The present invention generally relates to lubricants for magnetic recording media and, in particular, relates to lubricants comprising perfluoropoyether (PFPE) terminated with benzene or functional benzene end groups for magnetic recording media structure.
Conventional lubricants used for magnetic recording media applications, such as Tetroal, have problems associated with the presence of -OH end groups. These problems include clustering due to interactions between end groups, a thicker lube layer due to formation of inverted U-shaped structures, thermal decomposition at high temperature, and lube mogul formation due to high mobility and clustering.
Some of these problems associated with conventional lubricants are illustrated in
In some aspects, the above-identified problems associated with the conventional lubricants may be eliminated or reduced by the use of perfluoropoyether (PFPE) terminated with benzene or functional benzene end groups as lubricants for magnetic recording media applications.
In certain aspects, a magnetic recording media structure is provided. The magnetic recording media structure includes a substrate, a magnetic recording layer for recording information disposed over the substrate, a protective overcoat layer for protecting the magnetic recording layer disposed over the magnetic recording layer, and a lubricant layer disposed over the protective overcoat layer and comprising a perfluoropoyether (PFPE) molecule terminated with a benzene molecule or a functional benzene molecule.
In certain aspects, a method of lubricating a hard disk drive is provided. The method includes providing a magnetic recording media stack comprising a magnetic recording layer for recording information and a protective overcoat layer disposed over the magnetic recording layer, and providing a lubricant layer disposed over the protective overcoat layer and comprising a perfluoropoyether (PFPE) molecule terminated with a benzene molecule or a functional benzene molecule.
In certain aspects, a lubricant for a magnetic recording media structure comprising a perfluoropoyether (PFPE) molecule terminated with a benzene molecule or a functional benzene molecule is provided.
Compared to conventional PFPE (Tetroal) with hydroxyl (—OH) end groups, PFPE molecules terminated with benzene or functional benzene end groups improves the surface adhesion to the protective overcoat (e.g., COC) layer 330 (
Molecular dynamic simulations have been performed using LAMMPS (Large Scale Atomistic Molecular Massively Parallel Simulator, by Sandia National Lab). In the simulations, sixteen benzene-terminated PFPE (Tetraol) molecules (MW 2000 gm/mole) were placed on a COC (diamond like carbon) surface. The COC surface is nitrogenated (10%) and contains 2% surface —OH group. Each of the head 304 and the disk 302 included a COC having surface dimensions of about 85×85 angstroms and about 10 angstroms thick. The head COC is a hydrogenated DLC.
After equilibrating the benzene-terminated PFPE on such a COC disk surface for 500 ps simulation time, it was found that the molecules formed a uniform film on the COC surface with a better surface coverage compared to —OH-terminated Tetraol with similar molecular weight (
The simulations demonstrate that benzene-terminated PFPE molecule provides a number of advantages compared to conventional lubricants. The advantages include an increased COC surface adhesion and reduced clustering. Additionally, due to absence of —OH end groups, lube clustering is reduced or eliminated. Furthermore, due to interaction of benzene rings with the COC surface, the benzene-terminated PFPE molecule provides a better surface adhesion resulting in a greater structural stability for the lubricant film.
The benzene-terminated PFPE molecule also forms a thinner film on the COC as compared to conventional lubricants such as Tetraol. In the simulations, a benzne-terminated PFPE film having a thickness of about 8 angstroms was obtained as compared to about 14 angstroms for Tetraol or other conventional lubes with similar molecular weight. As illustrated in
Interaction energy with the disk per benzene-terminated PFPE molecule is about −22.06 kcal/molecule (negative sign indicated more attractive nature, or as cohesive energy) compared to 68.98 kcal/molecule for similar molecular weight Tetraol. Thus, the benzene-terminated PFPE molecules have less mobility and lube clustering (lube mogul) is reduced under shear flow condition.
Accordingly, the use of PFPE molecules terminated with benzene or functional benzene molecules as lubricant in a magnetic recording media stack can reduce or eliminate many problems associated with conventional lubricants resulting in improved reliability and performance for the HDD. Similar benzene or functional benzene end groups may be used in other conventional lubricants to achieve better adhesion, surface coverage, thinner lube film, and reduced head media spacing.
The description of the invention is provided to enable any person skilled in the art to practice the various embodiments described herein. While the present invention has been particularly described with reference to the various figures and embodiments, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the invention.
There may be many other ways to implement the invention. Various functions and elements described herein may be partitioned differently from those shown without departing from the spirit and scope of the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other embodiments. Thus, many changes and modifications may be made to the invention, by one having ordinary skill in the art, without departing from the spirit and scope of the invention.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the invention, and are not referred to in connection with the interpretation of the description of the invention. All structural and functional equivalents to the elements of the various embodiments of the invention described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the invention. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.