1. Field of the Invention
This invention relates to lubricating oil compositions, their method of preparation and use. Specifically, this invention relates to lubricating compositions that contain a metal compound and a hindered amine. The use of a metal compound and the hindered amine act synergistically to surprisingly provide protection of the lubricant from oxidation. The addition of an aromatic amine, particularly a diarylamine, to this combination provides even better protection.
2. Description of the Related Art
Oxidation is a major cause of the breakdown of lubricants. This results in a shortened lifespan of the lubricant, requiring more frequent changes, especially in demanding environments such as internal combustion engines.
Antioxidants have therefore played an important role as additives in lubricants in order to extend their useful life. Aromatic amines, especially secondary diarylamines, e.g., alkylated diphenylamines, phenothiazines, and alkylated N-naphthyl-N-phenylamines, have been important additives to lubricating compositions. Also important have been phenolic compounds in retarding oxidation.
The combination of an antioxidant with a metal compound has been important in extending the lifetime of the antioxidant. For example, U.S. Pat. No. 5,994,277 to Richie et al. teaches that a crankcase lubricant composition which contains copper, molybdenum aromatic amines can act as an effective antioxidant combination. U.S. Pat. No. 6,306,802 to Shaub et al. discloses sulfurized molybdenum complexes with oil-soluble aromatic amines. Gatto, et al., in U.S. Pat. No. RE38,929E has disclosed that the combination of certain sulfur and phosphorus-free molybdenum compounds and secondary diarylamines improved the useful life of a lubricating oil. The most effective amounts in inhibiting oxidation were between 100 and 450 parts per million (ppm) of molybdenum, and between 750 and 5,000 ppm of an oil-soluble secondary diphenylamine.
Other combinations of antioxidants have also been used. U.S. Pat. Nos. 5,073,278 and 5,273,669 to Schumacher et al. disclose the synergistic combination of aromatic amines and hindered amines in a lubricating oil. U.S. Pat. No. 5,268,113 to Evans et al. discloses the combination of a hindered amine with phenolic compounds.
We have found that a lubricant composition containing the combination of a metal compound with a hindered amine gives antioxidant protection in a synergistic fashion.
We have also discovered that a lubricant composition containing the combination of a metal compound with a hindered amine and a secondary diarylamine can synergistically give enhanced antioxidant protection.
The invention provides a lubricant composition which comprises
(a) a mineral or a synthetic base oil or a mixture of such oils
(b) at least one oil soluble metal compound providing between 1 and 2,000 parts per million of metal, preferably about 50 to 750 ppm metal where the metal is molybdenum or tungsten, and more preferably about 125 to 700 ppm metal.
(c) at least one hindered amine providing between about 0.001-2 wt %, preferably about 0.5-1.5 wt % hindered amine to the lubricant composition
The invention also provides a lubricant composition which comprises
(a) a mineral or a synthetic base oil or a mixture of such oils
(b) at least one oil soluble metal compound providing between 1 and 2,000 parts per million of metal, preferably about 50 to 750 ppm metal where the metal is molybdenum or tungsten, and more preferably about 125 to 700 ppm metal.
(c) at least one hindered amine providing between about 0.001-2 wt %, preferably about 0.5-1.5 wt % hindered amine to the lubricant composition
(d) at least one aromatic amine (diaryl amine) providing between about 0.001-2 wt %, preferably about 0.5-1.5 wt % aromatic amine to the lubricant composition
Typical lubricant basestocks can include both mineral and synthetic oils. Included are polyalphaolefins, (also known as PAOS), esters, diesters and polyol esters or mixtures thereof. The lubricant basestock, which can be one or more in combination of a mineral or synthetic oil as described herein, is present in the lubricating composition as a major portion thereof, i.e. at least 50% by weight.
The molybdenum compound used in this invention can be any lubricant-soluble molybdenum compound. Examples are listed below. This list is not to imply any limitation on the type of lubricant-soluble molybdenum compound, but is shown as an example of possible useful molybdenum compounds.
where x=0 to 4
Mo3S7(DTC)4 (II)
Mo3S4(DTC)4 (III)
where x=0 to 4
Hindered Amine
Molybdenum Source
Diols
n=0 to 12
Fatty Oils
The tungsten compounds that can be used with this invention include amine salts of tungsten as described in U.S. Patent Applications 20040214731 and 20070042917, which are hereby incorporated by reference.
Tungsten dithiophosphates (V) and dithiocarbamates (VI) can also be used as described in U.S. Pat. No. 4,529,526, and U.S. Pat. No. 4,266,945, where R7, R8, R9, and R10 are hydrocarbons containing from 1 to 30 carbon atoms, R7 and R8 being the same or different, and R9 and R10 being the same or different.
where x=0 to 4
Additionally, it is expected that novel tungsten compounds prepared by reaction with a hindered amine in analogous fashion with the novel molybdenum compounds in section (12) above will also exhibit synergy when combined in a lubricating oil composition with a hindered amine, and optionally a diarylamine.
Other oil-soluble metal compounds that have been useful to this invention include compounds of titanium and boron. Of these, of most importance are titanium alkoxides such as titanium isopropoxide, and borate esters. For titanium compounds, the preferred range in a lubricating composition is about 50-2000 ppm titanium, and for boron compounds, about 50-100 ppm boron.
The hindered amines used in this invention are of many types, with three types predominating: the pyrimidines, piperidines and stable nitroxide compounds. Many more are described in the book “Nitrones, Nitronates, and Nitroxides”, E. Breuer, et al., 1989, John Wiley & Sons. The hindered amines are also known as HALS (hindered amine light stabilizers) and are a special type of amine capable of antioxidant behavior. They are used extensively in the plastics industry to retard photochemical degradation, but their use in lubricants has been limited.
1. Pyrimidine Compounds
2. Piperidine Compounds
3. Polymers Containing Hindered Amines
4. Other Hindered Amines
5. Hindered Amine Salts
The diarylamines used in this invention are of the type Ar2NR. Since these are well known antioxidants in the art, there is no restriction on the type of diarylamines used in this invention, although there is the requirement of solubility in the lubricating composition.
The alkylated diphenylamines are well known antioxidants and there is no particular restriction on the type of secondary diarylamine used in the invention. Preferably, the secondary diarylamine antioxidant has the general formula (X) where R43 and R44 each independently represents a substituted or unsubstituted aryl group having from 6 to 30 carbon atoms. R45 represents either a H atom or an alkyl group containing from 1 to 30 carbon atoms. Illustrative of substituents for the aryl there can be mentioned aliphatic hydrocarbon groups such as alkyl having from about 1 to 20 carbon atoms, hydroxy, carboxyl or nitro, e.g., an alkaryl group having from 7 to 20 carbon atoms in the alkyl group. The aryl is preferably substituted or unsubstituted phenyl or naphthyl, particularly wherein one or both of the aryl groups are substituted with an alkyl such as one having from 4 to 18 carbon atoms. R45 can be either H or alkyl from 1 to 30 carbon atoms. The alkylated diphenylamines used in this invention can be of a structure other than that shown in the above formula which shows but one nitrogen atom in the molecule. Thus, the alkylated diphenylamine can be of a different structure provided that at least one nitrogen has 2 aryl groups attached thereto, e.g., as in the case of various diamines having a secondary nitrogen atom as well as two aryls on one of the nitrogens. The alkylated diphenylamines used in this invention preferably have antioxidant properties in lubricating oils, even in the absence of the molybdenum compound.
Examples of some alkylated diphenylamines that may be used in this invention include: diphenyl amine, 3-hydroxydiphenylamine; N-phenyl-1,2-phenylened-amine; N-phenyl-1,4-phenylenediamine; dibutyldiphenylamine; dioctyldiphenylamine; dinonyldiphenylamine; phenyl-alpha-naphthylamine; phenyl-beta-naphthylamine; diheptyldiphenylamine; and p-oriented styrenated diphenylamine.
Phenothiazines are another class of diarylamines with the general structure (XIV),
Where R46 is H, or an alkyl from 1 to 30 carbon atoms, and R47 and R48 are alkyl from 1 to 30 carbon atoms
Lubricating Oil Compositions
The lubricating oil compositions of this invention can be prepared by adding the molybdenum, tungsten or other metal-containing additive to a lubricating oil basestock with an oil-soluble hindered amine. The metal-containing additive should be sufficient to provide from 1 to 2,000 ppm metal in the composition, and the hindered amine should be added in amount sufficient to provide from 1 to 20,000 ppm (0.01 to 2 wt %) in the lubricating oil.
In another embodiment, a lubricant oil combination of this invention can be prepared by adding the metal-containing additive to a basestock with an oil-soluble hindered amine and an oil-soluble diarylamine, with the amounts of the metal and hindered amine as above, and diarylamine added to provide from 1 to 20,000 ppm thereof in the lubricating oil.
In addition, other additives can be added to the lubricating compositions described above. These include one or more of the following components:
Other antioxidants, including phenols, hindered phenols, hindered bisphenols, sulfurized phenols, sulfurized olefins, alkyl sulfides and disulfides, dialkyl dithiocarbamates, dithiocarbamate esters, such as VANLUBE® 7723 sold by the R. T. Vanderbilt Company, zinc dihydrocarbyl dithiosphosphates, zinc dithiocarbamates. A more complete list of useful phenols can be found in U.S. Pat. No. 5,073,278 to Schumacher et al.
Antiwear additives, including zinc dihydrocarbyl dithiophosphates, tricresol phosphate, diaryl phosphate, sulfurized fats and sulfurized terpenes. Dispersants, including polymethacrylates, styrenemaleic ester copolymers, substituted succinamides, polyamine succinamides, polyhydroxy succinic esters, substituted Mannich bases, and substituted triazoles.
Detergents, including neutral and overbased alkali and alkaline earth metal sulfonates, neutral and overbased alkali and alkine earth metal phenates, sulfurized phenates, overbased phosphonates, and thiophosphonates.
Viscosity index improvers, including polyacrylates, polymethacrylates, vinylpyrrolidone/methacrylate copolymers, polyvinylpyrrolidones, polybutene, olefin copolymers, styrene/acrylate copolymers.
Pour point depressants, including polymethacrylate and alkylated naphthalene derivatives.
Into a 500 mL round-bottomed flask was placed 15.0 g of MoO3, 15.0 g water, 100 g of a reaction product of coconut oil (1 part) and diethanolamine (2.7 parts), and 40 g of Tinuven®123, a Ciba product with the chemical name bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate. The mixture was stirred and heated to 80° C. for 3 hours. An aspirator vacuum was then placed on the flask and heated for a period of 2 hours with the loss of water. The reaction was cooled somewhat and filtered hot through Celite, revealing an oily, reddish product containing 5.8% molybdenum.
Into a 500 mL round-bottomed flask was placed 15.0 g of MoO3, 15.0 g water, 62.5 g of 2-ethyl-1,3-hexanediol, and 54.6 g of Cyasorb® UV-3853, a hindered amine with the name 4-piperidol-2,2,6,6-tetremethyl-RPW stearin (fatty acids mixture). The mixture was stirred at 80° C. for 1 hour, then heated under vacuum for 1 hour. 10.36 g of a mineral oil was added, and then the mixture was filtered through Celite to give an oily, pale reddish product containing 7.7% Mo.
Into a 500 mL round-bottomed flask was placed 15.0 g of MoO3, 15.0 g water, 90.5 g of a reaction product of coconut oil (1 part) and diethanolamine (2.7 parts), and 54.6 g of Cyasorb® UV-3853. The mixture was heated at 80° C. for 1 hour, then heated under vacuum for 70 minutes. 15.0 g of a mineral oil was then added to give an oily reddish product containing 5.9% Mo.
Pressurized differential scanning calorimetry (PDSC) was performed according to ASTM Test Method D1686 on the products of Examples 2 and 3, also called KJC-555-171, and KJC-555-176 respectively. These tests were performed on a lubricant composition comprising a polyalphaolefin oil, Durasyn® 166 from BP, and Infineum® C9268, a crankcase dispersant containing 1.2% Nitrogen from Infineum. Also provided in the lubricant composition was N-methyl hindered amine Songlight® 2920LQ, (chemically bis(1,2,2,6,6-pentamethyl-1-piperidinyl)sebacate) and the aforementioned Cyasorb UV-3853. The molybdenum containing compounds were added to the lubricating compositions to give 700 ppm of Mo. The test is performed by blending and adding the ingredients into a DSC cell, heating the cell to 210° C., then pressurizing with 500 psi of oxygen. What is measured is the oxidation induction time (OIT), which is the time takes to observe an exothermic release of heat. The longer the OIT the greater the oxidative stability of the oil blend. The results are shown in Table I labeled as “minutes to induction”.
The results clearly show a synergy between the molybdenum compound and the hindered amine utilized. The oxidation induction times were significantly increased when both the hindered amine and the molybdenum compound were present, than when separate.
Lubricant compositions containing the combination of alkylated diphenylamine, and the products of Examples 2 and 3 were prepared and PDSC (ASTM D1686) was performed as in Example 4. The molybdenum containing compounds were added to the lubricating compositions to give 700 ppm of Mo. The results are given in Table II.
Clearly there is a strong synergism observed when the combination of the alkylated diphenylamine and the reaction products of Examples 2 or 3 is used.
Lubricant compositions containing the combination of a hindered amine, alkylated diphenylamine, and the products of Examples 2 and 3 were prepared and PDSC (ASTM D1686) was performed as in Example 4. The molybdenum containing compounds were added to the lubricating compositions to give 700 ppm of Mo. The results are given in Table III.
The induction times clearly show improvement when the three components are together as opposed to just two at the same concentrations.
Lubricant compositions containing the combination of hindered amine and the MOLYVAN® 855 were prepared and PDSC (ASTM D1686) was performed as in Example 4. MOLYVAN® 855 was added at an amount to give 700 ppm Mo to the lubricating composition. The results are given in Table IV.
Again a large synergy is observed when the combination of the 855 and the hindered amine is used. Three types of hindered amines were utilized: an N-R, (Songlight 2920LQ), an N-H (Cyasorb UV-3853) and an N-OR type, (Tinuvin 123). All three were found to be effective as antioxidants in combination with the molybdate ester.
Lubricant compositions containing the combination of hindered amine, alkylated diphenylamine and MOLYVAN® 855 at 700 ppm Mo were also found to have strong synergies in the PDSC (ASTM D1686), and gave longer induction times than either the alkylated diphenylamine/molybdate ester or hindered amine/molybdate ester at equal weight concentrations of the hindered amine and alkylated diphenylamine.
Lubricant compositions containing the combination of hindered amine and the Mo Nap-All were prepared and PDSC (ASTM D1686) was performed as in Example 4. Mo Nap-All®, is a molybdenum naphthenate compound with 6% Mo, manufactured by OMG and was added to give 700 ppm Mo to the lubricating composition. The oxidation induction time was vastly improved when the combination of the molybdenum compound and the hindered amine was employed.
Lubricant compositions containing the combination of hindered amine, alkylated diphenylamine and Mo Nap-All at 700 ppm Mo were also found to have strong synergies in the PDSC (ASTM D1686), and gave longer induction times than either the alkylated diphenylamine/Mo Nap-All or hindered amine/Mo Nap-All at equal weight concentrations of the hindered amine and alkylated diphenylamine.
Lubricant compositions containing the combination of hindered amine and the MOLYVAN® 822 were prepared and PDSC (ASTM D1686) was performed as in Example 4. MOLYVAN® 822, is a molybdenum dithiocarbamate compound with approximately 5% Mo, manufactured by R.T. Vanderbilt and was added to give 700 ppm Mo to the lubricating composition. The oxidation induction time was vastly improved when the combination of the molybdenum compound and the hindered amine was employed.
Lubricant compositions containing the combination of hindered amine, alkylated diphenylamine and MOLYVAN® 822 at 700 ppm Mo were also found to have strong synergies in the PDSC (ASTM D1686), and gave longer induction times than either the alkylated diphenylamine/MOLYVAN® 822 or hindered amine/MOLYVAN® 822 at equal weight concentrations of the hindered amine and alkylated diphenylamine.
A tungsten-amine compound BT-521-197 containing 28.2% W was used and blended to give approximately 700 ppm of W in the blends. BT-521-197 is the reaction product of tungstic acid and ditridecylamine according to U.S. patent application no. 20040214731.
A PDSC test slightly modified from that used in Example 4 (ASTM D6186) was performed on the blends. Unocal® 90 was used as the base oil. Unocal® 90 is a paraffinic Group I base oil from Union Oil of California. The temperature was also 180° C.
The results clearly show a synergy between the tungsten-amine compound and the hindered amine, superior to the synergy between the Vanlube SL and the tungsten-amine compound. The results also show a synergy between the blend of the Vanblue SL, the hindered amine, and the tungsten-amine compound.
Titanium isopropoxide, sold under the trade name Tyzor® TPT by duPont, and containing approximately 16.8% titanium, was added at 1% to impart 1680 ppm Ti to the lubricating compositions, and PDSC was run as in Example 3(ASTM D6186). VANLUBE® 961, an octylated diphenylamine sold by R.T. Vanderbilt was used as the alkylated diphenylamine, and Songlight 2920LQ was used as the hindered amine. Results clearly show synergies between the Songlight 2920LQ and the titanium isopropoxide, as well as a synergy between the combination of the Songlight 2920LQ, the VANLUBE 961, and the titanium isopropoxide.
VANLUBE® 289 a borate ester containing 1% boron, was added at 1% and PDSC was run as in Example 4 (ASTM D6186). VANLUBE® 961, an octylated diphenylamine sold by R.T. Vanderbilt was used as the alkylated diphenylamine, and Songlight 2920LQ was used as the hindered amine. Results clearly show synergies between the Songlight 2920LQ and the VANLUBE 289, as well as a synergy between the combination of the Songlight 2920LQ, the VANLUBE 961, and the VANLUBE 289.
Lubricant compositions were prepared at two levels of MOLYVAN® 855, 0.91% and 0.16% that correspond to 700 and 125 ppm Mo respectively. Five levels of the Songlight® 2920LQ and VANLUBE® SL, with the sum of the weight percentage being 1.5. The PDSC was performed as in Example 4, and the results are given below.
The synergies are clearly seen across a range of additive levels.
This application is a non-provisional application claiming benefit under 35 U.S.C. 119(e) of U.S. Ser. Nos. 60/893,195, filed Mar. 6, 2007 and 60/944,897 filed Jun. 19, 2007.
Number | Date | Country | |
---|---|---|---|
60893195 | Mar 2007 | US | |
60944897 | Jun 2007 | US |