAACTCATCCTGGTTTGCTG
SEQ ID NO: 1744





209911_x_at
AGGTGTTTGCACTTCATGTTACTTT
SEQ ID NO: 1745





209911_x_at
ATTTACTTCTGTTACAGACCTAGTT
SEQ ID NO: 1746





209911_x_at
TACTTGCCATGGACTACCTTTGCTA
SEQ ID NO: 1747





209994_s_at
GAAAAGGTTGTCCAAGAAGCCCTGG
SEQ ID NO: 1748





209994_s_at
GAAGCCCTGGACAAAGCCAGAGAAG
SEQ ID NO: 1749





209994_s_at
ACAAAGCCAGAGAAGGCCGCACCTG
SEQ ID NO: 1750





209994_s_at
CACCTGCATTGTGATTGCTCACCGC
SEQ ID NO: 1751





209994_s_at
CACCATCCAGAATGCAGACTTAATA
SEQ ID NO: 1752





209994_s_at
GCAGACTTAATAGTGGTGTTTCAGA
SEQ ID NO: 1753





209994_s_at
AGAGTCAAGGAGCATGGCACGCATC
SEQ ID NO: 1754





209994_s_at
GTCAAGGAGCATGGCACGCATCAGC
SEQ ID NO: 1755





209994_s_at
TCAAGGAGCATGGCACGCATCAGCA
SEQ ID NO: 1756





209994_s_at
ATCTATTTTTCAATGGTCAGTGTCC
SEQ ID NO: 1757





209994_s_at
TTTTTCAATGGTCAGTGTCCAGGCT
SEQ ID NO: 1758





210664_s_at
GCCAGATTTCTGCTTTTTGGAAGAA
SEQ ID NO: 1759





210664_s_at
AAGATCCTGGAATATGTCGAGGTTA
SEQ ID NO: 1760





210664_s_at
GTCGAGGTTATATTACCAGGTATTT
SEQ ID NO: 1761





210664_s_at
GAACGTTTCAAGTATGGTGGATGCC
SEQ ID NO: 1762





210664_s_at
CAAGTATGGTGGATGCCTGGGCAAT
SEQ ID NO: 1763





210664_s_at
GATGCCTGGGCAATATGAACAATTT
SEQ ID NO: 1764





210664_s_at
GAGACACTGGAAGAATGCAAGAACA
SEQ ID NO: 1765





210664_s_at
GATGGTCCGAATGGTTTCCAGGTGG
SEQ ID NO: 1766





210664_s_at
AATTATGGAACCCAGCTCAATGCTG
SEQ ID NO: 1767





210664_s_at
AATGCTGTGAATAACTCCCTGACTC
SEQ ID NO: 1768





210664_s_at
CCTGACTCCGCAATCAACCAAGGTT
SEQ ID NO: 1769





210665_at
GATTGGATAGCATTTCATGCCTATG
SEQ ID NO: 1770





210665_at
CATGCCTATGTTAATATTTGTGCTT
SEQ ID NO: 1771





210665_at
TTATATGTATACGTGATGCCTTTGT
SEQ ID NO: 1772





210665_at
GTGATGCCTTTGTAGCATACTGCTA
SEQ ID NO: 1773





210665_at
AAATGATGGTTGGAAGAATGCGGCT
SEQ ID NO: 1774





210665_at
GAATGCGGCTCATATTTACCAAGTC
SEQ ID NO: 1775





210665_at
GCGGCTCATATTTACCAAGTCTTTC
SEQ ID NO: 1776





210665_at
TTACCAAGTCTTTCTGAACGCCTTC
SEQ ID NO: 1777





210665_at
GCCTTCTGCATTCATGCATCCATGT
SEQ ID NO: 1778





210665_at
TCATGCATCCATGTTCTTTCTAGGA
SEQ ID NO: 1779





210665_at
CATGTTCTTTCTAGGATTGGATAGC
SEQ ID NO: 1780





210942_s_at
TCAGAAACCTAAACACCCAACAACA
SEQ ID NO: 1781





210942_s_at
ACAGGAATTATTGCCATCACATTGG
SEQ ID NO: 1782





210942_s_at
ATGTCACGAAGTTCACCTAGCTGGT
SEQ ID NO: 1783





210942_s_at
TTAAATACAACTTTTCTGACCTCAA
SEQ ID NO: 1784





210942_s_at
TGACCTCAAGAGTCCTTTGCACTAC
SEQ ID NO: 1785





210942_s_at
GCAGAGCAGCTCTTTTTGAAGGACA
SEQ ID NO: 1786





210942_s_at
AAAACCTCGTAATCAACTTGACTCA
SEQ ID NO: 1787





210942_s_at
GACTCAAGATTGACTCTACAGACTC
SEQ ID NO: 1788





210942_s_at
ATATGTTGGATGCACTCGTCAAATA
SEQ ID NO: 1789





210942_s_at
GATTCATAACCACCAGCTTAATTTC
SEQ ID NO: 1790





210942_s_at
GAAACCAGCCTTAAACCTGATTTAT
SEQ ID NO: 1791





212176_at
CAAAGTTGAAAGTGTCCTTTCTCTC
SEQ ID NO: 1792





212176_at
CTCCCCGTCGTAAACGCTGAGGAAT
SEQ ID NO: 1793





212176_at
GGCAAGAATGCCATGATGTTCTTTA
SEQ ID NO: 1794





212176_at
GAGTTTTAAGGGCTTGTCTCATTAT
SEQ ID NO: 1795





212176_at
GGGCTTGTCTCATTATAGAGGCACA
SEQ ID NO: 1796





212176_at
GGCACATTGTGGCTGTGTAGGTGAA
SEQ ID NO: 1797





212176_at
ATAGGTGTACTTTTTCCAATGCTGC
SEQ ID NO: 1798





212176_at
TCCAATGCTGCTCCAAGTTACTTAA
SEQ ID NO: 1799





212176_at
ATAAACATGCCATTCTCTTTCAGCT
SEQ ID NO: 1800





212176_at
TCTTTCAGCTGTAATGTTCTTAAAA
SEQ ID NO: 1801





212176_at
TTATTCTTGAATGTACTGTGATGTC
SEQ ID NO: 1802





212179_at
AGTATGCCTTCTTACCAGCAATAGT
SEQ ID NO: 1803





212179_at
ATCATGCCAGATTTTTGCCAAGATC
SEQ ID NO: 1804





212179_at
CCAAGATCAGTGTTTCCTCAACATG
SEQ ID NO: 1805





212179_at
GTATAGTGTGCTCTTGTACCTCTAC
SEQ ID NO: 1806





212179_at
GTGCTCTTGTACCTCTACATAGATT
SEQ ID NO: 1807





212179_at
AGCAGTTACACATTTATCTAAAGGA
SEQ ID NO: 1808





212179_at
AATGCATGTTTACCAAAATGGCTGT
SEQ ID NO: 1809





212179_at
TTAGACATCGATCACATCTGGAGAC
SEQ ID NO: 1810





212179_at
GTAGGCGAGCTAACACAGTGTACCT
SEQ ID NO: 1811





212179_at
ACACAGTGTACCTAATTGCAGAATT
SEQ ID NO: 1812





212179_at
AGTTGTATAACATTTTCATATCTTA
SEQ ID NO: 1813





212314_at
TATTTTGGTACCTGTGCTTGCCACA
SEQ ID NO: 1814





212314_at
TTGATAGATTTCTCTTTGACTTCCA
SEQ ID NO: 1815





212314_at
TTGACTTCCAAGACCTAGCAGTTAT
SEQ ID NO: 1816





212314_at
GTCCTAGTGCTTCCGAATCATTTAA
SEQ ID NO: 1817





212314_at
AATGGCATTGTCGGATATCTTTTAC
SEQ ID NO: 1818





212314_at
ATCTTTTACATTTCAATTGCAATCC
SEQ ID NO: 1819





212314_at
AGTACTTAACTGTAGTCTTCTCCAT
SEQ ID NO: 1820





212314_at
GTAGTCTTCTCCATGAATTACACGT
SEQ ID NO: 1821





212314_at
GCCTCTAGCTTATAGTTTCATCCCT
SEQ ID NO: 1822





212314_at
GCCTGCGTGAGTCTGTACAGGGATA
SEQ ID NO: 1823





212314_at
GGTCCAAACTACTCTTTGCACTACT
SEQ ID NO: 1824





212764_at
GATGCAATTGGTTCTCCTGCATTGA
SEQ ID NO: 1825





212764_at
GTTAACATTTATACTTGCCTTGGAC
SEQ ID NO: 1826





212764_at
TACTTGCCTTGGACTGTAGAACAGA
SEQ ID NO: 1827





212764_at
TACAATCAAGTCATTTTACCTTTAC
SEQ ID NO: 1828





212764_at
ATAGCATGATGCTCTGCAGTTTTAT
SEQ ID NO: 1829





212764_at
TAACCATACAACTCTCATTTCCTTA
SEQ ID NO: 1830





212764_at
AACTCTCATTTCCTTAGTAAGCCAA
SEQ ID NO: 1831





212764_at
AATGTTTAACATTTTGTGCCAATTT
SEQ ID NO: 1832





212764_at
GCCAATTTGTTCCTGTATTCATGTA
SEQ ID NO: 1833





212764_at
GTTACAGATCTGACTCTTCATTTTT
SEQ ID NO: 1834





212764_at
AGTTCCTTGTTACATCATGGTCATT
SEQ ID NO: 1835





212958_x_at
AATTTCCACAGATACTTCCCTTAGA
SEQ ID NO: 1836





212958_x_at
TGAGCGAGGCCTTGTCAATTTTAAG
SEQ ID NO: 1837





212958_x_at
TAGGAAGGACCACAACATGACCCGT
SEQ ID NO: 1838





212958_x_at
TACACACTTTATTTACTTCGTTTTG
SEQ ID NO: 1839





212958_x_at
GTTGGCTTCTGTTTCTAGTTGAGGA
SEQ ID NO: 1840





212958_x_at
TCCTCTTTTTCCATCATAATTCTAA
SEQ ID NO: 1841





212958_x_at
GATTTGCCCATTTACACTTTTGAGA
SEQ ID NO: 1842





212958_x_at
GTAAATAACCCCATTCTTTGCTTGA
SEQ ID NO: 1843





212958_x_at
GTATTTTCCCAATAGCACTTTCATT
SEQ ID NO: 1844





212958_x_at
ATTGCCAGTGTCTTTCTTTGGTGCC
SEQ ID NO: 1845





212958_x_at
TTCAGCATTCTTAGCCTGTGGCAAT
SEQ ID NO: 1846





213056_at
AACAACGACAAAAAGCTCCAAGCTG
SEQ ID NO: 1847





213056_at
AAAGCTCCAAGCTGCAGTGGATTTA
SEQ ID NO: 1848





213056_at
GGCTAAAACTACCTCATACTTTCCT
SEQ ID NO: 1849





213056_at
ACTACCTCATACTTTCCTTGGAAGA
SEQ ID NO: 1850





213056_at
AAAGCAAATGATTTCCATATTCCTG
SEQ ID NO: 1851





213056_at
ATTTCCATATTCCTGATTGATCTTT
SEQ ID NO: 1852





213056_at
ACAAGTTTCTTGTTCATATTGTGAA
SEQ ID NO: 1853





213056_at
GATTTGTTAAACTGGTCCTTAGTCA
SEQ ID NO: 1854





213056_at
AACTGGTCCTTAGTCATTTGTATAA
SEQ ID NO: 1855





213056_at
ATTTGTATAGCCTTCTAGAATCAGA
SEQ ID NO: 1856





213056_at
GAAATAACCTTTTTGCATATTCTTT
SEQ ID NO: 1857





213355_at
TAAGCTAGTTTTCTGAGGTGTTTTC
SEQ ID NO: 1858





213355_at
GTGTTTTCACACGTCTTTTTATAGT
SEQ ID NO: 1859





213355_at
TTATAGTTACTTCATCTTAGATTTT
SEQ ID NO: 1860





213355_at
AAGGGATATGACTTCCTACTAAGGA
SEQ ID NO: 1861





213355_at
GTTTACCACAACAATTCTGACTACA
SEQ ID NO: 1862





213355_at
TTGAGGAGGATATTTGGCTACTGTA
SEQ ID NO: 1863





213355_at
GGCTACTGTAAACATGGCTGGTGGA
SEQ ID NO: 1864





213355_at
GGCAAGCCGAAACCACTTGGCTCTG
SEQ ID NO: 1865





213355_at
GGCTCTGGAAATCTAAGTTCATACT
SEQ ID NO: 1866





213355_at
TGGTTTAATTAAGCTCTCTCCTGAC
SEQ ID NO: 1867





213355_at
TGACAACCCCCAGAATTAAATGAAC
SEQ ID NO: 1868





213541_s_at
CTCGAGGGTTCATGCAGTCAGTGTT
SEQ ID NO: 1869





213541_s_at
GTCAGTGTTATACCAAACCCAGTGT
SEQ ID NO: 1870





213541_s_at
AAAAATGCGCATCTCTTTCTTTGTT
SEQ ID NO: 1871





213541_s_at
TTCAGGACCTCATCATTATGTGGGG
SEQ ID NO: 1872





213541_s_at
CAGGTAAGAGATGGCCTTCTTGGCT
SEQ ID NO: 1873





213541_s_at
GGCTGCCACAATCAGAAATCACGCA
SEQ ID NO: 1874





213541_s_at
GCATTTTGGGTAGGCGGCCTCCAGT
SEQ ID NO: 1875





213541_s_at
CCAGTTTTCCTTTGAGTCGCGAACG
SEQ ID NO: 1876





213541_s_at
GTCGCGAACGCTGTGCGTTTGTCAG
SEQ ID NO: 1877





213541_s_at
ACTACGAGTTGATCTCGGCCAGCCA
SEQ ID NO: 1878





213541_s_at
TCGGCCAGCCAAAGACACACGACAA
SEQ ID NO: 1879





213714_at
GTTCTACTCCATACAGTTCACACTG
SEQ ID NO: 1880





213714_at
GATTGTGACACATTCTTAGTAGCTA
SEQ ID NO: 1881





213714_at
GCTAGTGTCTGTTCTAGTCACTGCA
SEQ ID NO: 1882





213714_at
AGTCACTGCACTGGAGTCTACGAGC
SEQ ID NO: 1883





213714_at
GAGTCTACGAGCCGGAACTCGCTAT
SEQ ID NO: 1884





213714_at
CGGAACTCGCTATATGCACGTGTGT
SEQ ID NO: 1885





213714_at
ACGTGTGTGTGTCCGTATGTAAGAA
SEQ ID NO: 1886





213714_at
GAAAGTGTGCACCGAGTGACTGAAT
SEQ ID NO: 1887





213714_at
GACTGATATCGAGCATTCTGCCCAC
SEQ ID NO: 1888





213714_at
GCTTTAACAACCCATTGAGCAGTCA
SEQ ID NO: 1889





213714_at
GGGAATGTGAGTAAGCTTGCTGCCA
SEQ ID NO: 1890





213750_at
ACTGTCCTTTTGGGCTTCTATAAAT
SEQ ID NO: 1891





213750_at
ATATGTAATCGTGCCAGTCTGTTCT
SEQ ID NO: 1892





213750_at
CAGTCTGTTCTCTGCATGACATAAT
SEQ ID NO: 1893





213750_at
ATGACATAATTTTCCAGCAATAGCT
SEQ ID NO: 1894





213750_at
GCTGTGTGGTTTTTGTAATCCTATC
SEQ ID NO: 1895





213750_at
GTAATCCTATCATCTAGTCAGTTCA
SEQ ID NO: 1896





213750_at
GTCAGTTCAAGATCTTGCAACACTG
SEQ ID NO: 1897





213750_at
CAACACTGTGTGATTCTTTGCTCCG
SEQ ID NO: 1898





213750_at
TTGCTCCGTAGTTCAGTCTTGTTGA
SEQ ID NO: 1899





213750_at
GACACAGGTGTTTACTTTCCTGTTC
SEQ ID NO: 1900





213750_at
TTTCCTGTTCTTGCATCTAGTTTCA
SEQ ID NO: 1901





214327_x_at
GAATCCAGATGGCATGGTTGCTCTA
SEQ ID NO: 1902





214327_x_at
GGTTGCTCTATTGGACTACCGTGAG
SEQ ID NO: 1903





214327_x_at
CTACCGTGAGGATGGTGTGACCCCA
SEQ ID NO: 1904





214327_x_at
GTGACCCCATATATGATTTTCTTTA
SEQ ID NO: 1905





214327_x_at
ATGTGGCAATTATTTTGGATCTATC
SEQ ID NO: 1906





214327_x_at
GACTGATGTCATCTTGAGCTCTTCA
SEQ ID NO: 1907





214327_x_at
TTCCCTTGTACTGTAGTTTGTTTTG
SEQ ID NO: 1908





214327_x_at
GAGCTCTTCATTTATTTTGACTGTG
SEQ ID NO: 1909





214327_x_at
TTTGGAGTGGAGGCATTGTTTTTAA
SEQ ID NO: 1910





214327_x_at
GTTTGTTTTGAATGGCATGTATTTG
SEQ ID NO: 1911





214327_x_at
TAATTCTAGGTATTTTGTTTGCTTC
SEQ ID NO: 1912





214349_at
GATACAACGTGTTTCCTAAAAGTAG
SEQ ID NO: 1913





214349_at
CTTGACTTAACTGCTTCCCTGAAGT
SEQ ID NO: 1914





214349_at
GACTTAACTGCTTCCCTGAAGTACC
SEQ ID NO: 1915





214349_at
TAACTGCTTCCCTGAAGTACCGTGA
SEQ ID NO: 1916





214349_at
GCTTCCCTGAAGTACCGTGAGGTTC
SEQ ID NO: 1917





214349_at
AGTACCGTGAGGTTCCTGATGTGCG
SEQ ID NO: 1918





214349_at
CCGTGAGGTTCCTGATGTGCGGGCG
SEQ ID NO: 1919





214349_at
TTCCTGATGTGCGGGCGGTAGACGG
SEQ ID NO: 1920





214349_at
ATGTGCGGGCGGTAGACGGTAGGCT
SEQ ID NO: 1921





214349_at
CGGGCGGTAGACGGTAGGCTTATGC
SEQ ID NO: 1922





214349_at
TAGACGGTAGGCTTATGCGGCACGC
SEQ ID NO: 1923





215388_s_at
TATTCATACGTAAAATTTTGGATTA
SEQ ID NO: 1924





215388_s_at
GAACCACCTCAATGCAAAGATTCTA
SEQ ID NO: 1925





215388_s_at
GAGGGTAACAAGCGAATAACATGTA
SEQ ID NO: 1926





215388_s_at
CCACCAAAATGCTTACATCCGTGTG
SEQ ID NO: 1927





215388_s_at
ACATCCGTGTGTAATATCCCGAGAA
SEQ ID NO: 1928





215388_s_at
TCCGTGTGTAATATCCCGAGAAATT
SEQ ID NO: 1929





215388_s_at
AACATAGCATTAAGGTGGACAGCCA
SEQ ID NO: 1930





215388_s_at
GCATTAAGGTGGACAGCCAAACAGA
SEQ ID NO: 1931





215388_s_at
GAATTTGTGTGTAAACGGGGATATC
SEQ ID NO: 1932





215388_s_at
TCACGTTCTCACACATTGCGAACAA
SEQ ID NO: 1933





215388_s_at
CACACATTGCGAACAACATGTTGGG
SEQ ID NO: 1934





215779_s_at
AAGCGCAAGCGCAGTCGTAAGGAGA
SEQ ID NO: 1935





215779_s_at
GCGCAGTCGTAAGGAGAGCTACTCC
SEQ ID NO: 1936





215779_s_at
GTGCTAAAACAGGTTCACCCCGATA
SEQ ID NO: 1937





215779_s_at
TAAAACAGGTTCACCCCGATACTGG
SEQ ID NO: 1938





215779_s_at
AAGCACGCAGTGTCCGAAGGTACCA
SEQ ID NO: 1939





215779_s_at
GTCCGAAGGTACCAAGGCTGTCACC
SEQ ID NO: 1940





215779_s_at
GGCTGTCACCAAGTATACAAGCTCC
SEQ ID NO: 1941





215779_s_at
TACAAGCTCCAAGTAAATGTGTGCT
SEQ ID NO: 1942





215779_s_at
TCAGCTCCTGCTCCGAAGAAGGGTT
SEQ ID NO: 1943





215779_s_at
CCTGCTCCGAAGAAGGGTTCCAAGA
SEQ ID NO: 1944





215779_s_at
GTTCCAAGAAGGCTGTGACCAAGGC
SEQ ID NO: 1945





217975_at
GTGATGCGTTGGAAGGTTAATCGAA
SEQ ID NO: 1946





217975_at
CCATCCTTACCCCTATTTAATGTAG
SEQ ID NO: 1947





217975_at
AACAATACCATATAGCTTGCTTTTT
SEQ ID NO: 1948





217975_at
CTTTGTCCATATTTCTACTTATAAC
SEQ ID NO: 1949





217975_at
TATTTCTACTTATAACCTGTTGCTA
SEQ ID NO: 1950





217975_at
TGTATCTCTTGTTATCTGCATCTCA
SEQ ID NO: 1951





217975_at
GTTATCTGCATCTCATTGTTTATTG
SEQ ID NO: 1952





217975_at
GAACCAATCTACAAGTCTCTGTCTT
SEQ ID NO: 1953





217975_at
AGCCTCTCGGTGGTGGGATTATGAA
SEQ ID NO: 1954





217975_at
TTATGAATGATTTTTCTCCTTTTGC
SEQ ID NO: 1955





217975_at
TTCTCCTTTTGCTTGTTAGTATTTT
SEQ ID NO: 1956





218280_x_at
CCTTCAGTTCCCGGTAGGGCGAGTG
SEQ ID NO: 1957





218280_x_at
GCATCGCTTGCTGCGCAAAGGCAAC
SEQ ID NO: 1958





218280_x_at
TCCTCGAGTATCTGACCGCCGAGAT
SEQ ID NO: 1959





218280_x_at
CGCCGAGATCCTGGAGCTGGCGGGC
SEQ ID NO: 1960





218280_x_at
CAGGCAGGAGTTTCTCTCGGTGACT
SEQ ID NO: 1961





218280_x_at
AAGCTGCTGGGCAAAGTCACCATCG
SEQ ID NO: 1962





218280_x_at
TCTTGCCTAACATCCAGGCCGTACT
SEQ ID NO: 1963





218280_x_at
AAAGGGCAAGTGAGGCTGACGTCCG
SEQ ID NO: 1964





218280_x_at
GCGTCTCGAAGGGGCACCTGTGAAC
SEQ ID NO: 1965





218280_x_at
TACTATCGCTGTCATGTCTGGTCGT
SEQ ID NO: 1966





218280_x_at
GCAAGCAAGGAGGCAAGGCCCGCGC
SEQ ID NO: 1967





218332_at
CCCTCCCTTTGGATGCTGGTGAATA
SEQ ID NO: 1968





218332_at
TTGGATGCTGGTGAATACTGTGTGC
SEQ ID NO: 1969





218332_at
GATGGGATATGATGCATAGGCTTGG
SEQ ID NO: 1970





218332_at
TGATGGTTTCCCTAAAGTTATTACG
SEQ ID NO: 1971





218332_at
GACCCCTGCTTTCGAATTTACATGT
SEQ ID NO: 1972





218332_at
ATGTTCATGATGTGCCCTTGTTGTA
SEQ ID NO: 1973





218332_at
ATGATGTGCCCTTGTTGTAAACCTT
SEQ ID NO: 1974





218332_at
TGTAAACCTTTACCTGTCACTTGTT
SEQ ID NO: 1975





218332_at
CTGTCACTTGTTTACGTGGGTCTCC
SEQ ID NO: 1976





218332_at
CACTTGTTTACGTGGGTCTCCTATT
SEQ ID NO: 1977





218332_at
ATTGTGTTTTTGAACCAGTCTGTAA
SEQ ID NO: 1978





218627_at
TAATCATTTCTGGGTTCACTGCGAC
SEQ ID NO: 1979





218627_at
CACTGCGACTCACTGTAGTGCTGGG
SEQ ID NO: 1980





218627_at
ATCCCCCTTGTAACACTGGAACTGA
SEQ ID NO: 1981





218627_at
GAGGAGAAATGCCACATACCTTTCC
SEQ ID NO: 1982





218627_at
ATACCTTTCCCATGGGACCTGTGGT
SEQ ID NO: 1983





218627_at
CGAGCAGACTTTTGTTCTCGGCGCT
SEQ ID NO: 1984





218627_at
GGCGCTCCTCACGATGGAGTTTCAT
SEQ ID NO: 1985





218627_at
GTTTCATGCTTCATTTTCACATCTC
SEQ ID NO: 1986





218627_at
GAGTACGTGCCTTAATCTTTATCTT
SEQ ID NO: 1987





218627_at
ATGAACAGAGTGCCTCCTGGTACAC
SEQ ID NO: 1988





218627_at
AGAATGGGATTTACTCTGCTTTACC
SEQ ID NO: 1989





218764_at
CACCAAGACGACTGCTTCAGCTTCT
SEQ ID NO: 1990





218764_at
TCTCTTATCCTTACTTTCTTTAATA
SEQ ID NO: 1991





218764_at
AAAGGTGCCACAATGCCCAGTATTG
SEQ ID NO: 1992





218764_at
AGCTTTCATTCATTCTGGAGTCTAC
SEQ ID NO: 1993





218764_at
ATTCTGTGAAATGCCTCTCCACGTT
SEQ ID NO: 1994





218764_at
TCTCCACGTTGCATATGTCACACTT
SEQ ID NO: 1995





218764_at
GTCTGCACATAACTCTTTTTTCACA
SEQ ID NO: 1996





218764_at
GCCACAACAGCACAGTCAGCGGGTG
SEQ ID NO: 1997





218764_at
GTCAGCGGGTGAATTACAGGTGCCT
SEQ ID NO: 1998





218764_at
GTAATCTGATCTTGTCTGTATCGCC
SEQ ID NO: 1999





218764_at
AGAATTGCAGGCCACTCATGTCAGT
SEQ ID NO: 2000





218772_x_at
TTTCCATAGCAGGTATTTTCTACTA
SEQ ID NO: 2001





218772_x_at
TCTGAAGTCTTTTTCATGCCCTTGT
SEQ ID NO: 2002





218772_x_at
AGCTTGACTTATTTTTTTCTCTCTC
SEQ ID NO: 2003





218772_x_at
GGAGAAATTTTCTCAGCATTTTGCA
SEQ ID NO: 2004





218772_x_at
GCATTTTGCATGTTCTTTCTAATCT
SEQ ID NO: 2005





218772_x_at
GTTCTTTCTAATCTTTGTTGGTCTG
SEQ ID NO: 2006





218772_x_at
TCAAAAATTTTTCCACTATGTCTTT
SEQ ID NO: 2007





218772_x_at
TATGTCTTTTTTCTAGTGGCTACTG
SEQ ID NO: 2008





218772_x_at
GTGGCTACTGTTTTAGTTTTCTAGT
SEQ ID NO: 2009





218772_x_at
ATCTCTGACAAGCTTTCGTATGGTT
SEQ ID NO: 2010





218772_x_at
GGTTTTGTTATATCTTCATCTACAT
SEQ ID NO: 2011





218901_at
TATATTCATCTTTTCAGGGTAAATT
SEQ ID NO: 2012





218901_at
GAGTTTCTCGTAATGCTCATTTTTA
SEQ ID NO: 2013





218901_at
CTCATTTTTACATGCTGCTACTAGC
SEQ ID NO: 2014





218901_at
GTGCCATTGCAATCGTAAGTAGACT
SEQ ID NO: 2015





218901_at
GTAGACTATGTATTTCCTATAATGA
SEQ ID NO: 2016





218901_at
TTTAACTTGCCTAGATCCCTGTATT
SEQ ID NO: 2017





218901_at
TAGATCCCTGTATTCCAAAACCTGC
SEQ ID NO: 2018





218901_at
TGTATTCCAAAACCTGCTGCATCAT
SEQ ID NO: 2019





218901_at
CATGATTTCTATGTTTCTTAATGAT
SEQ ID NO: 2020





218901_at
GGAATTTGTGCGTTCATGCTTTTTC
SEQ ID NO: 2021





218901_at
GTTCATGCTTTTTCGTATTCTTTAT
SEQ ID NO: 2022





218971_s_at
CATGCTGACATGTTCTGCCACAGGC
SEQ ID NO: 2023





218971_s_at
GCGTCATCTACAAGCTGGGTGGCGA
SEQ ID NO: 2024





218971_s_at
ACTGGAGCACTGCCATGGACTGTGG
SEQ ID NO: 2025





218971_s_at
AAGGGCCACCCGAGGAAGCAGTATT
SEQ ID NO: 2026





218971_s_at
AGGACAGGAAAACCACGTGCTCCAC
SEQ ID NO: 2027





218971_s_at
TGGCAAGGAGGCTCAGGTGCTTCCA
SEQ ID NO: 2028





218971_s_at
GTGCTTCCATCTGTGGTGACTGGAA
SEQ ID NO: 2029





218971_s_at
GGAATGGGACCCACGTGGAGTAGGT
SEQ ID NO: 2030





218971_s_at
GAGTAGGTGACATATGCTTCCCAGA
SEQ ID NO: 2031





218971_s_at
GTGGCTGTGCCAGGAGTACATGTGA
SEQ ID NO: 2032





218971_s_at
ATATATGTGCCCATTTATCTTTTTC
SEQ ID NO: 2033





219054_at
GACAACAATGAAGTAGCCCCTGAAC
SEQ ID NO: 2034





219054_at
GTAGCCCCTGAACAGCATGGAGTTG
SEQ ID NO: 2035





219054_at
GAGTTGCTGTGAGTTTGTTCGTTGC
SEQ ID NO: 2036





219054_at
GTTCGTTGCAGACCTTTGTGTTGGG
SEQ ID NO: 2037





219054_at
GGTCCTGGGAATCTGAGCTTTGTTC
SEQ ID NO: 2038





219054_at
CTTTGTTCCCTGTGCATGGTGGATA
SEQ ID NO: 2039





219054_at
GGGATAGACCTTGTGACAGACCAAT
SEQ ID NO: 2040





219054_at
GACAGACCAATTCTGTGACCCCTGT
SEQ ID NO: 2041





219054_at
TGACCCCTGTCTTCTGGGTCACATT
SEQ ID NO: 2042





219054_at
AAATGTGTATGTGTCCTTGTAAATG
SEQ ID NO: 2043





219054_at
GCAAGAATGCCACGTACTCAGAGTA
SEQ ID NO: 2044





219559_at
TGTCCTGCACACTGTAGGATGCTTA
SEQ ID NO: 2045





219559_at
GATGCTTAAAGGTATCCCTGGCCTC
SEQ ID NO: 2046





219559_at
CCCAGTCAGACATGACCTCAGAGTC
SEQ ID NO: 2047





219559_at
CTCAGAGTCTCTGTGTCTCCTAGAA
SEQ ID NO: 2048





219559_at
CTCCTAGAAGCCTGACAGAGACCCC
SEQ ID NO: 2049





219559_at
TGGGTGGGTGGCGGGCTAGAGACCC
SEQ ID NO: 2050





219559_at
CCCTCCGCACTAACAGTGTTCTCAG
SEQ ID NO: 2051





219559_at
GCCTGGTGATTCTGCTCTCCAGGGA
SEQ ID NO: 2052





219559_at
CTCCCTTTTCGTTGCCTGAGGAGCT
SEQ ID NO: 2053





219559_at
GGAGCTGGTGGTTTCATGAGTTAAT
SEQ ID NO: 2054





219559_at
GTGGAAAAGCACGCCAAAGCCTTAT
SEQ ID NO: 2055





219648_at
ATGCTGTGAATGCAGCTTGCTTCTC
SEQ ID NO: 2056





219648_at
GTCCAGCTTCAAAAGTTACTTGCCA
SEQ ID NO: 2057





219648_at
AGATTTTGCACTTCTGAATTCAGGT
SEQ ID NO: 2058





219648_at
TCTGCTTAGAGGACTGTGACTTGAA
SEQ ID NO: 2059





219648_at
TGAGCTTTTTGGTAGCGTCCACAAT
SEQ ID NO: 2060





219648_at
ATAGGCGAGATCCGTGTTCTCCATT
SEQ ID NO: 2061





219648_at
TGTAGACCAATTTAACTGCTGTGTT
SEQ ID NO: 2062





219648_at
TTAGTGCTTAATCTTTGCCTCATGT
SEQ ID NO: 2063





219648_at
TTCTCTCAATTCTGTAGACTCTCGC
SEQ ID NO: 2064





219648_at
GCACTGAAGATCTTTGCTGGACCTT
SEQ ID NO: 2065





219648_at
CTGGACCTTCTTCTCTTCAGAAGAT
SEQ ID NO: 2066





220122_at
CACCTGTGCTCTGATTAAATCTACA
SEQ ID NO: 2067





220122_at
AGTAATCCATTACACTTTTCTATGT
SEQ ID NO: 2068





220122_at
ATTCTGGCTTTAGATCCCGACATTC
SEQ ID NO: 2069





220122_at
CCGACATTCACTCCTGTGCAAATTA
SEQ ID NO: 2070





220122_at
GTACATTCACTCCCTCAAGAGAATC
SEQ ID NO: 2071





220122_at
ATTTCAATCAATCATTCCATCTAAA
SEQ ID NO: 2072





220122_at
AAATCTCTACAGGACTACATAACAT
SEQ ID NO: 2073





220122_at
AAACGATTGCCTATCTGAATTTTTA
SEQ ID NO: 2074





220122_at
TGAATTTTTATACCTACCACTACTT
SEQ ID NO: 2075





220122_at
GGAAACTATATCCATATCGCTTTTG
SEQ ID NO: 2076





220122_at
ATCGCTTTTGGTGTCAGATTGTATC
SEQ ID NO: 2077





221458_at
GGCATGGCTTGGGTATCTCAATTCC
SEQ ID NO: 2078





221458_at
TCTCAATTCCCTTATAAATCCACTG
SEQ ID NO: 2079





221458_at
TGCATCATCAAGCACGACCACATTG
SEQ ID NO: 2080





221458_at
ACATTGTTTCCACCATTTACTCAAC
SEQ ID NO: 2081





221458_at
ATCCCACTGGCATTGATTTTGATCC
SEQ ID NO: 2082





221458_at
GGAGGTGAATGGCCAAGTCCTTTTG
SEQ ID NO: 2083





221458_at
ATCAGTTTCCACATCCTATGTACTA
SEQ ID NO: 2084





221458_at
AAAGTCTTTATCTGACCCATCAACA
SEQ ID NO: 2085





221458_at
AGAGAACGGAAAGCAGCCACTACCC
SEQ ID NO: 2086





221458_at
GCAGCCACTACCCTGGGATTAATCT
SEQ ID NO: 2087





221458_at
TAATATGTTGGCTTCCTTTTTTTGT
SEQ ID NO: 2088





221773_at
GAACACATCCAAAATGCATGATTCT
SEQ ID NO: 2089





221773_at
TATAGATCTGATTCTTTCTTTTCCT
SEQ ID NO: 2090





221773_at
AACTGGGATTAATGTATGCTCTAGA
SEQ ID NO: 2091





221773_at
TGTATGCTCTAGATCCATTTATTAG
SEQ ID NO: 2092





221773_at
ATAACTCACTCATATAGCTCTGCCT
SEQ ID NO: 2093





221773_at
ATGTCTGCTTAATCAGTGTTAAACT
SEQ ID NO: 2094





221773_at
ATAACCTGAATGTTGGTCTCTTTGT
SEQ ID NO: 2095





221773_at
TGGTCTCTTTGTACACATCTTTTCT
SEQ ID NO: 2096





221773_at
CACATCTTTTCTATGACTGCAAATC
SEQ ID NO: 2097





221773_at
GACTGCAAATCTTCACTTTATGTAT
SEQ ID NO: 2098





221773_at
CTTTATGTATCATTTTTACTGTCAT
SEQ ID NO: 2099





221833_at
AAGCACCAGGGCACGGACAGGAATA
SEQ ID NO: 2100





221833_at
GTACTGAATTAGCCACTTTCTCCAT
SEQ ID NO: 2101





221833_at
CTTTCTCCATAGCCAAGTTGCGAAT
SEQ ID NO: 2102





221833_at
GGCCCCGGCAAGTTGGACAACATGT
SEQ ID NO: 2103





221833_at
GAGCTTTGGGCGACAGTTGCTACAA
SEQ ID NO: 2104





221833_at
AACAAGATGGCCACTCTGACATTGA
SEQ ID NO: 2105





221833_at
GACTGGACACTCAAAAAGACTCGCC
SEQ ID NO: 2106





221833_at
ATTGTTGGATGCAGTTGTGCCAGTC
SEQ ID NO: 2107





221833_at
TGGACACTTCGAGGTACCGGTAGGT
SEQ ID NO: 2108





221833_at
AGCAGTCTGACGGCTCATTTCTGAA
SEQ ID NO: 2109





221833_at
GTTTACATGCCATAAGTCCTTTTAA
SEQ ID NO: 2110





221942_s_at
TTTTGCTGGCGTCGTTGGAGTTAAA
SEQ ID NO: 2111





221942_s_at
TGGAGTTAAAATGCCCCGTTACTGT
SEQ ID NO: 2112





221942_s_at
AAACAATGTCACTCTGGCTAACAAA
SEQ ID NO: 2113





221942_s_at
ACTCAAAGACTGTCCTGGTTTCGTG
SEQ ID NO: 2114





221942_s_at
TCGTGTTTACCCCTCGATCAAGGGA
SEQ ID NO: 2115





221942_s_at
TTCCACCAAACTTCCCTAGTGAAAT
SEQ ID NO: 2116





221942_s_at
AGTGAAATCCCCGGAATCTGCCATT
SEQ ID NO: 2117





221942_s_at
AACAAACTCAAAACCATGCTTCCAA
SEQ ID NO: 2118





221942_s_at
GTCACAATCTTTCTCCTGTTTAACA
SEQ ID NO: 2119





221942_s_at
CTGATGAAGTTATGTCTCCCCATGG
SEQ ID NO: 2120





221942_s_at
CTCCCCATGGAGAACCTATCAAGAT
SEQ ID NO: 2121





222067_x_at
CCGGCATCTCTTCCAAGGCAATGGG
SEQ ID NO: 2122





222067_x_at
GGATCATGAATTCCTTCGTCAACGA
SEQ ID NO: 2123





222067_x_at
CGTCAACGACATCTTCGAGCGCATC
SEQ ID NO: 2124





222067_x_at
ATTAACGCTACGATGCCTGAACCTA
SEQ ID NO: 2125





222067_x_at
GCATTACAACAAGCGCTCGACCATC
SEQ ID NO: 2126





222067_x_at
TCGACCATCACCTCCAGGGAGATCC
SEQ ID NO: 2127





222067_x_at
GTAAGCATCTTTACACCTAATCCCA
SEQ ID NO: 2128





222067_x_at
TACACCTAATCCCAAAGGCTCTTTT
SEQ ID NO: 2129





222067_x_at
TAAGAGCCACGCATGTTTTCAATAA
SEQ ID NO: 2130





222067_x_at
GCTCCTGCCCCAAAGAAGGGCTCCA
SEQ ID NO: 2131





222067_x_at
AGGGCTCCAAGAAGGCGGTGACTAA
SEQ ID NO: 2132





222315_at
GGCCTGCAGTGGATAGAGCCTAGCA
SEQ ID NO: 2133





222315_at
ATCTCTGACAGTGATTTCCAGCGAC
SEQ ID NO: 2134





222315_at
CCAGCGACTTTGTCAACACGGTCCG
SEQ ID NO: 2135





222315_at
TCCGCCCCCAGCAAGTATAAGAGGA
SEQ ID NO: 2136





222315_at
ACAAATGTCTTTACTGCCTTGTCTT
SEQ ID NO: 2137





222315_at
CCCTTGCCACTTGTCATTATTCAAG
SEQ ID NO: 2138





222315_at
TTACCAGCTGTGCTTGCGTTGCAAG
SEQ ID NO: 2139





222315_at
CTTGCGTTGCAAGACCTGTCACAGT
SEQ ID NO: 2140





222315_at
CTGCACCATTCAAACTAGCCAACCC
SEQ ID NO: 2141





222315_at
TCTTCGGGGCTCATGCTAGGCCCGA
SEQ ID NO: 2142





222315_at
GCTAGGCCCGAGTGCATTCAATAAA
SEQ ID NO: 2143





222735_at
GAACTTCATATGGCAGTCCATTTAG
SEQ ID NO: 2144





222735_at
TAAAATCTGGTTCCTTCTTAGCAAA
SEQ ID NO: 2145





222735_at
AAAACTCTGTGACATAGTTTCTTTT
SEQ ID NO: 2146





222735_at
TACTCCCCGTATCAGGTATTTTCGA
SEQ ID NO: 2147





222735_at
AAGTACTCAAGTCACATCACATTCA
SEQ ID NO: 2148





222735_at
AAACACCAGCAGATACTATTACTTG
SEQ ID NO: 2149





222735_at
ATTGGGAGGGGGCACTTTTCATAGT
SEQ ID NO: 2150





222735_at
GGCACTTTTCATAGTCTTGGAATGC
SEQ ID NO: 2151





222735_at
TATTATATTTGATACTCTTACAGTT
SEQ ID NO: 2152





222735_at
AATTATTGACCAGTTTTGAAGTTTG
SEQ ID NO: 2153





222735_at
GAAGGACTCTTGTTTTACACTTGTA
SEQ ID NO: 2154





222815_at
TGATCTTTAAATTTTCCCACACCAT
SEQ ID NO: 2155





222815_at
AAATTTTCCCACACCATAAGAGAGG
SEQ ID NO: 2156





222815_at
AAAGCTATATCATTCCCAGTTATTA
SEQ ID NO: 2157





222815_at
GTTAACACAAATTCAGCCACATTCT
SEQ ID NO: 2158





222815_at
GAGTATTGTTTGTTCACCTTTCAGA
SEQ ID NO: 2159





222815_at
TGTTTGTTCACCTTTCAGACTTGGT
SEQ ID NO: 2160





222815_at
GACTTGGTGATACTGGACATGTCAG
SEQ ID NO: 2161





222815_at
AGGATCTTCTAAGTGTATAACTGTC
SEQ ID NO: 2162





222815_at
GCCCATCACTGTGGCACACTGTAGA
SEQ ID NO: 2163





222815_at
AAAGCCTATGCTTGTGTAAGTGAAA
SEQ ID NO: 2164





222815_at
TAGAGGCTCAGTACTTTTCCAATGC
SEQ ID NO: 2165





225629_s_at
GCTCTATACGTAGTGAGGACCCAGA
SEQ ID NO: 2166





225629_s_at
GTGAGGACCCAGATTTAGAGAAACT
SEQ ID NO: 2167





225629_s_at
ATTTATCTCCGCATTTGTGTGTGTG
SEQ ID NO: 2168





225629_s_at
AACTCTGTAGGCCAATAAACCAACA
SEQ ID NO: 2169





225629_s_at
AAATAGCTTCCAGAATGTGGTGGTT
SEQ ID NO: 2170





225629_s_at
GAATGTGGTGGTTCTGGGCAACAAA
SEQ ID NO: 2171





225629_s_at
GAGATTGTGGCGACGTGGAGATTAA
SEQ ID NO: 2172





225629_s_at
TGATCAAGTCTTGTCAGTTCGTGCC
SEQ ID NO: 2173





225629_s_at
TCTTTCCCCATGTTCCCTGGGAAGA
SEQ ID NO: 2174





225629_s_at
GTTCTGTGCCGCAGCACGCAAAATT
SEQ ID NO: 2175





225629_s_at
GAATTCTACAGACTAGCTCTATACG
SEQ ID NO: 2176





226545_at
CATGTGTCTCTGTAATAGGGATAAT
SEQ ID NO: 2177





226545_at
TCTATCTTATGTTGTCTTGAGGCCA
SEQ ID NO: 2178





226545_at
GAGGCCAAGATTTACCACGTTTGCC
SEQ ID NO: 2179





226545_at
TTACCACGTTTGCCCAGTGTATTGA
SEQ ID NO: 2180





226545_at
GGTAGAAGGTAGTTCCATGTTCCAT
SEQ ID NO: 2181





226545_at
TCCATGTTCCATTTGTAGATCTTTA
SEQ ID NO: 2182





226545_at
AGAATGTGGCTCAGTTCTGGTCCTT
SEQ ID NO: 2183





226545_at
GGTCCTTCAAGCCTGTATGGTTTGG
SEQ ID NO: 2184





226545_at
TTGGATTTTCAGTAGGGGACAGTTG
SEQ ID NO: 2185





226545_at
GGAGTCAATCTCTTTGGTACACAGG
SEQ ID NO: 2186





226545_at
TTCATTCACGAATCTCTTATTTTGG
SEQ ID NO: 2187





226547_at
AATATTGGTACCTGTCATTTTTTCA
SEQ ID NO: 2188





226547_at
TGTTAGTGACTTTGATGCCTTTTAA
SEQ ID NO: 2189





226547_at
AAAGAGATCTCTAGCGTGTGTGAAT
SEQ ID NO: 2190





226547_at
GCGTGTGTGAATAGAGCTCCAGATG
SEQ ID NO: 2191





226547_at
GCTCCAGATGCCTCTAAAAGCCGCA
SEQ ID NO: 2192





226547_at
AGCCGCATGTACAAAGGAAGCCACG
SEQ ID NO: 2193





226547_at
AAAGGAAGCCACGTCTATCCTGTCT
SEQ ID NO: 2194





226547_at
TGCTTTTCCTGTTTTGTAACCTCTT
SEQ ID NO: 2195





226547_at
TTGTAACCTCTTTGTACTTTGTTCA
SEQ ID NO: 2196





226547_at
GTACTTTGTTCATGGTGACTTGTAA
SEQ ID NO: 2197





226547_at
GGAAGGGGTGCCTAGATGCCTTTGT
SEQ ID NO: 2198





226985_at
GGCCTCTGAAGAGTCAAGGTCTGCT
SEQ ID NO: 2199





226985_at
TGTGTTTACCTCACTCAAGCTGACA
SEQ ID NO: 2200





226985_at
GGGAATCTATCCTTCTTTTAGACAC
SEQ ID NO: 2201





226985_at
GACACACGGTAATCCTTGGGCTGTA
SEQ ID NO: 2202





226985_at
GGGCTGTATTACTGAAGGCTTTTTA
SEQ ID NO: 2203





226985_at
AGGTGAATTCCTGGTCTTGGCAGAT
SEQ ID NO: 2204





226985_at
GGAGCACAGAAGTCGTGGCCTGAGG
SEQ ID NO: 2205





226985_at
GGCCTGAGGCTGTTCTATGGGCACT
SEQ ID NO: 2206





226985_at
TGGGCACTTGGGGCTAAATCGCCTC
SEQ ID NO: 2207





226985_at
AATCGCCTCCTGAGGGTGACTGTTG
SEQ ID NO: 2208





226985_at
GTGACTGTTGCTTATTCTGCTGGAC
SEQ ID NO: 2209





228465_at
GAAGTGGTAGGCAAGAGTCTCTGTG
SEQ ID NO: 2210





228465_at
GAGTCTCTGTGTTACCATGGGAACG
SEQ ID NO: 2211





228465_at
GAACGATTAAGTTTTCCAAGGTGCA
SEQ ID NO: 2212





228465_at
CCTCATTCCAGCTTCAGGGTCAATG
SEQ ID NO: 2213





228465_at
GGGTCAATGACTTACTAGCTCAGAG
SEQ ID NO: 2214





228465_at
ACATACCTACTATCTGTACAGAGTG
SEQ ID NO: 2215





228465_at
GAGTGACTCTCATTACCCAGAGAAC
SEQ ID NO: 2216





228465_at
GGGGAGTACTTAAGGTGTATGAGCA
SEQ ID NO: 2217





228465_at
AACAAATTGTTATCCAGGTCACTCC
SEQ ID NO: 2218





228465_at
TCACTCCAGAACTGTTGTATACAGA
SEQ ID NO: 2219





228465_at
TTGTGCCCTGAAAATTGTATCAACA
SEQ ID NO: 2220





228570_at
TAAACCTATTTCCTAGCATGCCTTC
SEQ ID NO: 2221





228570_at
GTTGTGCCAGACCCTAGATTGTGAA
SEQ ID NO: 2222





228570_at
CACTGTTCTTCTGTTGTACGAGCTC
SEQ ID NO: 2223





228570_at
CAATGTCACATCGCTTCATGGGCAT
SEQ ID NO: 2224





228570_at
GGCATGGCCCATGGAGCATCTGGGT
SEQ ID NO: 2225





228570_at
TATTGGCTCTTCTGCGAGGCTGATA
SEQ ID NO: 2226





228570_at
CCTCTCTTCCACATGATCATTTGCA
SEQ ID NO: 2227





228570_at
CTGCGTGGATGTTTCCTTAACCTCA
SEQ ID NO: 2228





228570_at
TGTCTAATGCTAGTTCAGGGCCTCC
SEQ ID NO: 2229





228570_at
GGCCTCCAGGCATTGATTTGTACAG
SEQ ID NO: 2230





228570_at
GGTAACTCCCAATGAGGCTTCTGTT
SEQ ID NO: 2231





228857_at
GGTGGGCGTGGTACTGAGAGTCCCA
SEQ ID NO: 2232





228857_at
GTGAGGGGAGTGCCCTCAGGCAGGC
SEQ ID NO: 2233





228857_at
GGAGGGAACAGCGCTGACATTCAGC
SEQ ID NO: 2234





228857_at
TCAGCTGGTTCGCACTGATACGGCT
SEQ ID NO: 2235





228857_at
GATACGGCTCAACCAGTTTGTTAAA
SEQ ID NO: 2236





228857_at
GGACTTCCCGCTGCATTTGAGAAGC
SEQ ID NO: 2237





228857_at
TTGAGAAGCTTTGCAGCGCCATCTG
SEQ ID NO: 2238





228857_at
TGCTTTGCGCCTTCATCTTGAAGCA
SEQ ID NO: 2239





228857_at
GAAGCACTCTGAAATTGCCTGTTTA
SEQ ID NO: 2240





228857_at
GAATCATGGAGTTGCTACTGCTTCT
SEQ ID NO: 2241





228857_at
AGTGCATTGTCGTTCTTGTGTCAGT
SEQ ID NO: 2242





228904_at
AACTGTGAGAGATGTCTGGGCCTGC
SEQ ID NO: 2243





228904_at
GAGATGTCTGGGCCTGCAGAAGTCC
SEQ ID NO: 2244





228904_at
GCAGAAGTCCAGCATTGCTCAAAAA
SEQ ID NO: 2245





228904_at
ATTATTTATCCCCCTACATTATGTA
SEQ ID NO: 2246





228904_at
AGGACATTGTGTTTCCTGTCATGTA
SEQ ID NO: 2247





228904_at
AAAGGCATGAACTCAGCTCCTAATC
SEQ ID NO: 2248





228904_at
ACTCAGCTCCTAATCGTCACTGTAT
SEQ ID NO: 2249





228904_at
AATCGTCACTGTATAGTCCTGAATT
SEQ ID NO: 2250





228904_at
TAGAGTTAATTCCCTCTTGGAACTT
SEQ ID NO: 2251





228904_at
TTTCTTTGTTCTTCAGTAGTTACTT
SEQ ID NO: 2252





228904_at
AAGGGTTGTCTGTCAAACAATTCTT
SEQ ID NO: 2253





228915_at
GAAAAAAGCTATCAGCTGTATGTTA
SEQ ID NO: 2254





228915_at
AGAGAGACTCTTACTAACATGTTGT
SEQ ID NO: 2255





228915_at
ATTTTATGGTTTCCATGCTTTTGTA
SEQ ID NO: 2256





228915_at
TCCATGCTTTTGTAATCCTAAAAAT
SEQ ID NO: 2257





228915_at
AAAATATTAATGTCTAGTTGTTCTA
SEQ ID NO: 2258





228915_at
TTATAACCACATTTGCGCTCTATGC
SEQ ID NO: 2259





228915_at
CACATTTGCGCTCTATGCAAGCCCT
SEQ ID NO: 2260





228915_at
CGCTCTATGCAAGCCCTTGGAACAG
SEQ ID NO: 2261





228915_at
AATTTTTCTATGGTAGCCTAGTTAT
SEQ ID NO: 2262





228915_at
GTAGCCTAGTTATTTGAGCCTGGTT
SEQ ID NO: 2263





228915_at
ATTTGAGCCTGGTTTCAATGTGAGA
SEQ ID NO: 2264





229287_at
GATTAAACCTATACAAGTCTGGCAA
SEQ ID NO: 2265





229287_at
TACAAGTCTGGCAATGAGCTCTGCA
SEQ ID NO: 2266





229287_at
AATGAGCTCTGCATGAGGAAATGGA
SEQ ID NO: 2267





229287_at
TCCTTTTCTGATCATGGGCTCTGGA
SEQ ID NO: 2268





229287_at
GATCATGGGCTCTGGAAAGTATTCA
SEQ ID NO: 2269





229287_at
GAAAGTATTCATGGCCTTTACCAGC
SEQ ID NO: 2270





229287_at
ACCAGCATTCAGTATAAACCAGAGA
SEQ ID NO: 2271





229287_at
ATATGTACTTACGTGTGTCTGTGAG
SEQ ID NO: 2272





229287_at
TGTGTGTCTGAGTGTTATTCTGAAC
SEQ ID NO: 2273





229287_at
GAGTGTTATTCTGAACAGCTTGTAA
SEQ ID NO: 2274





229287_at
AAGCTGAGTTCTTTTGGCAAATATA
SEQ ID NO: 2275





230389_at
ATATGTTTAGAGATGCCGCCAGAAC
SEQ ID NO: 2276





230389_at
AGCATGTTCTCCATTTGCAGTCTAC
SEQ ID NO: 2277





230389_at
GAAAATCCTTACCAGTTGTTTGTCA
SEQ ID NO: 2278





230389_at
TCTTGTTCTCTTGCTGGTTATTGGC
SEQ ID NO: 2279





230389_at
GCTGGTTATTGGCAGACTCAGTCTT
SEQ ID NO: 2280





230389_at
GATAGGGAAACCCACGTATGCCTTT
SEQ ID NO: 2281





230389_at
ATGCCTTTGAGGCTAGGGACTATGT
SEQ ID NO: 2282





230389_at
GGGACTATGTTGTAAGTTCACCTGT
SEQ ID NO: 2283





230389_at
GTTCACCTGTGATGGCCAGGTCATA
SEQ ID NO: 2284





230389_at
AGACTGGGGACCCAGAGGCACTTGT
SEQ ID NO: 2285





230389_at
ACTTGTTATGCTTCCACACTACGAA
SEQ ID NO: 2286





230698_at
ACTTGGGACGTGAGTTGTCTCTCAA
SEQ ID NO: 2287





230698_at
GAGTTGTCTCTCAAAGCACAGTAGT
SEQ ID NO: 2288





230698_at
AAGCACAGCTGGGGATTGATCATGG
SEQ ID NO: 2289





230698_at
GGAGCTTGGCAGCTCTCATATCCAG
SEQ ID NO: 2290





230698_at
GCAGCTCTCATATCCAGAATAAGCC
SEQ ID NO: 2291





230698_at
ATAAGCCACTAAGACGGAACTCATC
SEQ ID NO: 2292





230698_at
ACTAAGACGGAACTCATCAATCACC
SEQ ID NO: 2293





230698_at
AATTAACTTAGCATGCAACTTACCG
SEQ ID NO: 2294





230698_at
AACTGCCATATTTACCAGATGTTTT
SEQ ID NO: 2295





230698_at
CAGATGTTTTCTTTAACCGAACTTG
SEQ ID NO: 2296





230698_at
TTAACCGAACTTGTCTGTAAATATA
SEQ ID NO: 2297





230788_at
GATAGCGAATGCACTCAGGGTCAGC
SEQ ID NO: 2298





230788_at
ACTTATTTAAATGACAGCACCTGAG
SEQ ID NO: 2299





230788_at
AGAGGAACCGTTTTACACTGGATGT
SEQ ID NO: 2300





230788_at
TACATGTCTGTTGTTGGTCATCTCT
SEQ ID NO: 2301





230788_at
GTCATCTCTCCTGTGTCTTAAATAC
SEQ ID NO: 2302





230788_at
GAGCATAGTGTTTGGGCTAGTGGGT
SEQ ID NO: 2303





230788_at
GCTAGTGGGTTTCTGACAGCCCATG
SEQ ID NO: 2304





230788_at
ACAGCCCATGGGAATGCCCTGAAAC
SEQ ID NO: 2305





230788_at
GGAATGCCCTGAAACTACTGTATCT
SEQ ID NO: 2306





230788_at
GATGTTTGTTTTCGATGAGGTTCCA
SEQ ID NO: 2307





230788_at
CGATGAGGTTCCATGTTTTGTTTTC
SEQ ID NO: 2308





232098_at
TTGGACTAGTCCTATCATAAATGGG
SEQ ID NO: 2309





232098_at
GATACTGTACCATTTGCATGTGTGC
SEQ ID NO: 2310





232098_at
TGTGTTTGTGTCTTTCTGCAGGCAC
SEQ ID NO: 2311





232098_at
TGTGTCTTTCTGCAGGCACATCTCA
SEQ ID NO: 2312





232098_at
ATCACTTTTGTGATAGGCTCACTTT
SEQ ID NO: 2313





232098_at
GGCTCACTTTTGTGAATGATCTGAG
SEQ ID NO: 2314





232098_at
GTTTGAAAGATCTAGTTGCATACAC
SEQ ID NO: 2315





232098_at
TTGCATACACAGACTCTTGGATCAA
SEQ ID NO: 2316





232098_at
CTCTGGGCTCACTTCTTAGATCAGT
SEQ ID NO: 2317





232098_at
ACTTCTTAGATCAGTCTGTGGCCAA
SEQ ID NO: 2318





232098_at
AATTCCTGGCACATCAGTTTGTCAA
SEQ ID NO: 2319





232231_at
AAGACACTTCTTCCAAACCTTGAAT
SEQ ID NO: 2320





232231_at
GATGTGTGTTTACTTCATGTTTACA
SEQ ID NO: 2321





232231_at
ATCAGCCAAAACCATAACTTACAAT
SEQ ID NO: 2322





232231_at
TTGGATATGCTTTACCATTCTTAGG
SEQ ID NO: 2323





232231_at
ACCATTCTTAGGTTTCTGTGGAACA
SEQ ID NO: 2324





232231_at
TTTTTCCAATTGCTATTGCCCAAGA
SEQ ID NO: 2325





232231_at
GCTATTGCCCAAGAATTGCTTTCCA
SEQ ID NO: 2326





232231_at
GAATTGCTTTCCATGCACATATTGT
SEQ ID NO: 2327





232231_at
TTGTAAAAATTCCGCTTTGTGCCAC
SEQ ID NO: 2328





232231_at
GCTTTGTGCCACAGGTCATGATTGT
SEQ ID NO: 2329





232231_at
AGGGACTATTTGTATTGTATGTTGC
SEQ ID NO: 2330





234994_at
ACAATCGGCTAACCTTGACATTTCT
SEQ ID NO: 2331





234994_at
CATATGCCACTATCTCGGTAGTTCA
SEQ ID NO: 2332





234994_at
TAAATTGCCTTGAAGTTTACCTTGT
SEQ ID NO: 2333





234994_at
CCTTGTGCTGGAGAGCCTTATGATA
SEQ ID NO: 2334





234994_at
GATAACTCCAAAGACTTTCTTACGG
SEQ ID NO: 2335





234994_at
TAGGATTGTGTTTCTTAGTCACTGA
SEQ ID NO: 2336





234994_at
ATACCTAAACATTTCTGAACATCAG
SEQ ID NO: 2337





234994_at
TCTGAACATCAGTATTGCAGTTGTG
SEQ ID NO: 2338





234994_at
GGAGGATACATTTGTTTGTGTTGCT
SEQ ID NO: 2339





234994_at
AAAATTCCACCTTGCATTTGCATCA
SEQ ID NO: 2340





234994_at
CCCTCAATTGAGGCAGTTTTCTTTG
SEQ ID NO: 2341





235048_at
TCAGTATTTTTATTCGCCTTCTAGA
SEQ ID NO: 2342





235048_at
ATCCACACATCACCCATTTATATTA
SEQ ID NO: 2343





235048_at
GGCTTACCTTCTGTCATCAAGTGAT
SEQ ID NO: 2344





235048_at
GTATCATCCTGGATCGTCATTTCCA
SEQ ID NO: 2345





235048_at
GTCATTTCCAAGGAACTAGCCTTTC
SEQ ID NO: 2346





235048_at
CTTTCTTTTCCTAAGCGTCTGTATG
SEQ ID NO: 2347





235048_at
GTATGTGTTCTAAAACTTCCAGTAT
SEQ ID NO: 2348





235048_at
CTGGAGTACCTATGTTTGTTTTCTT
SEQ ID NO: 2349





235048_at
GATTGTTTCCTGGTCTGTGTTTTTA
SEQ ID NO: 2350





235048_at
TTTCCTTCAGTTTTCCTCATGAAGA
SEQ ID NO: 2351





235048_at
ATCACATTGGTTGTACTCTGAAGAC
SEQ ID NO: 2352





235199_at
GCATTTTTCCAACATTGAAGGTATT
SEQ ID NO: 2353





235199_at
GTCACTAAGAGATTCATTCTTTTAT
SEQ ID NO: 2354





235199_at
AAAAGTTTCACTCTCTTTATAGTGC
SEQ ID NO: 2355





235199_at
GTGCTTCAGGATACAACTTTTTCAG
SEQ ID NO: 2356





235199_at
GATACAACTTTTTCAGGGCCTTATT
SEQ ID NO: 2357





235199_at
ACTGATTCACATGTTATTCTTCTAA
SEQ ID NO: 2358





235199_at
AGATATGGTTCCAGGCAGACCTCCT
SEQ ID NO: 2359





235199_at
TTCCAGGCAGACCTCCTTAGAGACC
SEQ ID NO: 2360





235199_at
ATTTCATTACTGTTACTGGGTGCCA
SEQ ID NO: 2361





235199_at
GGGTGCCAAGTGTCTTTCATTTGGA
SEQ ID NO: 2362





235199_at
GGAAGTGAACTTACTCCAGTTATTG
SEQ ID NO: 2363





235252_at
CCAAATCAAAACACCCTCTGTCATC
SEQ ID NO: 2364





235252_at
GCCAGTTGGAGTTTGTGCTATGCAG
SEQ ID NO: 2365





235252_at
GGATCTCATCAGCGTGCAAACCTAG
SEQ ID NO: 2366





235252_at
GTGCAAACCTAGCATCTTCTGTGGC
SEQ ID NO: 2367





235252_at
CCACAAGCCACACACTTGCTTTTTT
SEQ ID NO: 2368





235252_at
CCTGGGTTTCTGTCTAACTCGAAGT
SEQ ID NO: 2369





235252_at
TGTATCGGGTTTTTTTGCCACTGGC
SEQ ID NO: 2370





235252_at
GGCAAGAACATGCCCTCTGTGCTAA
SEQ ID NO: 2371





235252_at
ACTCGAAGTCTTGAATCCTAGCTAG
SEQ ID NO: 2372





235252_at
CTGTGCTAAGCCAGGCCTGGGTGTC
SEQ ID NO: 2373





235252_at
GTAGCAAAGTTGATCTCTCCATGTC
SEQ ID NO: 2374





235826_at
ATTTTTCTGCAGGGGTACACCCACA
SEQ ID NO: 2375





235826_at
GGGTACACCCACATCTATTGTATTA
SEQ ID NO: 2376





235826_at
TTTTCTCTGGTTGATCGGGATGCAT
SEQ ID NO: 2377





235826_at
GATCGGGATGCATTATCCACCAGAA
SEQ ID NO: 2378





235826_at
AAAACACTGTAGACGACTCACTCAC
SEQ ID NO: 2379





235826_at
ATCAAGTCTTATGAGCCAGGTGCAG
SEQ ID NO: 2380





235826_at
GAGGGTGGAGTGTGATATGATCGTC
SEQ ID NO: 2381





235826_at
AGCACTGCATCCTGGACAAGATAGG
SEQ ID NO: 2382





235826_at
ACTGCATTGTACATTCATTGAGGAC
SEQ ID NO: 2383





235826_at
GAGGACAGGGACTTTAAACTTCATT
SEQ ID NO: 2384





235826_at
ACTTCATTATATTGCTGTTGCTGTG
SEQ ID NO: 2385





236193_at
TAATACCTTAGGTTAAGGCCACATA
SEQ ID NO: 2386





236193_at
GCCTTTTCTGCGGAGGACTCTGAAG
SEQ ID NO: 2387





236193_at
GGAGGACTCTGAAGGGATACTAAAC
SEQ ID NO: 2388





236193_at
TACTTTTACCTACATTGTCTCTTAT
SEQ ID NO: 2389





236193_at
GAAAGTGTTTACTATGGACTGAATT
SEQ ID NO: 2390





236193_at
TCATATATTGAAGCCATAAACCCCA
SEQ ID NO: 2391





236193_at
TAAACCCCAATATGACTCTATTCCT
SEQ ID NO: 2392





236193_at
GACTCTATTCCTAGACAGGACTTAT
SEQ ID NO: 2393





236193_at
GGTCATTAGGATGGGTTCCTAACTG
SEQ ID NO: 2394





236193_at
ATGTTTCTTGTTAGCCATGACCCTA
SEQ ID NO: 2395





236193_at
CTTGTTAGCCATGACCCTATAAGAA
SEQ ID NO: 2396





238041_at
GACTCAGATTGTATGTCTCTAAGAA
SEQ ID NO: 2397





238041_at
TTCTCTTTCTCTTTGCAGATTTCTA
SEQ ID NO: 2398





238041_at
TGCAGATTTCTAGGCCGCTTCTGCT
SEQ ID NO: 2399





238041_at
CTTTTCTATAGTTCATGTTTTCTTT
SEQ ID NO: 2400





238041_at
AAGAATCTTAAGCTTTGGCATTAAA
SEQ ID NO: 2401





238041_at
GCTTTGGCATTAAATAGTCCTCGAT
SEQ ID NO: 2402





238041_at
AGTCCTCGATTCAAATCTAAGCTCA
SEQ ID NO: 2403





238041_at
TAAGCTCAACATCTGATTAACTTCA
SEQ ID NO: 2404





238041_at
GGAAAGCTCTTATGGTTCTTGTCAC
SEQ ID NO: 2405





238041_at
GCTCTTATGGTTCTTGTCACCTAAG
SEQ ID NO: 2406





238041_at
GAGACCATCTAGTAAATGACCTCAT
SEQ ID NO: 2407





238488_at
GAGGCACAGGTCATTCTTTTTGAAC
SEQ ID NO: 2408





238488_at
AAACTTCAGTGCCATGGACATGATT
SEQ ID NO: 2409





238488_at
GAGACTACAGCAGTGTTACCTGTGC
SEQ ID NO: 2410





238488_at
ACAACTTACTACTTCTGTTACCTTG
SEQ ID NO: 2411





238488_at
AGTGCTCTACCGAATGATGCTGCTT
SEQ ID NO: 2412





238488_at
GACATTTTGCTAGCTTTTTTCATCT
SEQ ID NO: 2413





238488_at
CTTTTTTCATCTTAGCTTGTGTTTT
SEQ ID NO: 2414





238488_at
GAATACTACAGCTTTTATCAGTCAG
SEQ ID NO: 2415





238488_at
AACTGCCTCAATTTGTAACACTTCC
SEQ ID NO: 2416





238488_at
TAACACTTCCCCAAATTCTCTAGAA
SEQ ID NO: 2417





238488_at
ATTCTCTAGAAAGTCCTGGCTTGGA
SEQ ID NO: 2418





238633_at
GCTGTGGCTTTACCTTGTTGTGGAA
SEQ ID NO: 2419





238633_at
GGAAGTTGGGTTCGGACACCAGGAT
SEQ ID NO: 2420





238633_at
ATAATAGAATCTTCCTCTCATTTCC
SEQ ID NO: 2421





238633_at
TTCCCCCAGATCCTTGACAGTATAA
SEQ ID NO: 2422





238633_at
GGAATTGCATACCTTGGTTTTCAGG
SEQ ID NO: 2423





238633_at
GGAAGTCCAGGAGTCGCGTGGATTT
SEQ ID NO: 2424





238633_at
ACTGTAATACTTCTCTTGGTACTGT
SEQ ID NO: 2425





238633_at
AGCTCAGATTGTCTAGTTGGGCACT
SEQ ID NO: 2426





238633_at
GGGCACTGACTTTCAGCACATTGTC
SEQ ID NO: 2427





238633_at
GTCTCATGAGACACTACCTCTTAAT
SEQ ID NO: 2428





238633_at
GAGTAGCATGGCCATTTGTTTATTT
SEQ ID NO: 2429





238974_at
CATTTATTTTCACATGATTAACTGA
SEQ ID NO: 2430





238974_at
AAATCTAGGTTGTCTATCCAGTATG
SEQ ID NO: 2431





238974_at
GTCTATCCAGTATGTGAATGCTTAA
SEQ ID NO: 2432





238974_at
GAGTAAGTCACCAGGTACACAAAAC
SEQ ID NO: 2433





238974_at
ATATATTCAAGTTGATCCATATTCA
SEQ ID NO: 2434





238974_at
AATACTTCAGATTGGTCCTTTGTCC
SEQ ID NO: 2435





238974_at
TGGTCCTTTGTCCACATTTGTTTAA
SEQ ID NO: 2436





238974_at
ATCCTTGGCTAAATTCACATGTATC
SEQ ID NO: 2437





238974_at
TATACTTTTGGATTGTGCCTTTGTC
SEQ ID NO: 2438





238974_at
TTTTGGATTGTGCCTTTGTCATGAG
SEQ ID NO: 2439





238974_at
AGCTGAGTTACTGAATTCTATAAGG
SEQ ID NO: 2440





239835_at
GTATGTAGCACTTTCCTATATATTT
SEQ ID NO: 2441





239835_at
TGAAAACTGGACTGGGTATAACTAT
SEQ ID NO: 2442





239835_at
AAAAGGCACAATGGTACTACAGAAT
SEQ ID NO: 2443





239835_at
GTTTTCTGTTCTACAAAGTTGATGC
SEQ ID NO: 2444





239835_at
GAATCAGATTCCCTATGTAAAGCAG
SEQ ID NO: 2445





239835_at
GGAATTCAATGTTCAGTGCTCAGGT
SEQ ID NO: 2446





239835_at
TGTAGTAAGTACTGTAGTCCTGTGG
SEQ ID NO: 2447





239835_at
GTAGTCCTGTGGGGGCAAATGTGTA
SEQ ID NO: 2448





239835_at
GGTCTAACATAATGCCAGTTCCACT
SEQ ID NO: 2449





239835_at
ATGCCAGTTCCACTTTAACTTTGTT
SEQ ID NO: 2450





239835_at
GAAGAATGTATGTAGCACTTTCCTA
SEQ ID NO: 2451





240165_at
AAGGAAGGTCAGTCAGTGAATGGGA
SEQ ID NO: 2452





240165_at
GAAAGGGAGCTCCTCTAGCATCAAA
SEQ ID NO: 2453





240165_at
GAGCTCCTCTAGCATCAAACTGTCT
SEQ ID NO: 2454





240165_at
CAAACTGTCTGCATGTCGAGTCTCA
SEQ ID NO: 2455





240165_at
CTGCATGTCGAGTCTCAGAAAAACA
SEQ ID NO: 2456





240165_at
AACAAGGATTCGTCAGTCAACCCCT
SEQ ID NO: 2457





240165_at
CCCCTTTCTGCATGCACAGTGGATT
SEQ ID NO: 2458





240165_at
GCATGCACAGTGGATTTAGGGTAAA
SEQ ID NO: 2459





240165_at
TAAAGTTTATGTTACCCTGTCTTTG
SEQ ID NO: 2460





240165_at
AATGACTCATGAACTTAAGGTACTT
SEQ ID NO: 2461





240165_at
CCATAGCGGAGAACTACTGAGTTAA
SEQ ID NO: 2462





243010_at
CTTAGCCTGACAGTGTCCTGTTCTC
SEQ ID NO: 2463





243010_at
GAAATACACCCACTCTCTTGGAATA
SEQ ID NO: 2464





243010_at
ATGACGTACCACTCAGTTGGACCCT
SEQ ID NO: 2465





243010_at
GACCCTCAAGAGTCACTGCTTTGTC
SEQ ID NO: 2466





243010_at
CGCACGCTTCCATTTGATGCATTTG
SEQ ID NO: 2467





243010_at
ATGTCATTGTCCTTGAGACCCTACA
SEQ ID NO: 2468





243010_at
GAGACCCTACATGTGCAGTTTGGCT
SEQ ID NO: 2469





243010_at
TTTCCTGCAGGCTTTTCCATGAGTA
SEQ ID NO: 2470





243010_at
GAACAAATCTGTATGGCTTTTCCCC
SEQ ID NO: 2471





243010_at
GTGAACTTGTCCTAGTATGCTTGCC
SEQ ID NO: 2472





243010_at
CTTGCCTCACAAACGTTTTAGCCAT
SEQ ID NO: 2473





243092_at
GGTGATGTTCTCTAGCCAAATTCGA
SEQ ID NO: 2474





243092_at
AGCAGTTTCGCTTATTTGATTATTC
SEQ ID NO: 2475





243092_at
ACGCATTACGTGTACCAGAAACTGT
SEQ ID NO: 2476





243092_at
GGTACACTTAACTGTGGAGCTGGGG
SEQ ID NO: 2477





243092_at
ACATGCCGCCTTAAGTGAGTTCAGA
SEQ ID NO: 2478





243092_at
GAGTTCAGATGGCTTATCTTCCGGT
SEQ ID NO: 2479





243092_at
GAGGCATCAAGTACACAGGTCCGTT
SEQ ID NO: 2480





243092_at
ACAGGTCCGTTGTAAACCAGTGTCT
SEQ ID NO: 2481





243092_at
AACCAGTGTCTTAAGTGCTAACCTT
SEQ ID NO: 2482





243092_at
TGCTAACCTTATCACATTTGCTATT
SEQ ID NO: 2483





243092_at
TGCCTTGTCTGTACACCTGGATTAA
SEQ ID NO: 2484





243835_at
GTAATTGTCCAAATGTAATGCTGCT
SEQ ID NO: 2485





243835_at
GCTATGTATATTATTTGGGTTCCAG
SEQ ID NO: 2486





243835_at
TTCTCAAAACACTCAGTGTCCTTAC
SEQ ID NO: 2487





243835_at
GTGTCCTTACAACTGCAGCTAAAAT
SEQ ID NO: 2488





243835_at
CAACCTCTCCTTGAATGTAGATACA
SEQ ID NO: 2489





243835_at
GGTTTTGCAGTCAATTCTGAATGGA
SEQ ID NO: 2490





243835_at
ATGTGGCTTCAGATCATTTGAACGA
SEQ ID NO: 2491





243835_at
GCAACATTATCTCTCTCTAATCTGC
SEQ ID NO: 2492





243835_at
ATATTCCCTAGATTGTGTTGCCACT
SEQ ID NO: 2493





243835_at
TTGTGTTGCCACTGTATTGATTCTG
SEQ ID NO: 2494





243835_at
AATTTGGCTTGTTTATGCGTGATTT
SEQ ID NO: 2495





244110_at
AAAATTGCATTGGCCAACTTGGAGG
SEQ ID NO: 2496





244110_at
GGCCAACTTGGAGGCTTCAGTGTTA
SEQ ID NO: 2497





244110_at
AGAAGAATGTTCACTTTTGTCATCT
SEQ ID NO: 2498





244110_at
GTCATCTAATTTTACACTGCTCCTT
SEQ ID NO: 2499





244110_at
ACACTGCTCCTTCAGCAAACTGACT
SEQ ID NO: 2500





244110_at
GAGAGATAACCCTGTTTACCTTTAG
SEQ ID NO: 2501





244110_at
AGTTGTGGATTCCTCAGTCTTACTC
SEQ ID NO: 2502





244110_at
GTCTTACTCCCATTACTATTGGTCA
SEQ ID NO: 2503





244110_at
TATTGGTCATTCAACAGCCCATCTT
SEQ ID NO: 2504





244110_at
GTAACCTGACTTTTGCGCCAGAATA
SEQ ID NO: 2505





244110_at
AGTTAACCACTTAAACTTGTCATAT
SEQ ID NO: 2506





244519_at
TTAGAAAACTACTCGGATGCTCCAA
SEQ ID NO: 2507





244519_at
CTACTCGGATGCTCCAATGACACCA
SEQ ID NO: 2508





244519_at
CAATGACACCAAAACAGATTCTGCA
SEQ ID NO: 2509





244519_at
TCTCGCATGCCTCAATGCTATGCTA
SEQ ID NO: 2510





244519_at
CGCATGCCTCAATGCTATGCTACAT
SEQ ID NO: 2511





244519_at
GCCTCAATGCTATGCTACATTCCAA
SEQ ID NO: 2512





244519_at
CAATGCTATGCTACATTCCAATTCA
SEQ ID NO: 2513





244519_at
TGTTTTATAAACTGCCTGGCCGAAT
SEQ ID NO: 2514





244519_at
ATAAACTGCCTGGCCGAATCAGCCT
SEQ ID NO: 2515





244519_at
ATCAGCCTTTTCACGCTCAAGGTGT
SEQ ID NO: 2516





244519_at
GCCTTTTCACGCTCAAGGTGTGAGC
SEQ ID NO: 2517





60084_at
GTTATAATCTCTTCCTAGCTAATGG
SEQ ID NO: 2518





60084_at
CTCTTCCTAGCTAATGGGCTTACTC
SEQ ID NO: 2519





60084_at
CTTCCTAGCTAATGGGCTTACTCAA
SEQ ID NO: 2520





60084_at
TAGCTAATGGGCTTACTCAAAGATT
SEQ ID NO: 2521





60084_at
TGGGCTTACTCAAAGATTCACCACC
SEQ ID NO: 2522





60084_at
CTAGCAATGATATTCTCAGTTGTTT
SEQ ID NO: 2523





60084_at
AGCAATGATATTCTCAGTTGTTTCT
SEQ ID NO: 2524





60084_at
GCAATGATATTCTCAGTTGTTTCTC
SEQ ID NO: 2525





60084_at
CTCAGTTGTTTCTCTCTTGTGGTGC
SEQ ID NO: 2526





60084_at
TTCTCTCTTGTGGTGCAGAGTTGCA
SEQ ID NO: 2527





60084_at
TCTCTTGTGGTGCAGAGTTGCATTG
SEQ ID NO: 2528





60084_at
CTCTTGTGGTGCAGAGTTGCATTGG
SEQ ID NO: 2529





60084_at
TGCAGAGTTGCATTGGGTTTTCTAC
SEQ ID NO: 2530





60084_at
TGCATTGGGTTTTCTACATTTTCCC
SEQ ID NO: 2531





60084_at
GCATTGGGTTTTCTACATTTTCCCA
SEQ ID NO: 2532





60084_at
CCCACTGAGTCTTCCCTGTTGTAAA
SEQ ID NO: 2533



















TABLE 18





Probe Set ID
Probe sequence
Sequence ID No.







201018_at
GCTTCAGGTTCTTCACCTCTAAGAT
SEQ ID NO: 1012






201018_at
GGGGATGATGAAAACAGTACCTGTC
SEQ ID NO: 1013





201018_at
GTACCTGTCATGCAGAATTGTTGGG
SEQ ID NO: 1014





201018_at
TGCTCTTTTCACTTGATATCCAGTA
SEQ ID NO: 1015





201018_at
GAAGGTGCATGTCTTCTGTATTCTG
SEQ ID NO: 1016





201018_at
CCCATTTCTTTTGCGTGCAGTCTTT
SEQ ID NO: 1017





201018_at
TTGCGTGCAGTCTTTGATTCGTACA
SEQ ID NO: 1018





201018_at
GAAATTGCTACCAAACTCATTTAAT
SEQ ID NO: 1019





201018_at
ATACCAACTGTTCTATATTTCTTTA
SEQ ID NO: 1020





201018_at
ATCTTCAGTGATTCCTTTTACTATA
SEQ ID NO: 1021





201018_at
AGGTTTCCTTTCCCATCATATGGAA
SEQ ID NO: 1022





201080_at
CCCATTCAGACAACTGTTCCCCAAT
SEQ ID NO: 1023





201080_at
CTACCAGCCATCTGCAGGGGTCAGT
SEQ ID NO: 1024





201080_at
GTGCCACTTATGAAGAGTGCCCCAT
SEQ ID NO: 1025





201080_at
AAAAGGAGACTCAGCTGTCCCTTGG
SEQ ID NO: 1026





201080_at
CTTGTGCCAGTATCCCAGGGCAGAA
SEQ ID NO: 1027





201080_at
CCTTGCGCAGAGCCACTGTGAGAGG
SEQ ID NO: 1028





201080_at
TGAGAGGCGGTGGGAGCCAACACCC
SEQ ID NO: 1029





201080_at
ATTAAGTTCATATCCACCTTTTGGG
SEQ ID NO: 1030





201080_at
CCAAGTGTGTGACTTCTCCATATCC
SEQ ID NO: 1031





201080_at
TGGGAATTTTCAATCCCCTGTGCTT
SEQ ID NO: 1032





201080_at
TGCTTGTCTAACGTCTGCTTTAAAA
SEQ ID NO: 1033





202599_s_at
ATTTAAGTTGTGATTACCTGCTGCA
SEQ ID NO: 1034





202599_s_at
AAGTGGCATGGGGGACCCTGTGCAT
SEQ ID NO: 1035





202599_s_at
GACCCTGTGCATCTGTGCATTTGGC
SEQ ID NO: 1036





202599_s_at
TCCATTTCTGGACATGACGTCTGTG
SEQ ID NO: 1037





202599_s_at
GACGTCTGTGGTTTAAGCTTTGTGA
SEQ ID NO: 1038





202599_s_at
AATGTGCTTTGATTCGAAGGGTCTT
SEQ ID NO: 1039





202599_s_at
TAATCGTCAACCACTTTTAAACATA
SEQ ID NO: 1040





202599_s_at
AGAATTCACACAACTACTTTCATGA
SEQ ID NO: 1041





202599_s_at
ATTCCAAGAGTATCCCAGTATTAGC
SEQ ID NO: 1042





202599_s_at
ATATAGGCACATTACCATTCATAGT
SEQ ID NO: 1043





202599_s_at
AATTTGATGCGATCTGCTCAGTAAT
SEQ ID NO: 1044





203106_s_at
TATTATTGAATGTACCCCTCAGCCT
SEQ ID NO: 1045





203106_s_at
AGCATTTCCTTATCCCAAGACTAGT
SEQ ID NO: 1046





203106_s_at
CCAAGACTAGTGTGCTTTCTGCTAC
SEQ ID NO: 1047





203106_s_at
CTTTCTGCTACACTGCTAGTTTTCA
SEQ ID NO: 1048





203106_s_at
GCTACACTGCTAGTTTTCAGTTTTG
SEQ ID NO: 1049





203106_s_at
AACATTACCAATTTACAGATTCAGT
SEQ ID NO: 1050





203106_s_at
TTACATTTACATTAATCCTCACTTA
SEQ ID NO: 1051





203106_s_at
TGAGCAAGCTCATTTCCAGAAAAGT
SEQ ID NO: 1052





203106_s_at
TTTCAGTGAAGTCATTTTGCTTCAG
SEQ ID NO: 1053





203106_s_at
ATTATCCTAGTTACCAAGTCCTATT
SEQ ID NO: 1054





203106_s_at
TATGTTCGTTTATCATTTCAGAAAT
SEQ ID NO: 1055





204837_at
ATTCATGCTCTGCTAGTCTATGCCT
SEQ ID NO: 1056





204837_at
GTCTATGCCTGCAACTCCAAATGTT
SEQ ID NO: 1057





204837_at
CAGTATTTCCCACCTACATTTCTGT
SEQ ID NO: 1058





204837_at
TATGACCGAGTCTAGTTTTTCTTTA
SEQ ID NO: 1059





204837_at
AAATACTTTTCATCACCAATTGCCC
SEQ ID NO: 1060





204837_at
TGCTTCCTCAGCCTTGTAGCAAAGG
SEQ ID NO: 1061





204837_at
AGCAAAGGCTACACAGCAGCCCACA
SEQ ID NO: 1062





204837_at
GCCCACAGTCCACAGTCTTTTTGGG
SEQ ID NO: 1063





204837_at
CTGCCACCTTCTTTAAGCTCAGTTT
SEQ ID NO: 1064





204837_at
TTTGACTTACTTTCTTTGCTGTAGT
SEQ ID NO: 1065





204837_at
TTCTCGTAGCTCTGCGTTGTGTGAA
SEQ ID NO: 1066





205094_at
AGAAAGCATTTACCTGCCTGTCTGT
SEQ ID NO: 1067





205094_at
GCATTTACCTGCCTGTCTGTAAGGT
SEQ ID NO: 1068





205094_at
GTGGAAATTTCATCAGTTTGCAAAC
SEQ ID NO: 1069





205094_at
AAAAAGCTCCTTCCATATACTGTGA
SEQ ID NO: 1070





205094_at
GAGACATTTGTTAAGTGACATCTAT
SEQ ID NO: 1071





205094_at
GACATCTATTGTTTATCAGCTTTTA
SEQ ID NO: 1072





205094_at
GGATATTCCTTTATGAGCTCTCCAT
SEQ ID NO: 1073





205094_at
AGCTCTCCATATCCTTCTTGAGAAA
SEQ ID NO: 1074





205094_at
GAGAGTAGTCTGAAGATTCCTGTGT
SEQ ID NO: 1075





205094_at
AATAAGTTCTTTCTGCTTGCTGCTA
SEQ ID NO: 1076





205094_at
TCTGCTTGCTGCTAAGAGTTTGCTA
SEQ ID NO: 1077





205608_s_at
AGAGCAGCCTGATCTTACACGGTGC
SEQ ID NO: 1078





205608_s_at
GTGCAAATGTGCCCTCATGTTAACA
SEQ ID NO: 1079





205608_s_at
TCAAAGGGCCCAGTTACTCCTTACG
SEQ ID NO: 1080





205608_s_at
TACTCCTTACGTTCCACAACTATGA
SEQ ID NO: 1081





205608_s_at
GCAAACAATATTGTCTCCCTTCCAG
SEQ ID NO: 1082





205608_s_at
GGTTCTTGACCGTGAATCTGGAGCC
SEQ ID NO: 1083





205608_s_at
AATCTGGAGCCGTTTGAGTTCACAA
SEQ ID NO: 1084





205608_s_at
GTCTCTACTTGGGGTGACAGTGCTC
SEQ ID NO: 1085





205608_s_at
TGCTCACGTGGCTCGACTATAGAAA
SEQ ID NO: 1086





205608_s_at
AAAACTCCACTGACTGTCGGGCTTT
SEQ ID NO: 1087





205608_s_at
GCTTGCTGTGCTTCAAACTACTACT
SEQ ID NO: 1088





205702_at
GAATCCCTTAATCTACAATATCACA
SEQ ID NO: 1089





205702_at
TCCTTTCTGCTGTCTCAGGTGTTAT
SEQ ID NO: 1090





205702_at
TGAGTTAAATGCCTGGACTCTCCCC
SEQ ID NO: 1091





205702_at
TCCCCTGGCTGGTATCAAAACTTAC
SEQ ID NO: 1092





205702_at
AAACCAGTGAGATACCCACCTGCTT
SEQ ID NO: 1093





205702_at
CCACCTGCTTGTTCACATGCACAGG
SEQ ID NO: 1094





205702_at
GTTCACATGCACAGGTGCTCTCAGC
SEQ ID NO: 1095





205702_at
GCTCTCAGCTCTGCAAAGCGAATGA
SEQ ID NO: 1096





205702_at
GGAGGAGCAAGTCCTTTTCCAACTG
SEQ ID NO: 1097





205702_at
TTTTCCAACTGGGTGTGCATGCTAA
SEQ ID NO: 1098





205702_at
GATAGTTTAGCTTCAGTACTGTGAC
SEQ ID NO: 1099





206874_s_at
GAAGGGTCTCTGATTTCTTGAGCAT
SEQ ID NO: 1100





206874_s_at
GAAGCCAAATTCTGTCCAAGTATTA
SEQ ID NO: 1101





206874_s_at
GAGAGTTCCAGTTCTAATAGTCTTT
SEQ ID NO: 1102





206874_s_at
AATGGCTGTATTGTTGCTATTCCGT
SEQ ID NO: 1103





206874_s_at
GCTATTCCGTTGCTGACATGTTTTT
SEQ ID NO: 1104





206874_s_at
AAAGCTTTAACATTCCTGCTACTAA
SEQ ID NO: 1105





206874_s_at
GCGGAGAGTGTTTGCCAGGTTTCAA
SEQ ID NO: 1106





206874_s_at
AGGTTTCAATGTGGGCTGCAGCTTT
SEQ ID NO: 1107





206874_s_at
CTCCTTCTCTGGTTTGCAGTGTAAT
SEQ ID NO: 1108





206874_s_at
GATTATGCCTCTTATCTACTTGAGA
SEQ ID NO: 1109





206874_s_at
GAGAGCAACATGTCTTTTCAATCAT
SEQ ID NO: 1110





206945_at
TTCTCTTGTGCTTCTTGGAGTCTGT
SEQ ID NO: 1111





206945_at
GTGGCTTGGCATTTCTGTCATACAA
SEQ ID NO: 1112





206945_at
TACAAGTACTGCAAGCGCTCTAAGC
SEQ ID NO: 1113





206945_at
AACAGGAATTGAGCCCGGTGTCTTC
SEQ ID NO: 1114





206945_at
GTTACCACCTCAAGTTCTATGAAGC
SEQ ID NO: 1115





206945_at
GCCACCAAACACCTTAGGGTCTTAG
SEQ ID NO: 1116





206945_at
AGACTCTGCTGATACTGGACTTCTC
SEQ ID NO: 1117





206945_at
AAAGTCCTGCTGCACCGTTAGAGAT
SEQ ID NO: 1118





206945_at
TCTCCATCTTGCTCCAGTATCAGAG
SEQ ID NO: 1119





206945_at
GATACTGGTCTAGTGGGTCTGTGAA
SEQ ID NO: 1120





206945_at
TAGACTGCAATATCATCTCCTGCCC
SEQ ID NO: 1121





207737_at
GAAGTTTTCAGTAATTGTGACTTTT
SEQ ID NO: 1122





207737_at
GGAAGTACATCCAGTAAACAATGCC
SEQ ID NO: 1123





207737_at
TAAACAATGCCATGTACATTCCCCC
SEQ ID NO: 1124





207737_at
TCCCCATTTGCTGTCCAGAGTGTGA
SEQ ID NO: 1125





207737_at
GAGTGTGACCACAGTTAACGGTTAA
SEQ ID NO: 1126





207737_at
GTTAACGGTTAATGTGCATCTTTTA
SEQ ID NO: 1127





207737_at
GCATCTTTTATGTACTTAACATGTC
SEQ ID NO: 1128





207737_at
GAACTTCCATGTTAGTATGTGCAGC
SEQ ID NO: 1129





207737_at
GTGCAGCTGTAACACATTCTTTTTT
SEQ ID NO: 1130





207737_at
ATTCTTTTTTTAGTAGCCACATAGT
SEQ ID NO: 1131





207737_at
AAAATACATTACCCATTTCCTGCTG
SEQ ID NO: 1132





207968_s_at
AGTGCAGACCTGTCATCTCTGTCTG
SEQ ID NO: 1133





207968_s_at
TCTCTGTCTGGGTTTAACACCGCCA
SEQ ID NO: 1134





207968_s_at
CGCTCTTCACCTTGGTTCAGTAACT
SEQ ID NO: 1135





207968_s_at
GCAACACCTACATAACATGCCACCA
SEQ ID NO: 1136





207968_s_at
CCATCTGCCCTCAGTCAGTTGGGAG
SEQ ID NO: 1137





207968_s_at
CTTGCACTAGCACTCATTTATCTCA
SEQ ID NO: 1138





207968_s_at
CCTTCTACTCAAAGCCTCAACATCA
SEQ ID NO: 1139





207968_s_at
GGCGGGGAGATCTCCTGTTGACAGC
SEQ ID NO: 1140





207968_s_at
GCAGCTGTAGCAGTTCGTACGACGG
SEQ ID NO: 1141





207968_s_at
GGATCACCGGAACGAATTCCACTCC
SEQ ID NO: 1142





207968_s_at
CAAGCGCATGCGACTTTCTGAAGGA
SEQ ID NO: 1143





208634_s_at
TAAACTGATTTGTTGCTCCCTATCC
SEQ ID NO: 1144





208634_s_at
ACCAGTAACTCTTGTGTTCACCAGG
SEQ ID NO: 1145





208634_s_at
GGGATAGGCTCGTTGGTGACATTGT
SEQ ID NO: 1146





208634_s_at
TAAATGGTCGATCAACTTCCCACAA
SEQ ID NO: 1147





208634_s_at
TGAATTCCACGAGCCTGTTCTGAAA
SEQ ID NO: 1148





208634_s_at
AAGACAAACACGTGCTCGTCCTTTA
SEQ ID NO: 1149





208634_s_at
TAATGGAGTTCACCAGCACACTTGT
SEQ ID NO: 1150





208634_s_at
AGCACACTTGTTAACCAGTCCTGTT
SEQ ID NO: 1151





208634_s_at
TTTGCTTTCGTCTTTTTTTGTGCGT
SEQ ID NO: 1152





208634_s_at
ATGAAAAGGGGCTGTCTGGGGCTCC
SEQ ID NO: 1153





208634_s_at
AGCTCCGACCATGTTGCTGTGTGAT
SEQ ID NO: 1154





209200_at
GGAGCAATCCAAGCCACATATCTTC
SEQ ID NO: 1155





209200_at
ATCTGGTATTGCATTTTGCCTTCCC
SEQ ID NO: 1156





209200_at
CTTCCCTGTTCATACCTCAAATTGA
SEQ ID NO: 1157





209200_at
AAGTGACGGATTCTGTTGTGGTTTG
SEQ ID NO: 1158





209200_at
GAATGCAGTACCAGTGTTCTCTTCG
SEQ ID NO: 1159





209200_at
GTAGACCTGGGTCACTGTAGGCATA
SEQ ID NO: 1160





209200_at
GGACTTGGATTGCTTCAGATGGTTT
SEQ ID NO: 1161





209200_at
TCTTTTCCTGGGGACTTGTTTCCAT
SEQ ID NO: 1162





209200_at
ATAGAGGCTCACAGCGGCATAAGCT
SEQ ID NO: 1163





209200_at
TGGACTTTGTCGCCACTAGATGACA
SEQ ID NO: 1164





209200_at
CCACATCTGTGTATCTCAAGGGACT
SEQ ID NO: 1165





209425_at
CTACCTCACTAGTAGTTCACGTGAT
SEQ ID NO: 1166





209425_at
GTAGTTCACGTGATGTCTGACAGAT
SEQ ID NO: 1167





209425_at
TGAGATACTCTTGTGAGGTCACTCT
SEQ ID NO: 1168





209425_at
CTTGTGAGGTCACTCTAATGCCCTG
SEQ ID NO: 1169





209425_at
TAAGCTTTCATATTCTAGCCTTCAG
SEQ ID NO: 1170





209425_at
CATATTCTAGCCTTCAGTCTTGTTC
SEQ ID NO: 1171





209425_at
CAGTCTTGTTCTTCAACCATTTTTA
SEQ ID NO: 1172





209425_at
TTAGGAACTTTCCCATAAGGTTATG
SEQ ID NO: 1173





209425_at
ATAAGGTTATGTTTTCCAGCCCAGG
SEQ ID NO: 1174





209425_at
TCCAGCCCAGGCATGGAGGATCACT
SEQ ID NO: 1175





209425_at
GGCCACAGTGAATTAGGATTGCACC
SEQ ID NO: 1176





210132_at
GGGGAGGGGACTAGATGGGCAAGGG
SEQ ID NO: 1177





210132_at
TGGGCAAGGGGCAGCACTGCCTGCT
SEQ ID NO: 1178





210132_at
TTCCTTCCCCTGTTTACAGCAATAA
SEQ ID NO: 1179





210132_at
TTACAGCAATAAGCACGTCCTCCTC
SEQ ID NO: 1180





210132_at
ACTCCCACTTCCAGGATTGTGGTTT
SEQ ID NO: 1181





210132_at
CAAGTTTACAAGTAGACACCCCTGG
SEQ ID NO: 1182





210132_at
AAGGGGTGGGCATTGGGGTGCCAGG
SEQ ID NO: 1183





210132_at
CCAGGCAGGCATGTACAGACTCTAT
SEQ ID NO: 1184





210132_at
GACAGGACCTATGCAACGCACAGAC
SEQ ID NO: 1185





210132_at
CGCACAGACACTTTTGGAGACCGTA
SEQ ID NO: 1186





210132_at
CTTTCATACTCTGCTCTTAGTCTAA
SEQ ID NO: 1187





211255_x_at
GACTCCCTCAAGCAAGCTGTGGGGC
SEQ ID NO: 1188





211255_x_at
CTCCCCACTATCCTGTGGTGTGTTG
SEQ ID NO: 1189





211255_x_at
CTTCGGGTCCTCAGATGTGTAGCAA
SEQ ID NO: 1190





211255_x_at
GACACTGGGCAGTTTATGCTATTCA
SEQ ID NO: 1191





211255_x_at
GTACATCAGACTGCGGGTTCGGGCT
SEQ ID NO: 1192





211255_x_at
ACTGCCAGCATGAGACTGCTCTGCA
SEQ ID NO: 1193





211255_x_at
TCTGCAGGGCAATGTCTTCTCTAAC
SEQ ID NO: 1194





211255_x_at
GTTTGAGCGCTTTAACCAGGCCAAC
SEQ ID NO: 1195





211255_x_at
ACATCAAGTTCTCTGAGCTCACCTA
SEQ ID NO: 1196





211255_x_at
TACCTCGATGCATTCTGGCGTGACT
SEQ ID NO: 1197





211255_x_at
GGCGTGACTACATCAATGGCTCTTT
SEQ ID NO: 1198





211877_s_at
GCTGTGGCGCTGGCATAAGTCACGC
SEQ ID NO: 1199





211877_s_at
CCTGCTGCAGGCTTCTGAAGGCGGG
SEQ ID NO: 1200





211877_s_at
AAGGCGGGTTGGCAGGTATGCCCAC
SEQ ID NO: 1201





211877_s_at
GTCACATTTTGTAGGCGTGGACGGG
SEQ ID NO: 1202





211877_s_at
GTAGGCGTGGACGGGGTACAGGCTT
SEQ ID NO: 1203





211877_s_at
TCTCTCTCATTGCGGACTCGCAGAA
SEQ ID NO: 1204





211877_s_at
CGCAGAAGAGTCACCTGATTTTCCC
SEQ ID NO: 1205





211877_s_at
GAAAAGCGAGCCACTCTTGATAGCT
SEQ ID NO: 1206





211877_s_at
GCCACTCTTGATAGCTGAAGACTCA
SEQ ID NO: 1207





211877_s_at
GAAGACTCAGCTATCATTTTAGGCA
SEQ ID NO: 1208





211877_s_at
GGCAAATGTGACCCGACAAGTAATC
SEQ ID NO: 1209





212397_at
GAAGTGACTGTTGTACCATGGTTGT
SEQ ID NO: 1210





212397_at
GTACCATGGTTGTGCACATGCTTCA
SEQ ID NO: 1211





212397_at
GTGCACATGCTTCAGAATCCTATGG
SEQ ID NO: 1212





212397_at
GAATATTCCTACTTGCAGTACATCA
SEQ ID NO: 1213





212397_at
GAATGGATGGTGGACCCTACTATTC
SEQ ID NO: 1214





212397_at
GTGGACCCTACTATTCATGTTTTGA
SEQ ID NO: 1215





212397_at
TGTGCACTACCATAGCTACATCAGT
SEQ ID NO: 1216





212397_at
ATATTTTGCTGTTTATGATCTATTT
SEQ ID NO: 1217





212397_at
TTTAAGGCTGTGTGAATTTTTCTAA
SEQ ID NO: 1218





212397_at
TAGCAGTCGCGAGCACATGTTCATA
SEQ ID NO: 1219





212397_at
TCCCAGTAGGCTTTTACCATTAGCA
SEQ ID NO: 1220





212851_at
AATTCAAATTGCACCTCTTTTCTTA
SEQ ID NO: 1221





212851_at
TTTGCATTCTTCTAGCCAGTGATTG
SEQ ID NO: 1222





212851_at
ATGCTTTCTTTGCCACTCTAAGTAA
SEQ ID NO: 1223





212851_at
GCTGGCTGTTTATAACTGCATCGCA
SEQ ID NO: 1224





212851_at
GCATCGCACTTCTAGTTGTGGCTTG
SEQ ID NO: 1225





212851_at
TGTTTCATGCTAGGCTTTTCCTGGC
SEQ ID NO: 1226





212851_at
TTTCCTGGCAGCATGTCCATTGCAG
SEQ ID NO: 1227





212851_at
GAAACCACCAGCATTGAGCTAACCC
SEQ ID NO: 1228





212851_at
GCTAACCCAGTACATGCTAGGACCT
SEQ ID NO: 1229





212851_at
TGTCCTAGAGGGGCCACTTTTCATT
SEQ ID NO: 1230





212851_at
GGCCACTTTTCATTACCTGAGTTAT
SEQ ID NO: 1231





213313_at
GTGATATGCTGACAGGCTGACACGC
SEQ ID NO: 1232





213313_at
GCTGACACGCAGATGGTTTTGTCCT
SEQ ID NO: 1233





213313_at
CTGCGTTCAGTGTTGAGGCGGCTGC
SEQ ID NO: 1234





213313_at
GCGGCTGCTTACAAGAGGCACTGGT
SEQ ID NO: 1235





213313_at
GACACTCGGGTTGTTTTGTAGCTCT
SEQ ID NO: 1236





213313_at
GTAGCTCTTTTTCTTATTGGCTGTA
SEQ ID NO: 1237





213313_at
TATTGGCTGTACTAACGCTTGCTGA
SEQ ID NO: 1238





213313_at
AACGCTTGCTGAGGTTATCTGTAAT
SEQ ID NO: 1239





213313_at
GCTTTCTGTGTCTTTCTTGTTCAGT
SEQ ID NO: 1240





213313_at
GCTAGGTGTGTGGACATTGTGCTAA
SEQ ID NO: 1241





213313_at
GTGCTAAGGTAGTTTCAGTGTGTCA
SEQ ID NO: 1242





213639_s_at
TGTCTGGAATGTGGCCTTCCACGGT
SEQ ID NO: 1243





213639_s_at
GCACATCCACGGTGGGTGAGTGGCC
SEQ ID NO: 1244





213639_s_at
GTCCTTGGTGGGTTTAGTCATCTCG
SEQ ID NO: 1245





213639_s_at
GTCATCTCGGAAGTCGTAGGGCAGC
SEQ ID NO: 1246





213639_s_at
GAACGTTCCAGCCAGGCAGTGGTTG
SEQ ID NO: 1247





213639_s_at
AGGCAGTGGTTGTTCCTCATAGGTA
SEQ ID NO: 1248





213639_s_at
TAGGTAGGTGGCCTTGGCCTTCATC
SEQ ID NO: 1249





213639_s_at
TCCATTGCATTTGTCACCTAGTCAC
SEQ ID NO: 1250





213639_s_at
GTATATACGTGCACATTTGACCTTT
SEQ ID NO: 1251





213639_s_at
TTCTCATTCCCTTAACTGACATTAT
SEQ ID NO: 1252





213639_s_at
TTTAGTGTCAGAGGCCGAGCACAGT
SEQ ID NO: 1253





214738_s_at
TTAGATTCAGATTCCTGGTGCCTCC
SEQ ID NO: 1254





214738_s_at
CCTGGGAACAGACTCCTGTAGACCC
SEQ ID NO: 1255





214738_s_at
CTAGTCTCCTGAGCCTATAGAGCCC
SEQ ID NO: 1256





214738_s_at
TAGAGCCCCCAGGAGACTGGGACCC
SEQ ID NO: 1257





214738_s_at
GGGACCCAAAGAACTTCACAGCACA
SEQ ID NO: 1258





214738_s_at
TCACAGCACACTTACCGAATGCAGA
SEQ ID NO: 1259





214738_s_at
TGCAGAGAGCAGCTTTCCTGGCTTT
SEQ ID NO: 1260





214738_s_at
GCAGAGGCTCTGAAGCACTTTCCTT
SEQ ID NO: 1261





214738_s_at
TAGCAACAGCAGCTCTGTACCTCAT
SEQ ID NO: 1262





214738_s_at
TCTGTTGATCCCACCTTTGAAGAGG
SEQ ID NO: 1263





214738_s_at
GACACAGTGCTCACCTTAATTGCGC
SEQ ID NO: 1264





214820_at
GATTTGGTTTCATCAGAAGCAGCAA
SEQ ID NO: 1265





214820_at
TTTTTGGTTATGGTGCTATTCCTAA
SEQ ID NO: 1266





214820_at
GGTGCTATTCCTAAGGTTAACTTTG
SEQ ID NO: 1267





214820_at
TAACTTTGAATATGTGACACACACA
SEQ ID NO: 1268





214820_at
CACACACACTCCTAAGTACCTTTAA
SEQ ID NO: 1269





214820_at
ATATTTTGACAGTTTAGGCTTCATT
SEQ ID NO: 1270





214820_at
GAACTATTCTGATTATTTGGACTGC
SEQ ID NO: 1271





214820_at
TGGACTGCATTAATTGGTCACTGAC
SEQ ID NO: 1272





214820_at
TAATTGGTCACTGACTGGCCATCCA
SEQ ID NO: 1273





214820_at
CTGGCCATCCAATTACCATTTTTTC
SEQ ID NO: 1274





214820_at
AATAGTTAGACCCTTGCATACAGAA
SEQ ID NO: 1275





219232_s_at
AAGCTTCTACTCCTGCAGTAAGCAC
SEQ ID NO: 1276





219232_s_at
CAGTAAGCACAGATCGCACTGCCTC
SEQ ID NO: 1277





219232_s_at
GATCGCACTGCCTCAATAACTTGGT
SEQ ID NO: 1278





219232_s_at
AACTTGGTATTGAGCACGTATTTTG
SEQ ID NO: 1279





219232_s_at
AATTTCCAGATAAGACATGTCACCA
SEQ ID NO: 1280





219232_s_at
CACCATTAATTCTCAACGACTGCTC
SEQ ID NO: 1281





219232_s_at
ACGACTGCTCTATTTTGTTGTACGG
SEQ ID NO: 1282





219232_s_at
GTACGGTAATAGTTATCACCTTCTA
SEQ ID NO: 1283





219232_s_at
TGTTTATTGTCTTGTATCCTTTCTC
SEQ ID NO: 1284





219232_s_at
GTATCCTTTCTCTGGAGTGTAAGCA
SEQ ID NO: 1285





219232_s_at
AATGCAACATACTCTCAGCACCTAA
SEQ ID NO: 1286





219383_at
TGTGCTCTTGATGGCTGGGAATTTA
SEQ ID NO: 1287





219383_at
TCTGCTGATCTGCTGAGAATTTCAA
SEQ ID NO: 1288





219383_at
TCTACAGACTGACTAACATGCATTA
SEQ ID NO: 1289





219383_at
GTAACTGATAGCTTCTGTCCTTATT
SEQ ID NO: 1290





219383_at
GCTTCTGTCCTTATTAGTACACTTA
SEQ ID NO: 1291





219383_at
GAGACTAGTATTTATTGATCCAGGC
SEQ ID NO: 1292





219383_at
CATGCTTGGGCTTACTTTTTCAGTT
SEQ ID NO: 1293





219383_at
AATGCCTTTTCCATATCTTAAATGT
SEQ ID NO: 1294





219383_at
ATAGACCCATTGTACTTAAGTGCTG
SEQ ID NO: 1295





219383_at
TAAGTGCTGATGACTGTTAGCCAGT
SEQ ID NO: 1296





219383_at
AGTTTACAACTTTTTACCATCGATG
SEQ ID NO: 1297





219718_at
GGTCACCGGATTGAAACTGTCTCAG
SEQ ID NO: 1298





219718_at
GTCTCAGGACCTTGATGATCTTGCC
SEQ ID NO: 1299





219718_at
TCTCTACCTGGCCACAGTTCAAGCC
SEQ ID NO: 1300





219718_at
CTTTGGGGACTCGCTTCATTATAGA
SEQ ID NO: 1301





219718_at
AGCAGGGCACTCAATCAGTACTCTT
SEQ ID NO: 1302





219718_at
TCTTTTCCTATGTGGAGGCCTCAGC
SEQ ID NO: 1303





219718_at
GCGGACATTACTGGCATGCCTGTGG
SEQ ID NO: 1304





219718_at
AGAGGTGGAGTCCGTTCTTGTGGGT
SEQ ID NO: 1305





219718_at
CCTCAGGGGATTTCGCTTCTGTACA
SEQ ID NO: 1306





219718_at
GAAAGTTGTGTTCCCGAGACTACAG
SEQ ID NO: 1307





219718_at
CAGGGCTTGCAGGTGCTGATGCCAG
SEQ ID NO: 1308





220360_at
TCAGAAAGTCTGTGTCGGGTCATAA
SEQ ID NO: 1309





220360_at
GAGCGAGTTGTAAGAACCCATTCAA
SEQ ID NO: 1310





220360_at
ATGGCAATTTTTGAACTAGTTTCTA
SEQ ID NO: 1311





220360_at
GAGCTTTCTGGGCATATTGATCTTT
SEQ ID NO: 1312





220360_at
GTGTGTGCCATCAATCACTTTGTCA
SEQ ID NO: 1313





220360_at
AAATGTTGCACAGAATCCTTTAAAA
SEQ ID NO: 1314





220360_at
GAAACACTGGTCATCTGTACAGGAT
SEQ ID NO: 1315





220360_at
ATGTTCAAGTTTTGCTAATACCAGT
SEQ ID NO: 1316





220360_at
TCAGGCATTTGCTAAGTAACGATGG
SEQ ID NO: 1317





220360_at
TTTGAAGTTCAATTTACCATATTTT
SEQ ID NO: 1318





220360_at
TAAATTGCGCATTCTGCACAGTGAA
SEQ ID NO: 1319





221020_s_at
CAGTTGGGATGCACTACCTAGCGAA
SEQ ID NO: 1320





221020_s_at
ACATCTATTGTCATTCCATTGCTAT
SEQ ID NO: 1321





221020_s_at
TAAAATCCTAGATCCAGTTCTTGTT
SEQ ID NO: 1322





221020_s_at
AAAATCTGAGCTTCTAGGATCCAGC
SEQ ID NO: 1323





221020_s_at
CTTCTAGGATCCAGCTGTGTCAACC
SEQ ID NO: 1324





221020_s_at
CTGTGTCAACCTTTATTTAGCATAT
SEQ ID NO: 1325





221020_s_at
ATAGATCACCTTTTACAGATGCTGA
SEQ ID NO: 1326





221020_s_at
GATTAATCTTCATTGGTTTCTCAAA
SEQ ID NO: 1327





221020_s_at
TAAAAGGGCCTGTACCCAAAGGATG
SEQ ID NO: 1328





221020_s_at
AAACATCCACGAGTGCTGTTGCACT
SEQ ID NO: 1329





221020_s_at
CTGTTGCACTACCATCTATTTGTTG
SEQ ID NO: 1330





221294_at
GCCAACGACCCTTACACAGTTAGAA
SEQ ID NO: 1331





221294_at
TCCTGATTTGGCTATACTCGACCCT
SEQ ID NO: 1332





221294_at
TTCAGTGGTGTGCGGAGTCCTGGCA
SEQ ID NO: 1333





221294_at
CTACTTCACCCTGTTCATCGTGATG
SEQ ID NO: 1334





221294_at
TGATGATGTTATATGCCCCAGCAGC
SEQ ID NO: 1335





221294_at
GGCCTGTCCTGATAAGCGCTATGCC
SEQ ID NO: 1336





221294_at
CTATGCCATGGTCCTGTTTCGAATC
SEQ ID NO: 1337





221294_at
GTATTTTACATCCTCTGGTTGCCAT
SEQ ID NO: 1338





221294_at
GGTTGCCATATATCATCTACTTCTT
SEQ ID NO: 1339





221294_at
GACTAAAGCGCCTCTCAGGGGCTAT
SEQ ID NO: 1340





221294_at
CAGGGGCTATGTGTACTTCTTGTGC
SEQ ID NO: 1341





34726_at
TGGCAGCCACATCCAAGACTGGAGC
SEQ ID NO: 1342





34726_at
CCAAGACTGGAGCAGCAGGCTGGCC
SEQ ID NO: 1343





34726_at
AGAGAGAGCTCACAGCTGAAGCTCT
SEQ ID NO: 1344





34726_at
AGCTCACAGCTGAAGCTCTTGGAGG
SEQ ID NO: 1345





34726_at
GACCAGGAGCATGGTGAAGCCAAGT
SEQ ID NO: 1346





34726_at
CCAAGTGGCAGATGGGAGCCAACCT
SEQ ID NO: 1347





34726_at
TTTGCCCTGCATCCTGTCATTTCTG
SEQ ID NO: 1348





34726_at
GTTCTTGTCCCTCATACATCTTTGG
SEQ ID NO: 1349





34726_at
TTGTCCCTCATACATCTTTGGAGAA
SEQ ID NO: 1350





34726_at
CCCTCATACATCTTTGGAGAACCGG
SEQ ID NO: 1351





34726_at
TCATACATCTTTGGAGAACCGGGCT
SEQ ID NO: 1352





34726_at
TGCCTTATGGCTCTAGTGTGTGACC
SEQ ID NO: 1353





34726_at
CTTATGGCTCTAGTGTGTGACCTAC
SEQ ID NO: 1354





34726_at
ATGGCTCTAGTGTGTGACCTACAGA
SEQ ID NO: 1355





34726_at
CTCTAGTGTGTGACCTACAGAGCAT
SEQ ID NO: 1356





34726_at
TGTGACCTACAGAGCATGCTCCACA
SEQ ID NO: 1357





34408_at
TCCGAGCTAAAATCCCAGGGACCGG
SEQ ID NO: 1358





34408_at
TTACCTGAGCGACCAGGACTACATT
SEQ ID NO: 1359





34408_at
GCCTGCTGGGACTTGTAGTTGCCTA
SEQ ID NO: 1360





34408_at
TGCTGGGACTTGTAGTTGCCTAGAC
SEQ ID NO: 1361





34408_at
TGGGACTTGTAGTTGCCTAGACAGG
SEQ ID NO: 1362





34408_at
TGTAGTTGCCTAGACAGGGCACCAC
SEQ ID NO: 1363





34408_at
GTAGTTGCCTAGACAGGGCACCACC
SEQ ID NO: 1364





34408_at
AGGCGTTGGTGTCTCCTGGATGCTA
SEQ ID NO: 1365





34408_at
GGCGTTGGTGTCTCCTGGATGCTAC
SEQ ID NO: 1366





34408_at
GCGTTGGTGTCTCCTGGATGCTACT
SEQ ID NO: 1367





34408_at
CGTTGGTGTCTCCTGGATGCTACTA
SEQ ID NO: 1368





34408_at
GGGAGGCCTGAGCTTGGATTTACAC
SEQ ID NO: 1369





34408_at
GGAGGCCTGAGCTTGGATTTACACT
SEQ ID NO: 1370





34408_at
GGCCTGAGCTTGGATTTACACTGTA
SEQ ID NO: 1371





34408_at
CTGAGCTTGGATTTACACTGTAATA
SEQ ID NO: 1372





34408_at
CTTGGATTTACACTGTAATAAAGAC
SEQ ID NO: 1373
















TABLE 19







CE-HSC/LSC signature genes














Entrez
Representative


Probe Set ID
Gene Symbol
Gene Title
Gene ID
Public ID














200672_x_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
NM_003128


201917_s_at
SLC25A36
solute carrier family 25, member 36
55186
AI694452


201952_at
ALCAM
activated leukocyte cell adhesion molecule
214
AA156721


202932_at
YES1
v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
7525
NM_005433


203139_at
DAPK1
death-associated protein kinase 1
1612
NM_004938


203372_s_at
SOCS2
suppressor of cytokine signaling 2
8835
AB004903


203875_at
SMARCA1
SWI/SNF related, matrix associated, actin dependent
6594
NM_003069




regulator of chromatin, subfamily a, member 1


204069_at
MEIS1
Meis homeobox 1
4211
NM_002398


204753_s_at
HLF
hepatic leukemia factor
3131
AI810712


204754_at
HLF
hepatic leukemia factor
3131
W60800


204755_x_at
HLF
hepatic leukemia factor
3131
M95585


205376_at
INPP4B
inositol polyphosphate-4-phosphatase, type II, 105 kDa
8821
NM_003866


205453_at
HOXB2
homeobox B2
3212
NM_002145


205984_at
CRHBP
corticotropin releasing hormone binding protein
1393
NM_001882


206099_at
PRKCH
protein kinase C, eta
5583
NM_006255


206310_at
SPINK2
serine peptidase inhibitor, Kazal type 2 (acrosin-trypsin
6691
NM_021114




inhibitor)


206478_at
KIAA0125
KIAA0125
9834
NM_014792


206674_at
FLT3
fms-related tyrosine kinase 3
2322
NM_004119


206683_at
ZNF165
zinc finger protein 165
7718
NM_003447


209487_at
RBPMS
RNA binding protein with multiple splicing
11030
D84109


209676_at
TFPI
tissue factor pathway inhibitor (lipoprotein-associated
7035
J03225




coagulation inhibitor)


209728_at
HLA-DRB4
major histocompatibility complex, class II, DR beta 4
3126
BC005312


209993_at
ABCB1
ATP-binding cassette, sub-family B (MDR/TAP), member 1
5243
AF016535


209994_s_at
ABCB1 ///
ATP-binding cassette, sub-family B (MDR/TAP), member 1 ///
5243 ///
AF016535



ABCB4
ATP-binding cassette, sub-family B (MDR/TAP), member 4
5244


210664_s_at
TFPI
tissue factor pathway inhibitor (lipoprotein-associated
7035
AF021834




coagulation inhibitor)


210665_at
TFPI
tissue factor pathway inhibitor (lipoprotein-associated
7035
AF021834




coagulation inhibitor)


212071_s_at
SPTBN1
spectrin, beta, non-erythrocytic 1
6711
BE968833


212750_at
PPP1R16B
protein phosphatase 1, regulatory (inhibitor) subunit 16B
26051
AB020630


213056_at
FRMD4B
FERM domain containing 4B
23150
AU145019


213094_at
GPR126
G protein-coupled receptor 126
57211
AL033377


213541_s_at
ERG
v-ets erythroblastosis virus E26 oncogene homolog (avian)
2078
AI351043


213714_at
CACNB2
calcium channel, voltage-dependent, beta 2 subunit
783
AI040163


213844_at
HOXA5
homeobox A5
3202
NM_019102


215388_s_at
CFH ///
complement factor H /// complement factor H-related 1
3075 ///
X56210



CFHR1

3078


217975_at
WBP5
WW domain binding protein 5
51186
NM_016303


218627_at
DRAM1
DNA-damage regulated autophagy modulator 1
55332
NM_018370


218764_at
PRKCH
protein kinase C, eta
5583
NM_024064


218772_x_at
TMEM38B
transmembrane protein 38B
55151
NM_018112


218899_s_at
BAALC
brain and acute leukemia, cytoplasmic
79870
NM_024812


218901_at
PLSCR4
phospholipid scramblase 4
57088
NM_020353


218966_at
MYO5C
myosin VC
55930
NM_018728


219497_s_at
BCL11A
B-cell CLL/lymphoma 11A (zinc finger protein)
53335
NM_022893


221458_at
HTR1F
5-hydroxytryptamine (serotonin) receptor 1F
3355
NM_000866


221773_at
ELK3
ELK3, ETS-domain protein (SRF accessory protein 2)
2004
AW575374


221942_s_at
GUCY1A3
guanylate cyclase 1, soluble, alpha 3
2982
AI719730


41577_at
PPP1R16B
protein phosphatase 1, regulatory (inhibitor) subunit 16B
26051
AB020630


222735_at
TMEM38B
transmembrane protein 38B
55151
AW452608


226547_at
MYST3
MYST histone acetyltransferase (monocytic leukemia) 3
7994
AI817830


228904_at
HOXB3
homeobox B3
3213
AW510657


235199_at
RNF125
ring finger protein 125
54941
AI969697


226420_at
MECOM
MDS1 and EVI1 complex locus
2122
BG261252
















TABLE 20







The 19 HSC genes validated by qRT-PCR.








Gene Symbol
Gene Title





ANK3
Ankyrin 3, node of Ranvier (ankyrin G)


CRHBP
corticotropin releasing hormone binding protein


DUSP6
dual specificity phosphatase 6


EVI1 (or MECOM)
MDS1 and EVI1 complex locus


DRAM1
DNA-damage regulated autophagy modulator 1


KLF4
Kruppel-like factor 4 (gut)


PROM1
Prominin 1


TFPI
tissue factor pathway inhibitor (lipoprotein-



associated coagulation inhibitor)


ZNF165
zinc finger protein 165


ABCB1
ATP-binding cassette, sub-family B



(MDR/TAP), member 1


BAALC
brain and acute leukemia, cytoplasmic


FLT3
Fms-related tyrosine kinase 3


FOXO1
Forkhead box O1


HLF
hepatic leukemia factor


HOXA5
homeobox A5


TMEM200A
transmembrane protein 200A


MEIS1
Meis homeobox 1


SOCS2
suppressor of cytokine signaling 2


DLK1
delta-like 1 homolog (Drosophila)









CITATIONS FOR REFERENCES REFERRED TO IN THE BACKGROUND, SUMMARY, DETAILED DESCRIPTION AND EXAMPLE 1



  • 1 Tallman, M S. New strategies for the treatment of acute myeloid leukemia including antibodies and other novel agents. Hematology. (Am. Soc. Hematol. Educ. Program.). 2005; 143-50:143-150

  • 2 Appelbaum, F R, Rowe, J M, Radich, J, & Dick, J E. Acute myeloid leukemia. Hematology. Am. Soc. Hematol. Educ. Program. 2001; 62-86:62-86

  • 3 Lapidot, T, Sirard, C, Vormoor, J, Murdoch, B, Hoang, T, Caceres-Cortes, J, Minden, M, Paterson, B, Caligiuri, M A, & Dick, J E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994; 367:645-648

  • 4 Singh, S K, Clarke, I D, Terasaki, M, Bonn, V E, Hawkins, C, Squire, J, & Dirks, P B. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003; 63:5821-5828

  • 5 Al Hajj, M, Wicha, M S, Benito-Hernandez, A, Morrison, S J, & Clarke, M F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:3983-3988

  • 6 Hemmati, H D, Nakano, I, Lazareff, J A, Masterman-Smith, M, Geschwind, D H, Bronner-Fraser, M, & Kornblum, H I. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:15178-15183

  • 7 Yilmaz, O H, Valdez, R, Theisen, B K, Guo, W, Ferguson, D O, Wu, H, & Morrison, S J. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006; 441:475-482

  • 8 Zhang, J, Grindley, J C, Yin, T, Jayasinghe, S, He, X C, Ross, J T, Haug, J S, Rupp, D, Porter-Westpfahl, K S, Wiedemann, L M, Wu, H, & Li, L. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006; 441:518-522

  • 9 Gal, H, Amariglio, N, Trakhtenbrot, L, Jacob-Hirsh, J, Margalit, O, Avigdor, A, Nagler, A, Tavor, S, Ein-Dor, L, Lapidot, T, Domany, E, Rechavi, G et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 2006; 20:2147-2154

  • Majeti, R, Becker, M W, Tian, Q, Lee, T L, Yan, X, Liu, R, Chiang, J H, Hood, L, Clarke, M F, & Weissman, I L. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl. Acad. Sci. U.S.A. 2009; 106:3396-3401

  • 11 Grimwade, D, Walker, H, Oliver, F, Wheatley, K, Harrison, C, Harrison, G, Rees, J, Hann, I, Stevens, R, Burnett, A, & Goldstone, A. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 1998; 92:2322-2333

  • 12 Grimwade, D, Walker, H, Harrison, G, Oliver, F, Chatters, S, Harrison, C J, Wheatley, K, Burnett, A K, & Goldstone, A H. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001; 98:1312-1320

  • 13 Schlenk, R F, Dohner, K, Krauter, J, Frohling, S, Corbacioglu, A, Bullinger, L, Habdank, M, Spath, D, Morgan, M, Benner, A, Schlegelberger, B, Heil, G et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 2008; 358:1909-1918

  • 14 Langer, C, Marcucci, G, Holland, K B, Radmacher, M D, Maharry, K, Paschka, P, Whitman, S P, Mrozek, K, Baldus, C D, Vij, R, Powell, B L, Carroll, A J et al. Prognostic Importance of MN1 Transcript Levels, and Biologic Insights From MN1-Associated Gene and MicroRNA Expression Signatures in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J. Clin. Oncol. 2009;

  • 15 Bullinger, L, Dohner, K, Bair, E, Frohling, S, Schlenk, R F, Tibshirani, R, Dohner, H, & Pollack, J R. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 2004; 350:1605-1616

  • 16 Radmacher, M D, Marcucci, G, Ruppert, A S, Mrozek, K, Whitman, S P, Vardiman, J W, Paschka, P, Vukosavljevic, T, Baldus, C D, Kolitz, J E, Caligiuri, M A, Larson, R A et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood. 2006; 108:1677-1683

  • 17 Metzeler, K H, Hummel, M, Bloomfield, C D, Spiekermann, K, Braess, J, Sauerland, M C, Heinecke, A, Radmacher, M, Marcucci, G, Whitman, S P, Maharry, K, Paschka, P et al., An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood. 2008; 112:4193-4201

  • 18 Smyth G K, Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3: Article 3

  • 19 Schlenk, R. F. et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1909-1918 (2008).

  • Dohner, K. et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106, 3740-3746 (2005).

  • 21 Schnittger, S. et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106, 3733-3739 (2005).



CITATIONS FOR REFERENCES REFERRED TO IN EXAMPLE 2



  • 1. Dick, J. E. Stem cell concepts renew cancer research. Blood 112, 4793-4807 (2008).

  • 2. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760 (2006).

  • 3. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783 (2009).

  • 4. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672-679 (2008).

  • 5. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315-1321 (2007).

  • 6. Dylla, S. J. et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS. One. 3, e2428 (2008).

  • 7. Guzman, M. L. et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301-2307 (2001).

  • 8. Pearce, D. J. et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107, 1166-1173 (2006).

  • 9. van Rhenen, A. et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin. Cancer Res. 11, 6520-6527 (2005).

  • 10. Wong, P., Iwasaki, M., Somervaille, T. C., So, C. W. & Cleary, M. L. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21, 2762-2774 (2007).

  • 11. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 423, 255-260 (2003).

  • 12. Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217-226 (2007).

  • 13. Hussenet, T., Dembele, D., Martinet, N., Vignaud, J. M. & du, M. S. An adult tissue-specific stem cell molecular phenotype is activated in epithelial cancer stem cells and correlated to patient outcome. Cell Cycle 9, 321-327 (2010).

  • 14. Massague, J. Sorting out breast-cancer gene signatures. N. Engl. J. Med. 356, 294-297 (2007).

  • 15. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367, 645-648 (1994).

  • 16. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730-737 (1997).

  • 17. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

  • 18. Taussig, D. C. et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112, 568-575 (2008).

  • 19. Taussig, D. C. et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 115, 1976-1984 (2010).

  • 20. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593-598 (2008).

  • 21. Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466, 133-137 (2010).

  • 22. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345-349 (2008).

  • 23. McKenzie, J. L., Gan, O. I., Doedens, M. & Dick, J. E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood. 106, 1259-1261 (2005).

  • 24. McDermott, S. P., Eppert, K., Lechman, E., Doedens, M. & Dick, J. E. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood (2010).

  • 25. Georgantas, R. W., III et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 64, 4434-4441 (2004).

  • 26. Shojaei, F. et al., Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev. Cell 8, 651-663 (2005).

  • 27. Wagner, W. et al. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood. 104, 675-686 (2004).

  • 28. Ivanova, N. B. et al. A stem cell molecular signature. Science. 298, 601-604 (2002).

  • 29. Guzman, M. L. et al. Expression of tumor-suppressor genes interferon regulatory factor 1 and death-associated protein kinase in primitive acute myelogenous leukemia cells. Blood 97, 2177-2179 (2001).

  • 30. Saito, Y. et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2, 17ra9 (2010).

  • 31. Majeti, R. et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl. Acad. Sci. U.S.A. 106, 3396-3401 (2009).

  • 32. Gal, H. et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 20, 2147-2154 (2006).

  • 33. Mazurier, F., Doedens, M., Gan, O. I. & Dick, J. E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959-963 (2003).

  • 34. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S. A 102, 15545-15550 (2005).

  • 35. Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).

  • 36. Brown, K. R. & Jurisica, I. Online predicted human interaction database. Bioinformatics. 21, 2076-2082 (2005).

  • 37. Brown, K. R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics. 25, 3327-3329 (2009).

  • 38. Moore, M. A., Dorn, D. C., Schuringa, J. J., Chung, K. Y. & Morrone, G. Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells. Exp. Hematol. 35, 105-116 (2007).

  • 39. Stier, S., Cheng, T., Dombkowski, D., Carlesso, N. & Scadden, D. T. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99, 2369-2378 (2002).

  • 40. Chung, Y. J. et al. Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood 108, 1208-1215 (2006).

  • 41. Oh, I. H. & Eaves, C. J. Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene 21, 4778-4787 (2002).

  • 42. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278-1281 (2000).

  • 43. Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365-1372 (2000).

  • 44. Ohishi, K., Varnum-Finney, B. & Bernstein, I. D. Delta-1 enhances marrow and thymus repopulating ability of human CD34(+)CD38(−) cord blood cells. J. Clin. Invest 110, 1165-1174 (2002).

  • 45. Park, I. K. et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99, 488-498 (2002).

  • 46. Bhattacharya, B. et al. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956-2964 (2004).

  • 47. Ben Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499-507 (2008).

  • 48. Assou, S. et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25, 961-973 (2007).

  • 49. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956 (2005).

  • 50. Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301-313 (2006).

  • 51. Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333-344 (2008).

  • 52. Somervaille, T. C. et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4, 129-140 (2009).

  • 53. Valk, P. J. et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350, 1617-1628 (2004).

  • 54. Verhaak, R. G. et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 94, 131-134 (2009).

  • 55. Metzeler, K. H. et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 112, 4193-4201 (2008).

  • 56. Kottaridis, P. D. et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98, 1752-1759 (2001).

  • 57. Schlenk, R. F. et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1909-1918 (2008).

  • 58. Mrozek, K., Marcucci, G., Paschka, P., Whitman, S. P. & Bloomfield, C. D. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 109, 431-448 (2007).

  • 59. Metzeler, K. H. et al. ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J. Clin. Oncol. 27, 5031-5038 (2009).

  • 60. Dohner, K. et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106, 3740-3746 (2005).

  • 61. Schnittger, S. et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106, 3733-3739 (2005).

  • 62. Marcucci, G. et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 26, 5078-5087 (2008).

  • 63. Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670-1673 (2009).

  • 64. Kennedy, J. A., Barabe, F., Poeppl, A. G., Wang, J. C. & Dick, J. E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science 318, 1722 (2007).

  • 65. Adams, J. M. & Strasser, A. Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res. 68, 4018-4021 (2008).

  • 66. Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822-829 (2009).

  • 67. Goyama, S. et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207-220 (2008).

  • 68. Simsek, T. et al. The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche. Cell Stem Cell 7, 380-390 (2010).

  • 69. Bjornsson, J. M. et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol. Cell Biol. 23, 3872-3883 (2003).

  • 70. Loughran, S. J. et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9, 810-819 (2008).

  • 71. Barjesteh van Waalwijk van Doorn-Khosrovani et al., High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101, 837-845 (2003).

  • 72. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818-822 (2006).

  • 73. Chen, W. et al. Malignant transformation initiated by MII-AF9: gene dosage and critical target cells. Cancer Cell 13, 432-440 (2008).

  • 74. Huntly, B. J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587-596 (2004).

  • 75. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029-3035 (2003).

  • 76. Tenen, D. G. Disruption of differentiation in human cancer: AML shows the way. Nat. Rev. Cancer 3, 89-101 (2003).

  • 77. Kroon, E. et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meisla but not Pbxlb. EMBO J. 17, 3714-3725 (1998).

  • 78. Baugh, L. R., Hill, A. A., Brown, E. L. & Hunter, C. P. Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29, E29 (2001).

  • 79. Saeed, A. I. et al. TM4 microarray software suite. Methods Enzymol. 411, 134-193 (2006).

  • 80. Saeed, A. I. et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34, 374-378 (2003).

  • 81. Huang, d. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2009).

  • 82. Dennis, G., Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003).

  • 83. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535-D539 (2006).

  • 84. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449-D451 (2004).

  • 85. Keshava Prasad, T. S. et al. Human Protein Reference Database—2009 update. Nucleic Acids Res. 37, D767-D772 (2009).

  • 86. Aranda, B. et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res. 38, D525-D531 (2010).

  • 87. Chatr-Aryamontri, A. et al. MINT: the Molecular INTeraction database. Nucleic Acids Res. 35, D572-D574 (2007).

  • 88. McGuffin, M. J. & Jurisica, I. Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans. Vis. Comput. Graph. 15, 937-944 (2009).

  • 89. Buchner, T. et al. Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J. Clin. Oncol. 24, 2480-2489 (2006).

  • 90. Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70-78 (2009).

  • 91. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article 3 (2004).



CITATIONS FOR REFERENCES REFERRED TO IN EXAMPLES 3 TO 6



  • 1. Kartner, N., Evernden-Porelle, D., Bradley, G. & Ling, V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316, 820-823 (1985).

  • 2. Riordan, J. R. et al. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316, 817-819 (1985).

  • 3. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797-1806 (1996).

  • 4. Bunting, K. D., Zhou, S., Lu, T. & Sorrentino, B. P. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96, 902-909 (2000).

  • 5. Campos, L. et al. Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79, 473-476 (1992).

  • 6. Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. U.S. A 104, 10158-10163 (2007).

  • 7. Ofori-Acquah, S. F. & King, J. A. Activated leukocyte cell adhesion molecule: a new paradox in cancer. Transl. Res. 151, 122-128 (2008).

  • 8. Kahlert, C. et al. Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br. J. Cancer 101, 457-464 (2009).

  • 9. Tanner, S. M. et al. BAALC, the human member of a novel mammalian neuroectoderm gene lineage, is implicated in hematopoiesis and acute leukemia. Proc. Natl. Acad. Sci. U.S. A 98, 13901-13906 (2001).

  • 10. Metzeler, K. H. et al. ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J. Clin. Oncol. 27, 5031-5038 (2009).

  • 11. Baldus, C. D. et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 102, 1613-1618 (2003).

  • 12. Baldus, C. D. et al. BAALC, a novel marker of human hematopoietic progenitor cells. Exp. Hematol. 31, 1051-1056 (2003).

  • 13. Satterwhite, E. et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98, 3413-3420 (2001).

  • 14. Deiss, L. P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 9, 15-30 (1995).

  • 15. Raval, A. et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129, 879-890 (2007).

  • 16. Loughran, S. J. et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9, 810-819 (2008).

  • 17. Shimizu, K. et al. An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc. Natl. Acad. Sci. U.S. A 90, 10280-10284 (1993).

  • 18. Sorensen, P. H. et al. A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat. Genet. 6, 146-151 (1994).

  • 19. Marcucci, G. et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J. Clin. Oncol. 23, 9234-9242 (2005).

  • 20. Baldus, C. D. et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. Proc. Natl. Acad. Sci. U.S. A 101, 3915-3920 (2004).

  • 21. Goyama, S. et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207-220 (2008).

  • 22. Goyama, S. & Kurokawa, M. Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci. 100, 990-995 (2009).

  • 23. Barjesteh van Waalwijk van Doorn-Khosrovani et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101, 837-845 (2003).

  • 24. Moore, M. A., Dorn, D. C., Schuringa, J. J., Chung, K. Y. & Morrone, G. Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells. Exp. Hematol. 35, 105-116 (2007).

  • 25. Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. U. S. A 98, 14541-14546 (2001).

  • 26. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow Lin(−) Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity. 15, 659-669 (2001).

  • 27. Kottaridis, P. D. et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98, 1752-1759 (2001).

  • 28. Schlenk, R. F. et al., Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1909-1918 (2008).

  • 29. Mrozek, K., Marcucci, G., Paschka, P., Whitman, S. P. & Bloomfield, C. D. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 109, 431-448 (2007).

  • 30. Dorak, M. T. et al. A male-specific increase in the HLA-DRB4 (DR53) frequency in high-risk and relapsed childhood ALL. Leuk. Res. 26, 651-656 (2002).

  • 31. Inaba, T. et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257, 531-534 (1992).

  • 32. Shojaei, F. et al., Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev. Cell 8, 651-663 (2005).

  • 33. Strathdee, G., Sim, A., Soutar, R., Holyoake, T. L. & Brown, R. HOXA5 is targeted by cell-type-specific CpG island methylation in normal cells and during the development of acute myeloid leukaemia. Carcinogenesis 28, 299-309 (2007).

  • 34. Strathdee, G. et al. Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin. Cancer Res. 13, 5048-5055 (2007).

  • 35. Mullighan, C. G. et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia 21, 2000-2009 (2007).

  • 36. Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. U.S. A 91, 12223-12227 (1994).

  • 37. Bjornsson, J. M. et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol. Cell Biol. 23, 3872-3883 (2003).

  • 38. Thorsteinsdottir, U., Kroon, E., Jerome, L., Blasi, F. & Sauvageau, G. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol. Cell Biol. 21, 224-234 (2001).

  • 39. Gewinner, C. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16, 115-125 (2009).

  • 40. Armstrong, S. A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41-47 (2002).

  • 41. Rozovskaia, T. et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4:11) abnormality. Oncogene 20, 874-878 (2001).

  • 42. Kroon, E. et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17, 3714-3725 (1998).

  • 43. Pineault, N. et al. Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 101, 4529-4538 (2003).

  • 44. Wong, P., Iwasaki, M., Somervaille, T. C., So, C. W. & Cleary, M. L. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21, 2762-2774 (2007).

  • 45. Simsek, T. et al. The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche. Cell Stem Cell 7, 380-390 (2010).

  • 46. Yang, X. J. & Ullah, M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene 26, 5408-5419 (2007).

  • 47. Thomas, T. et al. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 20, 1175-1186 (2006).

  • 48. Grand, F. H. et al. A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Exp. Hematol. 35, 1723-1727 (2007).

  • 49. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 298, 597-600 (2002).

  • 50. Anneren, C., Cowan, C. A. & Melton, D. A. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J. Biol. Chem. 279, 31590-31598 (2004).

  • 51. Seki, T., Fujii, G., Mori, S., Tamaoki, N. & Shibuya, M. Amplification of c-yes-1 proto-oncogene in a primary human gastric cancer. Jpn. J. Cancer Res. 76, 907-910 (1985).

  • 52. Georgantas, R. W., III et al. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res. 64, 4434-4441 (2004).

  • 53. Park, I. K. et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99, 488-498 (2002).

  • 54. Ivanova, N. B. et al. A stem cell molecular signature. Science. 298, 601-604 (2002).

  • 55. Majeti, R. et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl. Acad. Sci. U.S.A. 106, 3396-3401 (2009).

  • 56. Saito, Y. et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2, 17ra9 (2010).

  • 57. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315-1321 (2007).

  • 58. Gal, H. et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 20, 2147-2154 (2006).


Claims
  • 1. A method for determining a prognosis of a subject having leukemia or myelodysplastic syndrome (MDS) comprising: a) obtaining a sample from a subject;b) determining a gene expression level for each gene of a set of genes selected from leukemia stem cell (LSC) signature genes listed in Tables 2, 6, and/or 12, hematopoietic stem cell (HSC) signature genes listed in Tables 4 and/or 14, and/or CE-HSC/LSC signature genes listed in Table 19, to obtain a subject expression profile of a sample obtained from the subject; andc) classifying the subject as having a good prognosis or a poor prognosis based on the subject expression profile;
  • 2. (canceled)
  • 3. The method of claim 1, wherein the set of genes comprises at least two genes listed in Table 2 and/or 6, the genes listed in Table 4 and/or 14 and/or the genes listed in Table 19, optionally wherein the set of genes comprises ceroid lipofuscinosis neuronal 5 (CLN5) or neurofibromin 1 (NF1).
  • 4.-9. (canceled)
  • 10. The method of claim 1, wherein the subject expression profile is used to calculate a subject risk score, wherein the subject is classified as having a good prognosis if the subject risk score is low and/or below a selected threshold and as having a poor prognosis if the subject risk score is high and/or above the selected threshold.
  • 11. A method for monitoring a response to a treatment in a subject having leukemia or myelodysplastic syndrome (MDS) comprising: a. collecting a first sample from the subject before the subject has received the treatment;b. collecting a subsequent sample from the subject after the subject has received the treatment;c. determining the gene expression levels of a set of genes selected from LSC signature genes and/or HSC signature genes in the first and the subsequent samples according to the method of claim 1, to obtain a first sample subject expression profile and a subsequent sample subject expression profile, wherein the set of genes comprises at least 2 genes; andd. calculating a first sample subject expression profile score and a subsequent sample subject expression profile score;
  • 12. The method of claim 10, wherein the subject expression profile score is calculated by: a. calculating log 2 expression value of the set of genes for the sample;b. centering the log 2 expression value of step a to a zero mean; andc. taking the sum of the log 2 expression values to give the subject risk score.
  • 13. (canceled)
  • 14. The method of claim 1, wherein the gene expression level is determined by detecting mRNA expression using one or more probes and/or one or more probe sets, optionally wherein the one or more probes and/or the one or more probe sets are selected from SEQ ID NOs:1-2533.
  • 15.-17. (canceled)
  • 18. The method of claim 1, wherein the leukemia is AML, ALL, CML or CLL.
  • 19. The method of claim 18 wherein the AML is cytogenetically normal AML (CN-AML).
  • 20. (canceled)
  • 21. The method of claim 1, further comprising the step of providing a cancer treatment to the subject suitable with the prognosis determined.
  • 22. The method of claim 1, further comprising the classifying the subject as low molecular risk (LMR) or high molecular risk (HMR) according to Nucleophosmin (NPM1) and FLT3 mutated internal tandem duplication (FLT3ITD) status, wherein the subject is identified as LMR if the subject comprises a mutant NPMI gene and is FLT3IT positive, and is identified as HMR if the subject has a wildtype NPMI gene and is FLT3ITD negative.
  • 23.-26. (canceled)
  • 27. The method of claim 1, wherein the gene expression level is determined using Nanostring® technology, serial analysis of gene expression (SAGE), RNA sequencing, RNase protection assays, Northern Blot, a microarray chip and/or a PCR protocol, optionally multiplex PCR.
  • 28. (canceled)
  • 29. (canceled)
  • 30. The method of claim 1, further comprising displaying or outputting a result of one of the steps to a user interface device, a computer readable storage medium, a monitor, or a computer that is part of a network.
  • 31. A method of treating a subject having leukemia or myelodysplastic syndrome (MDS), comprising determining a prognosis of the subject according to the method of claim 1, and providing a suitable treatment to the subject in need thereof according to the prognosis determined.
  • 32. The method of claim 31, wherein the subject is determined to have a poor prognosis, and the treatment comprises a stem cell transplant.
  • 33. (canceled)
  • 34. A composition comprising a set of nucleic acid molecules each comprising a polynucleotide probe sequence selected from SEQ ID NO:1-2533.
  • 35.-37. (canceled)
  • 38. An array comprising for each gene in a set of genes, the set of genes comprising at least 2 of the genes listed in Table 2, 4, 6, 12 and/or 14, one or more polynucleotide probes complementary and hybridizable to a coding sequence in the gene, for determining a prognosis according to claim 1.
  • 39. (canceled)
  • 40. The array of claim 38 wherein the one or more polynucleotide probes are selected from SEQ ID NO:1-2533.
  • 41. A kit for determining prognosis in a subject having a hematological cancer according to the method of claim 1 comprising: a) an array of claim 38 a set of probes wherein each probe of the set hybridizes and/or is complementary to a nucleic acid sequence corresponding to a gene selected from Table 2, 4, 6, 12 and/or 14 or one or more primers or sets of primers, each primer or set of primers specific for a gene selected from Table 2, 4, 6, 12 and/or 14;b) a kit control; andc) optionally instructions for use.
  • 42. (canceled)
  • 43. (canceled)
  • 44. A non-transitory computer readable storage medium with an executable program stored thereon, wherein the program is for predicting outcome or prognosis in a subject having a hematological cancer, and wherein the program instructs a microprocessor to perform one or more of the steps of claim 1.
  • 45. A computer system for performing one or more steps of claim 1 comprising: a) a database including records comprising reference expression profiles associated with clinical outcomes, each reference profile comprising the expression levels of a set of genes listed in Table 2, 4, 6, 12 and/or 14;b) a user interface capable of receiving and/or inputting a selection of gene expression levels of a set of genes, the set comprising at least 2 genes listed in Table 2, 4, 6, and/or 14 for use in comparing to the gene reference expression profiles in the database;c) an output that displays a prediction of clinical prognosis according to the expression levels of the set of genes.
  • 46. (canceled)
RELATED APPLICATIONS

This is a Patent Cooperation Treaty Application which claims the benefit of 35 U.S.C. 119 based on the priority of corresponding U.S. Provisional Patent Application No. 61/266,704 filed Dec. 4, 2009, which is incorporated herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/CA10/02048 12/3/2010 WO 00 6/1/2012
Provisional Applications (1)
Number Date Country
61266704 Dec 2009 US