Not applicable.
Paper is commonly used throughout the world. Paper is commonly used for a variety of purposes. Paper can be used to package food. Paper can also be used as a medium for the written word, in applications such as books, newspapers, and magazines. Paper can be used to print documents using a computer. Paper is often used to track and document financial information, such as through financial statements, receipts, and bills. Paper may also be used to label a huge variety of products, containers, and any number of other things. Paper can even be made into art, such as through the practice of origami. As a result, the manufacture of paper is an important industry for all of these uses and more. High quality glossy paper may be used in documents such as magazines.
An illustrative lubricant applicator includes a body comprising an inner surface defining a lumen, an outer surface, and a connector fluidly connected to the lumen. The connector is configured to receive a lubricating fluid and convey the lubricating fluid to the lumen. A plurality of openings connects the lumen to the outer surface of the body. The lubricant applicator is configured for connection to a coater blade at a position such that the plurality of openings are configured to deliver the lubricant to an edge region of paper and a backing drum during coating of the paper.
An illustrative method for lubricating a backing drum includes receiving lubricant at a lubricant applicator. The method also includes applying the lubricant to a first section of the backing drum. The lubricant is applied at a pressure configured to prevent a first section of a coater blade from coming into contact with the first section of the backing drum.
An illustrative apparatus includes a coater blade, a backing drum, and a lubricant applicator comprising a body with an inner surface defining a lumen, an outer surface, and a connector fluidly connected to the lumen. The connector is configured to receive a lubricating fluid and convey the lubricating fluid to the lumen. A plurality of openings connects the lumen to the outer surface of the body. The lubricant applicator is configured for connection to the coater blade at a position such that the plurality of openings are configured to deliver the lubricant to an edge region of paper and the backing drum during coating of the paper.
Illustrative embodiments will hereafter be described with reference to the accompanying drawings.
Described herein are illustrative embodiments for an apparatus, an article of manufacture, and methods for a coater blade lubricator. During the manufacturing of paper, for example high quality paper, coatings are often applied the paper to give the paper certain desirable traits or qualities. In such operations, the large rolls of paper are passed over large cylindrical drums (also called backing drums herein). While rotating on such drums, various processes, such as the applying of coatings, may be performed on the paper as it is moved through a manufacturing facility.
When the paper comes to a paper coating station, a coating is applied to the paper. After a coating is initially applied, a coater blade helps to spread the coating evenly onto the paper and remove any excess coating. The coater blade is oriented such that the coater blade presses against the paper, which is rotating on a backing drum. Thus, the paper is between the backing drum and the coater blade, allowing for pressure on the paper that is adequate to spread and remove excess coating. When a paper coating station is working properly, the pressure generated on the paper from the backing drum and the coater blade is adequate to spread the coating without breaking or damaging the paper.
Often during a coating process, the paper does not extend across the entire width of the backing drum. However, it is desirable to have a coater blade that extends wider than the width of the paper roll. By extending beyond the paper, the coater blade can more effectively spread the coating and remove excess coating. However, such a configuration may allow the coater blade to come into contact with the backing drum. It is possible for the coater blade to damage the backing drum as a result. Furthermore, over time the abrasion of continuous paper on a coater blade causes wear on the coater blade. As the coater blade wears where it has come into contact with the abrasive paper, the coater blade may not wear as much on the far edges of the blade where it only contacts a smooth backing drum. Accordingly, the blade may over time get shorter where the paper is located and remain longer where the backing drum is contacted by the coater blade. Because the coater blade must maintain appropriate pressure on the paper to properly complete the blade's spreading and removing of coating duties, this can cause increased damage on the backing drum as the coater blade ages. In other words, as the coater blade wears from the paper, the part of the coater blade not contacting the paper will create more and more pressure and contact with the backing drum, which can cause increased damage to the backing drum. If a backing drum is damaged in this way, it may not be suitable to process materials like paper that can be easily damaged.
In order to address this potential damage, coater blades can be changed as they wear in order to prevent significant damage to a backing drum. Another way to address this damage is resurfacing the surface of a damaged backing drum. However, illustrative embodiments as disclosed herein provide an apparatus, an article of manufacture, and methods for a coater blade lubricator that can prevent damage to a backing drum as a coater blade ages, or at least extend the time that a coater blade can be used before it must be replaced.
The embodiments disclosed herein can optimize lubrication of the backing drum and the coater blade in order to minimize friction between the backing drum surface and the coater blade tip at the ends, where the edge of the sheet of paper being processed is not covering the backing drum surface. In other words, it will decrease friction between the blade tip and the roll surface during paper coating. In some embodiments, the lubricant may be applied to a coater blade with a pressure and volume such that the coater blade does not contact the backing drum on the edges where there is no paper. In other words, the lubricant can essentially push the blade away from the surface of the backing drum, and the space created can be taken up by the lubricant.
In an illustrative embodiment, lubricant application devices can be attached to the ends of the coater blades. Advantageously, these devices can be attached to a coater blade when the blade is not installed in a paper coating station. This can help reduce downtime when a coater blade is changed because the lubricant applicator can be already attached to the blade before it is installed in the paper coating station.
Lubricant application as disclosed herein can also advantageously reduce temperatures locally at the tip of the coater blade and the surface of the backing drum. Another advantage of lubricating a coating process in this way is that the lubricant itself may help guide debris away from the paper and other important parts and functions of the paper coating station.
Other benefits to paper coating can be realized through the embodiments disclosed herein. Since the disclosed embodiments help prevent coater blade and backing drum wear, the life of coater blades and backing drums can be extended. Furthermore, operator safety can be improved. First, since parts will need to be replaced less often there are fewer chances of injury while replacing and moving parts. This is particularly true here where a coater blade may present laceration hazards and a large backing drum may present crushing hazards or potential pinch points. Furthermore, the embodiments disclosed herein prevent an operator from attempting to manually adjust or configure coating or lubricating devices.
In an illustrative embodiment, lubricant is spread by a lubricant application device directly into a blade nip. A blade nip generally refers to the area between a coater blade and the backing drum. Often, a coater blade is oriented to be at angle. In other words, an imaginary line extending from the blade in this embodiment would not pass through the center of a circular cross section of the backing drum. Accordingly, in such an embodiment, the blade nip may include a space between the coater blade and the backing drum that is a function of the angle of the coater blade relative to the backing drum.
In an illustrative embodiment, the lubricant application device is a lubricant applicator strip. Such a strip is capable of lubricating the full width of the blade nip where there is no paper on the surface of the backing drum. Additionally, the lubricant applicator strip may lubricate a portion of the surface of the paper that is passing around the backing drum. In this way, the lubricant applicator strip can effectively lubricate a portion of the backing drum at an edge region (i.e., where the edge of the paper is on the backing drum). Additionally, if the paper width changes, this can effectively lubricate the backing drum even if the edge region or edge of the paper changes location (because of a change in the paper width). Similarly, such a lubricant applicator strip can lubricate the backing drum if different paper rolls with different widths are used without needing to adjust the location of the lubricant applicator strip. The lubricant applicator strip may be formed out of many various materials, including metal, plastic, synthetic plastic, etc. The lubricant applicator strip can be attached to the coater blade with any appropriate attachment mechanism. For example, the attachment mechanism may include clamps, pressure, friction, screws, adhesives, etc.
The lubricant is then applied from the lubricant applicator strip. The lubricant can be applied with a pressure such that the lubricant pushes the tip of the coater blade away from the surface of the backing drum. Such pressure can create a constant film on the backing drum surface separating the backing drum surface and the tip of the coater blade. This can prevent contact and friction between the surface of the backing drum and the coater blade.
The lubricant applicator strip can further be designed and located on the coater blade such that excess lubricant can flow out toward the edge of the backing drum, which can further remove debris from the area. The lubricant applicator strip can further include a guiding wall (or lip) for the lubricant on the side of the applicator near the backing drum. The guiding wall can create a pressurized cavity for the lubricant between the lip, the coater blade, and the surface of the backing drum, which can help supply pressure to reduce friction or contact between the coater blade and the backing drum. Furthermore, the pressurized cavity can help reduce excess lubricant backflow. In other words, the pressurized cavity can cause a space to form between the coater blade and the surface of the backing drum, either dramatically reducing friction between the coater blade and the backing drum, or even preventing the coater blade and the backing drum from contacting each other.
Any lubricant that has flowed away from the blade nip can be collected by the system. For example, the paper coating station can have an excess coating collection system. In one embodiment, the coating collection system may be used to collect the excess lubricant. If the lubricant is the same as the coating, the collected liquid can be reused in the system. In another embodiment, the system may have a separate collection system for the lubricant. In this embodiment, the lubricant may also be reused after being collected by the collection system.
The first section 110 includes a plurality of ridges 115. The ridges 115 allow for a connection to a hose, such as a rubber or plastic hose. Such a hose can stay attached based on compression and friction with the ridges 115. Advantageously, the ridges 115 also allow for quick set up when and if a coater blade needs to be changed. That is, it is not difficult or time consuming to attach a hose to the first section 110 with the ridges 115. The first section 110 is hollow such that lubricant can pass through it. In other words, the first section 110 includes an inner surface defining a lumen through which lubricant may pass. Additionally, the first section 110 has an opening or connector on the left hand side of
The second section 105 of the lubricant applicator strip includes a top side 150 and a bottom side 155. Similarly, the front view 100 of
The second section 105 of the lubricant applicator strip includes screws 125 and 130. Here only the end of the screws 125 and 130 are shown. The heads of the screws 125 and 130 are hidden. Although not shown here, the lubricant applicator strip could be attached to a coater blade on the back face. The screws 125 and 130 would then extend through the coater blade and the lubricant applicator strip to secure the lubricant applicator strip to the coater blade. The head of the screws 125 and 130 would therefore be on the opposite side of the coater blade than the lubricant applicator strip. In alternative embodiments, different attachment mechanisms may be utilized to attach the lubricant applicator strip to the coater blade.
The second section 105 further includes various openings 135, 140, and 145. Here, the openings 135, 140, and 145 are circular in shape. However, since the openings 135, 140, and 145 actually extend from the front face further into the second section, the openings 135, 140, and 145 are actually cylindrical in shape, thus a circular cross section. In alternative embodiments, the openings 135, 140, and 145 may have different cross sectional shapes than a circle. For example, the cross section may be square shaped, triangle shaped, polygon shaped, or some other shape entirely. In another example, the openings 135, 140, and 145 may still have a circular cross section, but may actually be conical in shape. This shape could be used as a nozzle to increase or decrease pressure of the lubricant being sprayed onto the coater blade and/or the backing drum. Further, in this embodiment, the screws 125 and 130 are currently using openings that were (before they had screws in them) similar to the openings 135, 140, and 145 as shown. In other words, if another attachment mechanism is utilized, the lubricant applicator strip may include additional openings than those shown here. Further, less or more openings than those openings shown in
Also in the second section 105 is an inner surface that defines a lumen 120. The lumen 120 and the lumen in the first section 110 may be considered the same lumen, as they are connected. The lumen 120 is shown by a dotted line in
In the present embodiment, an opening such as the opening 130, is approximately 1.5 mm (0.0591 in) in width. In different embodiments, the openings may be another size, such as approximately 0.5-3.0 mm (0.0197-0.118 in) in width. In the present embodiment, the space between openings is approximately 1.0 cm (0.394 in). The space between openings may be other distances as well, such as approximately 0.5-1.5 cm (0.197-0.591 in). In the present embodiment, the first section 110 is approximately 1.8 cm (0.709 in). In other embodiments, the section 110 may be other lengths, such as, by way of example only, 1.0-3.0 cm (0.394-1.181 in). In the present embodiment, the second section 105 is approximately 17.6 cm (6.93 in) in length. In other embodiments, the section 105 may be other lengths, such as 10-30 cm (3.94-11.81 in). None of the dimensions disclosed herein are meant to be limiting. Instead, the dimensions are disclosed merely to demonstrate possible embodiments of the system.
The lubricant applicator strip is narrower on the left side of
In another illustrative embodiment, a lubricant applicator strip may be used without applying any additional lubricant to the backing drum, paper, or coater blade. In this embodiment, the lubricant applicator strip may simply not be connected to a lubricant supply, or the lubricant applicator strip may be designed specifically not to receive a lubricant supply but may be otherwise shaped like lubricant applicator strips as disclosed herein. In this embodiment, coating or lubricant that is already on the paper and/or backing drum can still be recirculated with a guiding wall or lip as disclosed herein to provide lubricant and/or a pressurized cavity at the coater blade, reducing the friction between the coater blade, paper, and backing drum.
Also shown in
The left view 300 also shows the guiding wall 305 and the guiding wall 310. When attached to a coater blade, one guiding wall will be closest to where a coater blade tip and backing drum would meet (and thus only one guiding wall might be used for creating a pressurized cavity that reduces the friction between the coater blade and backing drum). However, the second guiding wall may still be included on the lubricant applicator strip. In this way, the lubricator applicator strip may be used on either end of a coater blade (one would not utilize specially configured lubricant applicator strips for each end of a coater blade). However, in an alternative embodiment, the lubricant applicator strip may have only one guiding wall, such as the guiding wall 305. In another alternative embodiment, a lubricant applicator strip may have no guiding walls.
The guiding wall 305 extends from the top face of the lubricant applicator strip 105. The guiding wall 310 extends from the bottom face of the lubricant applicator strip 105. As shown in
The coater blade 405 can be different sizes. For example, the coater blade 405 can be 0.508 mm (0.02 in) thick, 82.55 mm (3.25 in) wide, and 7.640 m (300.8 in) long. In other embodiments, other sizes of coater blades may be used. The size of the coater blade may depend on the desired functionality of the blade and the coater machine used in the process of coating the paper.
The lubricant applicator strip 105 includes the top side 150, the bottom side 160, the ridges 115, the screw 125, and the opening 135 are shown in
The lubricant applicator strips 105 and 430 are attached to the coater blade 405 using the screws 125 and 435 (as well as other screws shown in
The lubricant applicator strips 105 and 430 are placed toward the coating material 415 of the coater blade 405, but not actually covering the material 415 or the tip 410. In this way, the lubricant applicator strips 105 and 430 may be able to adequately spray the nip and the area where the tip 410 of the blade contacts paper and a backing drum. The lubricant applicator strips 105 and 430 may be placed, for example, about 2 cm (0.79 in) from the tip 410 of the coater blade 405. Additionally, a hose 420 is attached to the lubricant applicator strip 105 at the ridges 115. A hose 425 is attached to the lubricant applicator strip 430. In this way, lubricant can be pumped or otherwise passed through the hoses 420 and 425 into the lubricant applicator strips 105 and 430. The lubricant can then be sprayed out of the lubricant applicator strips 105 and 430 out of, for example, the openings 135 and 440. Here, the hose 420 is attached to the lubricant applicator strip 105 by pressure on the hose from the ridges 115. That is, the inner diameter of the hose 420 is slightly smaller than the largest diameter of the ridges 115. However, the hose 420 is somewhat flexible, allowing for adequate attachment to the lubricant applicator strip 105. The hose 425 is similarly attached. In other alternative embodiments, the hoses 420 and 425 may be attached in other ways. For example, the hoses may also be attached using clamps, adhesives, or some other attaching or sealing mechanism.
In an alternative embodiment, the coating may be applied to the paper 505 at a coater head 530 instead of or in addition to the coating being applied at the coating applicator 525. In this way, the coating may be applied to the paper closer to a coater blade 535.
Lubricant applicator strips 630 and 615 are located on the coater blade 610 as disclosed herein. Here, the lubricant applicator strips 630 and 615 are attached to hoses 635 and 620, respectively. As disclosed herein, the hoses 635 and 620 can transport lubricant to the lubricant applicator strips 630 and 615, so that the lubricant applicator strips 630 and 615 can apply the lubricant to the backing drum 600 and the paper 605. The lubricant is applied by spraying the lubricant in a nip between the coater blade 610 and the paper 605/backing drum 600. As disclosed herein, the pressure of the sprayed lubricant from the lubricant applicator strips 630 and 615 can keep the coater blade 610 from contacting the backing drum 600.
The lubricant applicator strips 630 and 615 are oriented so that surface area of the backing drum 600 that is not covered by the paper 605 is adequately lubricated as the backing drum 600 turns. Additionally, the lubricant applicator strips 630 and 615 also extend to a portion of the paper 605. In this way, the lubricant applicator strips 630 and 615 adequately lubricate an area, for example area 640, where the paper 605 terminates and the backing drum begins. The lubricant applicator strips 630 and 615 may also lubricate a portion of the paper 605 during operation.
In order to open the blade clamp 725, the second air tube can be inflated to push the upper region 745. The first air tube can be deflated so that the lower region 740 can move in a way that opens the blade clamp 725. In alternative embodiments, the blade clamp 725 may move around the hinge 730 in other ways. For example, hydraulics or other mechanisms may control the movement of the blade clamp 725. In other embodiments, the blade clamp 725 may be manually adjusted.
The blade clamp 725 includes a blade clamp jaw 720 that clamps down on the coater blade 710 to hold it in place. On the other side of the coater blade 710, a blade holder 715 also helps secure the coater blade 710. The blade holder 715 includes a fulcrum 750, which contacts the coater blade. Additionally, a lip 755 may allow the coater blade 710 to rest on the lip 755 of the blade holder 715. The fulcrum 750 may be different mechanisms. For example, the fulcrum 750 may be a solid fulcrum bar that extends the length of the coater blade 710. In another example, the fulcrum 750 may be a third air tube. The air tube may be deflated while removing or loading the coater blade 710 and inflated to secure the coater blade in place after loading. An air tube in this configuration also provides for some calibration in how securely the coater blade 710 is held in place. The pressure with which air is filled into the air tube can impact how much give the air tube has, and consequently can impact the amount of pressure the coater blade 710 applies to the backing drum 700 and the paper 705. As a result, the air pressure in the air tube may be calibrated to allow the coater blade 710 to apply a proper amount of pressure for spreading coating on the paper 705 and removing excess coating, while not exerting excessive pressure on the coater blade 710 that could cause excessive wear on the coater blade 710 due to increased friction with the backing drum 700. In other alternative embodiments, other mechanisms may be used to hold a coater blade in place.
In one alternative embodiment, an air tube that acts as the fulcrum 750 may include multiple air tubes. For example, there may be three air tubes: one that spans a majority of the length of the coater blade 710 that is in between two shorter air tubes on each end of the coater blade 710. In this embodiment, the two air tubes on each end of the coater blade 710 can roughly correspond to the location of lubricant applicator strips on each end of the coater blade 710, such as the lubricant applicator strip 735 shown in
The lubricant applicator strip 735 is located on the coater blade 710 as disclosed herein. In an alternative embodiment, the lubricant applicator strip 735 may not be attached to the coater blade 710. For example, the lubricant applicator strip 735 may instead be attached to or incorporated in the blade clamp 725 or the blade holder 715. In another example, the lubricant applicator strip 735 may have its own support mechanism and may not be attached to any of the components shown in
The hose connector 805 is connected to an inner surface that defines a first lumen 815. In other words, when a hose is connected to the hose connector 805, lubricant can flow through the hose connector 805 into the first lumen 815 of the lubricant applicator strip 800. The first lumen 815 is connected to several openings, including opening 820. The lubricant in the first lumen 815 can flow out through the openings. When the lubricant applicator strip 800 is used in various embodiments as disclosed herein, the lubricant that comes out of the openings flows into a nip between a coater blade and a backing drum, lubricating the two and decreasing wear on both the coater blade and the backing drum. In an illustrative embodiment, the lubricant can create a pressurized cavity between the coater blade and the backing drum.
The hose connector 810 is connected to an inner surface defining a second lumen 825. In other words, when a hose is connected to the hose connector 805, lubricant can flow through the hose connector 810 into the second lumen 825 of the lubricant applicator strip 800. The second lumen 825 is connected to several openings, including opening 830. The lubricant in the second lumen 825 can flow out through those openings. When the lubricant applicator strip 800 is used in various embodiments as disclosed herein, the lubricant that comes out of the openings flows into a nip between a coater blade, a backing drum, and paper rotating around the backing drum, lubricating the system and decreasing wear on both the coater blade and the backing drum. In an illustrative embodiment, the lubricant can create a pressurized cavity between the coater blade and the backing drum.
Advantageously, the embodiment shown in
Another advantage of the embodiment shown in
The lubricant applicator strip 800 also includes an indicator strip 835. The indicator strip can indicate exactly where the openings associated with the region 840 end and the openings associated with the region 845 begin. The indicator strip 835 may be a bright color. The indicator strip 835 may go all the way around each surface of the lubricant applicator strip 800. The indicator strip 835 may be particularly helpful where an operator or computer with a visual sensor is attempting to adjust the lubricant applicator strip 800 to properly spray the first and second lubricants where desired. That is, the indicator strip 835 may be used to properly align the regions 840 and 845. In an alternative embodiment, the regions 840 and 845 (i.e., the areas where the first and second lubricant area sprayed) may overlap somewhat. Advantageously, the indicator strip 835 may be visible even if the lubricant applicator strip 800 is currently spraying lubricant.
Various lubricants may be used in the system. For example, latex lubricants, carboxymethyl cellulose (CMC) lubricants, starch lubricants, and/or calcium stearate lubricants may be used in various embodiments of the system and methods disclosed herein.
The bracket 905 is designed to house a lubricant applicator strip. Such a lubricant applicator strip may be inserted into a receiving hole 910. The lubricant applicator strip would be shaped in order to fit into the receiving hole 910. Additionally, the receiving hole in
The bracket 905 also includes a window 920. The window allows for a lubricant applicator strip inserted into the bracket 905 to properly spray lubricant out of the openings of the lubricant applicator strip. The lubricant applicator strip may also be secured within the bracket 905 to ensure that the lubricant applicator strip does not slide out of the bracket 905. Additionally, the lubricant applicator strip may be adjusted laterally within the bracket 905, and secured at the desired position.
For example, a lubricant applicator strip similar to the lubricant applicator strip 800 shown in
The lubricant applicator strip can then be secured at the desired lateral location to align the spraying of the two lubricants as desired. This may be helpful if a roll of paper is uneven, then the lubricant applicator strip can be adjusted. In another example, this may be helpful if a plant is changing rolls that will be processed, and those rolls have different widths. In these examples, the lubricant applicator strip can be adjusted during the downtime, such as during the of changing rolls or could be adjusted real time while a coater station is operational. Furthermore, if a lubricant applicator strip has an indicator strip such as the indicator strip 835 as shown in
The lubricant applicator strip 1505 may be a lubricant applicator strip similar to the one shown in
The lubricant applicator strip 1505 may attach to the coater blade in a variety of ways. For example, the lubricant applicator strip may be attached using clamps, pressure, friction, screws, adhesives, or other attachment mechanisms. For example, the lubricant applicator strip 1505 may be clamped together with the sliding attachment 1510. In another example, the nozzles of the lubricant applicator strip 1505 may be sized such that the outside diameter of the nozzles are slightly larger than the inside diameter of the perforations in the coater blade 1500. In this way, inserting the nozzles into the perforations of the coater blade 1500 may cause significant pressure to significantly attach the lubricant applicator strip 1505. In another example, pressure may be generated between a crossbar 1540 of the sliding attachment 1510, such that the pressure holds the sliding attachment 1510 and the lubricant applicator strip 1505 together around the coater blade 1500. In an alternative embodiment, the sliding attachment may not have any crossbars to generate pressure with the nozzles. In another alternative embodiment, the nozzles may not protrude from the surface of the coater blade 1500 significantly so that a crossbar of the sliding attachment 1510 would not contact a nozzle. In another example of how the lubricant applicator strip 1505 may be attached to the coater blade, the lubricant applicator strip 1505 may be attached using screws, nuts and bolts, rivets, adhesives, welds/tacks, or other attachment mechanisms. Such attachment mechanisms, such as a screw 1550, may also be used to attach the sliding attachment to the coater blade 1500. In one embodiment, screws, for example screw 1550, may be long enough to extend through the sliding mechanism 1510, the coater blade 1500, and the lubricant applicator strip 1505 in order to secure each one of them together.
In another illustrative embodiment, screws, such as screw 1555 may be used in a set screw type arrangement. In this arrangement, screws in the sliding mechanism 1510 can, when the three pieces shown in
The sliding mechanism 1510 may be moved to direct the angled portion 1545 over particular nozzles, such as the nozzle 1520. Here, only the spray from the nozzles associated with a second lubricant from the lubricant applicator strip 1505 can be affected by the angled portion 1545. In other embodiments, the angled portion may be directed to affect the spray of other lubricants and/or nozzles.
By adjusting the angled portion 1545 over the nozzle 1520 and/or other nozzles within the space 1560, a user or controller may adjust exactly where the lubricant from the nozzle(s) is being sprayed. This is advantageous because different paper rolls may vary in width, either between rolls or within rolls. For example, the sliding mechanism 1510 may be adjusted to accommodate rolls that are different in width by 2.54 cm (1.0 in). Other differences in paper roll widths may include 1.27 cm (0.5 in), 3.81 cm (1.5 in), 5.08 cm (2.0 in), 6.35 cm (2.5 in), or other dimensions. Being able to direct lubricant is advantageous because the area were the paper roll terminates wears the coater blade 1500 faster because of added friction at that point. By being able to target lubricant flow by adjusting the sliding mechanism 1510 and the angled portion 1545, the friction at the paper edge or edge region, tip of the coater blade, and backing drum can be reduced, thereby offering advantages in coater blade and backing drum wear.
In an operation 1010, as the backing drum is rotated, paper is received onto the location of the backing drum. As the backing drum rotates, the received paper is rotated along with the backing drum. That is, the location of the backing drum and the paper move together during after the operation 1010. In an operation 1015, a coating is applied to the paper that is rotating with the drum. The coating is applied to the side of the paper not in contact with the backing drum.
In an operation 1020, lubricant is applied to the edge of the backing drum at the edge of a coater blade. Since the paper may not cover the entire surface of the backing drum, lubricant is applied to the portion of the backing drum that is exposed (i.e., does not have paper covering it). The lubrication is applied at or near the coater blade. The lubrication may be applied using any of the embodiments disclosed herein. As disclosed herein, the lubrication of the coating blade and the backing drum helps prevent wear on the coating blade and the backing drum. The lubrication can also create a pressurized cavity that keeps lubrication between the tip of the coating blade and the backing drum continuously during operation. In an operation 1025, the coater blade spreads the coating on the paper and removes excess coating from the paper as the backing drum continues to rotate the paper.
In an operation 1110, the lubricant also removes debris from the blade nip (area between the coater blade and the backing drum) where the backing drum is not covered with paper. Removing debris can make the coating process work more smoothly and prevent downtime. For example, keeping the blade nip free of debris can help prevent the blade from wearing faster, can help prevent breaks in the paper roll, prevent down time for cleaning, and/or prevent an operator from trying to clear debris during operation of a coating station.
In an operation 1115, the lubricant is guided to a collection and return system. In this embodiment, the lubricant can be collected and reused by the system to prevent waste. In one illustrative embodiment, the lubricant may be the same fluid as the coating applied by the coating station. If so, a coating collection and return system may also collect the lubricant. The coating and lubricant collected from the process can then be reused as coating and/or lubricant without discrimination. If the lubricant applied is different than the coating, there may be separate collection and return systems for each of the coating and the lubricant. In an alternative embodiment, the lubricant may be different from the coating and both the lubricant and the coating may be collected by the same system. However, a return system may not be used, or the collected combined liquid may be processed before returning it for use as coating and/or lubricant.
In an operation 1210, openings in the lubricant applicator strip are created that connect the lumen(s) or hollow space(s) of the lubricant applicator strip to outside of the lubricant applicator strip. In this way, the lubricant can pass through the lumen(s) or hollow space(s) and through the openings into a blade nip as disclosed herein. In an alternative embodiment, the openings may be originally formed with the lubricant applicator strip and may not be separately created, machined, or punched out as shown in the operation 1210.
In an operation 1215, the lubricant applicator strip is attached to a coater blade. The lubricant applicator strip can be attached to a coater blade before or after a coater blade is installed in a coating station. Installing the lubricant applicator strip before or concurrent with installing the coater blade in a coating station may be easier and reduce time spent installing the lubricant applicator strip. If the lubricant applicator strip is installed after the coater blade is completely installed, it may take more time or effort, and even may cause the coater blade to be partially uninstalled to install the lubricant applicator strip.
In an operation 1220, the coater blade with the attached lubricant applicator strip is installed in the paper coating station. The hoses or other mechanism for getting the lubricant to the lubricant applicator strip can also be attached.
In an operation 1315, the area where the first and second lubricants are applied is adjusted based on paper width changes. In other words, if the paper width changes, the first lubricant may no longer be applied to the area where the paper terminates on the backing drum. Accordingly, the areas where the first and second lubricants are applied can be adjusted as disclosed herein.
In an operation 1410, the coater blade is installed into a paper coating station. In an operation 1415, the coater blade, during operation of the paper coating machine, deflects more in areas where the coater blade has been perforated, which reduces friction between the blade and the backing drum. In another embodiment, the coater blade may not actually deflect more, but, due to the perforation, the coater blade may exert less pressure or force onto the backing drum. In this way, there may be less friction and wear on the coater blade and the backing drum.
In alternative embodiments, the coater blade may not be perforated. Instead the blade may be thinned, etched, routed, or otherwise weakened or scaled back from its original state. Although not a perforation as described above, such methods may similar weaken a coater blade in strategic locations to reduce the pressure of the coater blade on the backing drum and subsequently reduce friction between the backing drum and the coater blade.
A front part 1630 of the lubricant applicator strip may include a second lubricant opening 1635 and a lubricant nozzle 1645. The lubricant nozzle 1645 may be variously sized or positioned along the length of the front part 1630. Additionally, for both the lubricant nozzle 1645 and the lubricant nozzle 1620, the nozzles may not (as shown here) be located in the same cross-sectional area. In this way, different lubricants can be sprayed onto different parts of the backing drum, coater blade, and/or paper. For example, the lubricant from the lubricant nozzle 1645 may be directed at the edge of the paper or the edge region on the backing drum.
The lubricant sprayed from the lubricant nozzle 1645 may be directed by an angled portion of the front part 1630 to spray toward paper 1625 in a pressurized cavity 1640. The lubricant sprayed from the lubricant nozzle 1620 may be directed in a direction 1660 toward the paper 1625 by an angled portion 1655 after passing through an opening 1650 in the front part 1630. As demonstrated below, the front part 1630 may be adjusted laterally such that the opening 1650 and or the nozzle 1645 is aimed at different parts of the backing drum, the paper 1625, and/or the coater blade.
is a illustrative embodiment, various methods and systems disclosed herein may be accomplished through use of a controller. For example, a controller may automatically adjust the air pressure of air tubes used in a coating station. A controller may automatically adjust flow levels of lubricant through a lubricant applicator. A controller may also automatically adjust the orientation of a lubricant applicator based on a position of the edge of paper on a backing drum. A variation of controller may include an electronic device, which may include integrated circuits and/or a computing device that controls various electrically controlled valves, pumps, motors, and magnets. Using computer readable instructions, a computing device may provide control signals to components of the systems disclosed herein in order to carry out the functions methods of the various embodiments discussed herein. Such a controller may send electrical signals in order to turn on and off valves, turn on or off various pumps, motors, backing drums, coating stations, etc. or adjust speeds or settings of various pumps, motors, backing drums, coating stations, etc.
In an illustrative embodiment, any of the operations described herein can be implemented at least in part as computer-readable instructions stored on a computer-readable medium or memory. Upon execution of the computer-readable instructions by a processor, the computer-readable instructions can cause a computing device to perform the operations.
The foregoing description of illustrative embodiments has been presented for purposes of illustration and of description. It is not intended to be exhaustive or limiting with respect to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosed embodiments. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
This application is a US national phase of PCT/FI2015/050796 filed on Nov. 17, 2015 and claims priority on U.S. provisional application No. 62/081,229 filed on Nov. 18, 2014 both of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2015/050796 | 11/17/2015 | WO | 00 |