This invention relates to lubricant compositions having utility in numerous applications, particularly in connection with gear, transmission and/or axle applications in the automotive and machinery industries. In preferred aspects, the present invention is directed to lubricant compositions having particular advantages as axle fluids, and more particularly as heavy duty axle fluids.
An important function of lubricant compositions, and in particular, gear and axle lubricant fluids, is to provide a high degree of reliability and durability in the service life of equipment in which it is installed. With the increasing costs of energy, particularly gasoline and diesel fuel, the ability of such lubricants to aid in the overall fuel economy of the vehicles in which they are used has become an increasingly important factor in the selection of gear and axle lubricants. Applicants have come to appreciate that by improving the axle efficiency, particularly in heavy duty applications such as Class 8 line haul trucks and vocational vehicles, the fuel efficiency of the vehicles can be improved.
Lubricating oils in general, and gear and axle lubricants in particular, must satisfy a large number of performance criteria to be commercially successful. For example, a commercially successful axle lubricant will frequently be required to possess a high degree of oxidative stability, compatibility, shear stability, corrosion avoidance or resistance, wear protection, shiftability, and extended drain. These properties represent a difficult-to-achieve set of performance criteria that is made all the more difficult to achieve if the requirement of enhancing fuel efficiency is also added.
Applicants have developed improved lubricant compositions, and in many embodiments lubricant compositions, that satisfy at a high level of performance, many, and preferably all, of the criteria mentioned above. As used herein, the term “lubricant composition” is used in its broadest sense to include fluid compositions that are used in applications involving metal-to-metal contact of parts in which at least one function of the fluid is to inhibit or reduce friction between the parts. As such, the term “lubricant composition”, as used herein, includes gear oils, axle oils and the like.
Preferably the lubricant compositions of the present invention comprise (a) basestock; (b) viscosity improver; and (c) at least one additive to inhibit, and preferably substantially prevent, one or more of wearing, scuffing, micropitting and combinations of these and other deleterious effects. In preferred embodiments the lubricant compositions of the present invention comprise (a) basestock comprising poly-alpha-olefin (hereinafter referred to as “PAO”), preferably low viscosity PAO, and even more preferably a PAO having a viscosity of not greater than about 12 centistokes (cSt), and optionally an ester oil; (b) viscosity improver comprising at least one high viscosity PAO-type viscosity improver, preferably having a viscosity of greater than about 40 centistokes (cSt), and even more preferably from about 40 to about 1000 cSt; and (c) a performance additive package comprising at least one additive effective to improve at least one property of the lubricant and/or the performance of the equipment in which the lubricant is to be used. In certain preferred embodiments, the performance additive comprises at least one sulfur-containing compound and at least one phosphorous-containing compound.
Applicants have found that preferred lubricant compositions of the present invention exhibit and/or produce one or more, and preferably all, of the following advantageous properties: reduction of viscous drag over the application temperature range; film thickness reduction; and churning loss reduction.
In preferred embodiments, the present lubricant compositions exhibit a horsepower (HP) loss reduction, as described and measured in connection with the examples hereof, of at least about 3%, more preferably at least about 4%, and even more preferably at least about 5%.
In preferred embodiments, the present lubricant compositions exhibit a sump temperature reduction, as described and measured in connection with the examples hereof, of at least about 2%, more preferably at least about 5%, and even more preferably at least about 7%.
Other embodiments of the present invention are directed to methods of making and using a fully formulated lubricant, including a fully formulated heavy duty axle fluid. A final embodiment of the invention is directed to axle, gear, transmission and/or drive systems containing such oils.
The present invention is directed in one aspect to lubricant compositions comprising at least one base stock, at least one viscosity enhancer for the base stock, and at least one additive. In general, it is contemplated that these components of the present invention may be present in the compositions in widely varying amounts depending on the particular needs of each application, and all such variations are considered to be within the broad scope of the invention. Nevertheless, applicants have found that in certain preferred embodiments, the present lubricant compositions are formulated according to the following preferred ranges of components, it being understood that all percentage values indicated in Table 1 are modified by the word “about”.
With respect to certain preferred embodiments, the base stock comprises at least one low viscosity PAO and at least one adipate ester. While it is contemplated that a wide range of relative concentrations of such components may be present, in general it is preferred that the base stock of the present invention comprise in certain embodiments a PAO:ester weight ratio of from about 0.5 to about 12:1, and more preferably of from about 0.5 to about 12:1. In certain embodiments it is also preferred that the viscosity improver comprise a high viscosity PAO (hereinafter HVPAO) and an additional additive selected from the group consisting of PIB (polyisobutylene), PMA (polymethacrylate), or OCP (olefin co-polymer), and combinations of two or more of these. While it is contemplated that a wide range of relative concentrations of such components may be present, in general it is preferred that the viscosity enhancer of the present invention comprise in certain embodiments an additional additive:HVPAO weight ratio of from about 0 to about 4:1, and more preferably of from about 0.2 to about 4:1.
Applicants have found that in certain preferred embodiments the present lubricant compositions are formulated according to the following preferred ranges of components, it being understood that all percentage values indicated in Table 2 are modified by the word “about”.
Although it is contemplated that the PAO used in connection with the base stock component of the present invention may vary widely in particular properties and/or structures, in certain embodiments the PAO component is a PAO having a viscosity of from about 4 to about 12 cSt. In preferred embodiments the PAO is selected from group consisting of PAOs having a viscosity of about 4, 6, 8, 10, 12 or combinations of two or more of these. In certain preferred embodiments, the PAO used in connection with the base stock component of the present invention is comprised of oligomeric compounds having from 2 to about 3 units, preferably units of 1-decene.
Although it is also contemplated that the PAO used in connection with the viscosity enhancer component of the present invention may vary widely in particular properties and/or structures, in certain embodiments the PAO component of the viscosity enhancer comprises, and preferably in certain embodiments consists essentially of a PAO having a viscosity greater than about 40 cSt, and even more preferably from about 40 to about 1000 cSt. In preferred embodiments, the PAO component of the viscosity enhancer is comprised of polymeric compounds having greater than about 50 units, more preferably having greater than about 75 units and even more preferably having greater than about 100 units, preferably units of 1-decene.
Applicants believe that, in general, numerous particular compounds or combinations of compounds are available for use in connection with each of the ingredients as described herein. With respect to the optional adipate ester, it is preferred in certain embodiments that the adipate ester comprises a decyl adipate, and even more particularly, of one or more adipate esters selected from the group consisting of di-isodecyl adipate, and di-tridecyl adipate. In a further embodiment, the preferred ester comprises di-isodecyl azelate.
In certain preferred embodiments, the present lubricant compositions are formulated in accordance with Tables 3 or 4 below, it being understood that the amounts are weight percentages and the each value is understood to be preceded by the word “about”.
The following examples are provided for the purpose of illustrating the present invention but without limiting the scope thereof.
The average horsepower loss (“AHPL”) is one measure that can be used to represent the performance of a lubricant composition, particularly an axle or gear oil, with respect to the fuel economy impact on the vehicle in which it will be used. In order to obtain information regarding the relative performance of certain preferred lubricants in accordance with the present invention, a testing protocol is used in which a commercial axle is attached to a dynamometer which es the input and the output torque on the axle. This test is run for comparison purposes with several commercially available lubricants and also with two formulations in accordance with the preferred embodiments of the present invention. In order to help assess the relative performance of the different lubricant formulations, a commercially available product sold under the trade designation EMGARD® 2986 is tested several times (identified with row headings C1A-C1F) in order to establish an average value for comparison purposes, which values are reported at the end of Table 5. The results of the test done in connection with the commercially available products are identified across the row headings C1-C4 in Table 5. The results of the tests performed in connection with four lubricant compositions of the present invention are reported-as E1-E4.
As can be seen from Table 5, the lubricant composition in accordance with the present invention labeled E2 exhibited a 5.4% relative improvement in energy efficiency compared to the average established for EMGARD® 2896. The formulation designated as E2 in Table 5 consisted essentially of (CAS #770-11-11) di-isodecyl adipate (5%). PAO 8 (56.6%). PAO 100 (28%). ANGAMOL® 6004J (10%), HiTEC 5739 (0.3%), E-9817U (0.1%), with all amounts being reported on the basis of weight percent. Also as can be seen from Table 5 above, the lubricant composition in accordance with the present invention labeled E3 exhibited a 3.7% relative improvement in energy efficiency compared to the average established for EMGARD® 2896. The formulation designated as E3 in Table 5 consisted essentially of (CAS #770-39-1) di-isodecyl adipate (5%), PAO 8 (56.6%), PAO 100 (13%), INDOPOL® H-1500 SPA (13%), ANGAMOL® 6004J (10%), HiTEC 5739 (0.3%), E-9817U (0.1%), with all amounts being reported on the basis of weight percent. And finally, the lubricant composition in accordance with the present invention labeled E4 exhibited a 4.3% relative improvement in energy efficiency compared to the average established for EMGARD® 2896. The formulation designated as E4 in Table 5 consisted essentially of (CAS #770-42-1) di-isodecyl adipate (5%), PAO 8 (51.6%), PAO 100 (33%), ANGAMOL® 6004J (10%), HiTEC 5739 (0.3%), and E-9817U (0.1%), with all amounts being reported on the basis of weight percent.
Several properties exist which, at least in certain applications, are considered relevant to the effectiveness of lubricant compositions. Tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in Table 6. The results of the tests performed in connection with two lubricant compositions of the present invention are based on the same formulation reported in Table 5 as E1 and E2, but labeled in Table 6 with row headings Cognis #2 and Cognis #3, respectively.
Based upon the results reported in Table 6, it is seen that the lubricant compositions in accordance with the present invention exhibit excellent shear stability and low temperature properties relative to leading commercially available axle lubricants.
Several properties exist which, at least in certain applications, are considered relevant to the anti-corrosion and anti-wear abilities of lubricant compositions. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in Table 7. The results of the tests performed in connection with two lubricant compositions of the present invention are based on the same formulation reported in Table 5 as E1 and E2, but labeled in Table 7 with row headings Cognis #2 and Cognis #3, respectively.
Based upon the results reported in Table 7, it is seen that the lubricant compositions in accordance with the present invention exhibit excellent corrosion resistance and wear resistance properties.
Several properties exist which, at least in certain applications, are considered relevant to the stability of lubricant compositions in the environment of use. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in the Table 8. The results of the tests performed in connection with two lubricant compositions of the present invention are based on the same formulation reported in Table 5 as E1 and E2, but labeled in Table 8 with row headings Cognis #2 and Cognis #3, respectively.
Based upon the results reported in Table 8, it is seen that the lubricant compositions in accordance with the present invention exhibit excellent stability.
Several properties exist which, at least in certain applications, are considered relevant to the ability of lubricant compositions to have a positive effect on the control of sludge creation and/or build up in the environment of use. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in the Table 9, and associated
Based upon the results reported in Table 9 and
Several properties exist which, at least in certain applications, are considered relevant to the ability of lubricant compositions to resist or reduce the rate of wear of the moving metal parts with which it is in contact in the environment of use. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in the Table 10. The results of the tests performed in connection with two lubricant compositions of the present invention are based on the same formulation reported in Table 5 as E1 and E2, but labeled in Table 10 with row headings Cognis #2 and Cognis #3, respectively.
Based upon the results reported in Table 10, it is seen that the lubricant compositions in accordance with the present invention exhibit excellent wear resistant properties.
The frictional properties of a lubricant composition are in general considered to be highly relevant to the ability of lubricant compositions to exhibit superior performance in the environment of use. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in
One method of testing the frictional properties of lubricant is to utilize a 19.05 mm (¾ inch) steel ball and 46 mm diameter steel desk. The ball is loaded against the face of the disc and the ball and the disc are driven independently to create a mixed rolling/sliding contact. The force between the ball and disk is measured by a force transducer. Additional sensors measure the applied load, the lubricant temperature and (optionally) electrical contact resistance between specimens and the relative wear between them. A schematic diagram of such a test apparatus is provided in
Such an apparatus is used to test lubricant compositions in accordance with the present invention, using a film thickness of one to 1000 nm (±1 nm), speeds of 0.010-1.0 m/s, loads of 100 N, a slide/roll ratio (SSR) of 50%, contact pressures of up to approximately 3.0 GPa, a temperature range of from 40 to 100° C., a power supply of from 100 to about 240 V, a total weight of 50 kg and dimensions (W×H×D) of 50×50×30 cm. The results of this test indicate that lubricant compositions in accordance with preferred aspects of the present invention produce exceptionally low friction coefficients relative to other commercially available lubricant compositions, as identified in
The traction properties of a fluid in many instances are relevant to the ability of lubricant compositions to exhibit superior performance in the environment of use. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in
One method of testing the traction properties of a lubricant composition is to measure the thickness and traction properties of elastohydrodynamic lubricant (EHL) films utilizing an apparatus having at least one bowl or roller loaded against the internal diameter of a transparent ring having a larger radius than the bowl or roller. The lubricant to be tested is placed between the rotating roller and arraying thereby forming an EHL film where the ball and arraying contact. Roller and arraying rotating speeds are controlled to obtain different amounts of relative sliding motion between the respective surfaces. Contact between the surfaces and the resultant film are observed by way of a transparent ring which allows optical measurements of lubricating film thickness. Traction forces generated during contact are also measured. A schematic diagram of such a test apparatus is provided in
Such an apparatus is used to test lubricant compositions in accordance with the present invention, using a film thickness of one to 1000 nm (±1 nm), speeds of 0.010-3.5 m/s, loads of 1 to 50 N, a slide/roll ratio (SSR) of 50%, contact pressures of up to approximately 3.0 GPa, a temperature range of from 40 to 100° C., a power supply of from 100 to about 240 V, a total weight of 50 kg and dimensions (W×H×D) of 50×50×30 cm. The results of this test indicate that lubricant compositions in accordance with preferred aspects of the present invention produced acceptable film thicknesses, especially at temperatures of 40° C., relative to other commercially available lubricant compositions, as identified in
One property of lubricant compositions which is considered to be important, at least in certain applications, is the compatibility of the lubricant with nonmetal parts in the system and environment of use, especially including seals, gaskets and the like. Several tests are performed for the purpose of obtaining information regarding the relative performance of certain preferred lubricants in accordance with the present invention relative to several commercially available lubricants in connection with seal compatibility. The results of the test done for comparison purposes in connection with the commercially available products are identified under column headings EMGARD® 4209, EMGARD® 2986, Comp Q and Comp S in Table 11 and
Based upon the results reported in Table 11 and the associated graph,
This application is a continuation of U.S. application Ser. No. 13/121,121, filed on Sep. 16, 2009, which is the National Stage entry of PCT/EP09/06681, filed on Sep. 16, 2009, which claims priority to U.S. Provisional Application No. 61/100,255, filed on Sep. 25, 2008, all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61100255 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13121121 | Mar 2011 | US |
Child | 14227193 | US |