Lubricated die

Information

  • Patent Grant
  • 6365094
  • Patent Number
    6,365,094
  • Date Filed
    Monday, January 31, 2000
    24 years ago
  • Date Issued
    Tuesday, April 2, 2002
    22 years ago
Abstract
A toolset for forming a component from a powdered metal charge includes a die having two zones on the sidewall. Lubricant is applied to one of the zones. The powdered metal charge is initially compressed to an intermediate density and the lubricated zone of the sidewall brought into contact with the partially compressed charge. The charge is then further compressed to a final density.
Description




PRIOR RELATED APPLICATIONS




Not Applicable;




FEDERALLY SPONSORED RESEARCH STATEMENT




Not Applicable;




REFERENCE TO MICROFICHE APPENDIX




Not Applicable




FIELD OF INVENTION




The invention relates to methods and apparatus for forming components from a powdered metal charge.




BACKGROUND OF THE INVENTION




The forming of components from powdered metal is well known and widely used. The technique enables complex shapes to be formed to relatively high compacted densities of up to 75% of solid metal, at relatively low cost and with the dynamic mechanical properties of the component approaching those formed from solid metal blanks.




Conventionally, the powdered metal charge is compressed within a die by punches and the compacted component is then sintered in a sintering furnace to provide a durable component. In view of the forces encountered within the die and the flow of powder into the complex shapes defined by the die it is necessary to provide lubrication between the walls of the die and the powdered charge. Such lubrication reduces the frictional forces between the die walls and the powder and also reduces wear in the die.




Typically, the lubricant is incorporated into the powder but it has been found that this limits the upper value of the density that can be attained during compression.




It has also been proposed to lubricate the wall of a die prior to charging, but the lubricant tends to diffuse into the powder charge which is relatively porous. As a consequence, it is not available for lubrication of the die when required and may also produce inconsistencies in the material forming the charge.




A known method to overcome these disadvantages is to compress the powder containing the lubricant to readily attainable densities, typically 6.7-7.0 gm/cc for iron powder and its alloys, and then sintering the partially compressed component to burn off the lubricant contained within the powder. Following sintering, the component is further compressed to achieve a small increase in density for the final component. Such an arrangement does however require dual handling and dual sintering of the component which is generally undesirable.




It is therefore, an object of the present invention to provide a method and apparatus for forming a component from a powdered metal charge in which the above disadvantages are obviated or mitigated.




SUMMARY OF THE INVENTION




In general terms the present invention seeks to overcome the above disadvantages by partially compressing the powdered charge prior to bringing it into contact with the lubricated wall of the die. Accordingly, the powdered charge does not require the lubricant additive and the partially compressed component is not as absorptive of the lubricant as the uncompressed charge.




More specifically, according to one aspect of the present invention there is provided a method of forming an unsintered component from a powdered metal charge. The method comprises the steps of initially compressing the charge in a mold cavity to an intermediate density less than that of a desired final density, and then bringing a lubricated wall of a die into contact with the charge. Subsequently, the charge is compressed to the final density and removed from the die to provide an unsintered component.




Preferably, the lubricated wall of the die is moved into contact with the charge by displacement of the die relative to punches used for compression of the charge and as a further preference is maintained in the die between initial compression and subsequent compression.




According to a further aspect of the invention there is provided a method of forming a component from a powdered metal charge comprising the steps of establishing a mold cavity between an axial wall of a die and radial walls of a pair of opposed punches. The punches are positioned to locate the charge in a first zone of the axial wall of the die and compress the charge while maintaining it in contact with the first zone to an initial density less than a requisite final density. The punches are moved relative to the die to bring a second zone of the axial wall having a lubricant applied thereto in contact with the charge and the punches then compress the charge between the punches to the requisite final density. The compressed charge is then removed from the cavity.




The present invention also relates to a toolset for forming a component form a powdered metal charge. The toolset comprises a die and a pair of punches each slidable relative to the die and cooperating with the die to define a mold cavity. The die has an axial wall with first and second zones axially spaced a long the die. The die is selectively moveable relative to the punches to bring either the first or second zone into contact with a charge contained in said chamber.











BRIEF DESCRIPTION OF THE DRAWINGS




Embodiments of the invention will now be described by way of example only with reference to the accompanying drawings in which





FIGS. 1



a-f


is a schematic representation of a sequence of steps using a first embodiment of the toolset.





FIGS. 2



a-e


is a schematic representation of the sequential operation of a second embodiment of the toolset.





FIGS. 3



a-f


is a schematic representation similar to

FIG. 1

of a third embodiment of the toolset.











DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION




Referring, therefore, to

FIG. 1

, a toolset


10


comprises a die


12


and a pair of punches


14


,


16


. The punches are slidable within the die and the relative position of the die and punches is controlled by hydraulic cylinders


18


,


20


. It will be appreciated that the representation of the toolset in

FIG. 1

is schematic and that the hydraulic cylinders


18


,


20


may be incorporated into a press in which a toolset is located in a conventional manner.




The die


12


includes an axially extending wall


22


that is shaped to define the periphery of a component to be produced. The component, for example, may be a gear having external teeth defined by the axial wall


22


. The punches


14


,


16


have radially outer surfaces


24


,


26


that are complimentary to the surface


14


.




The axially extending wall


22


is subdivided into a first zone


30


and a second zone


32


, each of which represents an annular band on the wall


22


. It will be noted that the portion of the wall


22


defining the second zone


32


is of slightly greater diameter than the first zone to provide a greater radial clearance between the punch


16


and the axial wall


22


in the region of the second zone. As shown in the drawing, this clearance is exaggerated but is sufficient to permit a radial flow of the material as it is compressed in the die.




To form components from a powdered metal charge indicated at C in

FIG. 1

, a chamber


13


is established by positioning the die


12


so that it projects upwardly above the punch


14


. The charge C may be any powdered metal material suitable for high pressure forming of components and will be described in the context of an iron powder and its alloys intended to produce components with properties similar to those of steel. Preferably, the powder is substantially devoid of lubricant with an upper limit of 0.2% by weight of admixed lubricant. The extent of the chamber is sufficient to contain the volume of the charge C in an uncompressed state with surplus material being removable by a wiping motion of the feed system


34


. With the chamber filled, as shown in

FIG. 1



a,


the die


12


is moved upwardly relative to the punch


16


by the cylinder


18


. In this position the charge C is adjacent the first zone


30


of the axial wall with the second zone


32


exposed above the charge as shown in

FIG. 1



b.


With the second zone exposed, a lubricant is applied, such as by spraying, as indicated by arrows L, to the second zone


32


of the axial wall


22


. The upper punch


16


is then inserted into the die


12


and performs an initial compression of the charge C under the control of the cylinder


20


. The initial compression is sufficient to attain a density intermediate that of the final required density and typically might be in the order of 5.5 grams/cc for steel. The initial compression is achieved whilst the charge is in contact with the first zone and, therefore, the lubricant L applied to the second zone is not absorbed by the powder charge C.




After the initial compression as shown in

FIG. 1



c,


the die


12


is moved axially by the cylinder


18


to bring the second zone


32


of the axial wall


22


into aligmnent with the charge C. In this position, the axial wall


22


of the die


12


is lubricated but the partially compressed charge does not have the porosity to absorb the lubricant from the wall. With the die


12


positioned so that the second zone


32


is aligned with the charge C, the upper punch


16


is moved downwardly to effect further compression whilst the die


12


is maintained with the second zone


32


in alignment with the charge. The light radial clearance between the wall


22


and the charge C promotes a radially outward flow of the powder as it is compressed and assists densification. The compression continues until final requisite density is achieved, typically in the order of 93% to 96% of regular density corresponding to a density of 7.3-7.5 gram/cc for iron powder and its alloys to provide physical properties comparable with to those of steel. Thereafter, as shown in

FIG. 1F

, the die is retracted on the lower punch


14


and the upper punch


16


removed to allow removal of the compressed but unsintered component.




The initial compression is performed to attain a density in which the initial porosity of the charge has been substantially reduced but not so great that the frictional forces have increased to the level where lubricant is necessary. Typically, this will be less than 80% of the regular density, more preferably less than 75% and most preferably in the order of 70% which correspond to densities of 6.2 gm/cc; 5.8 gm/cc and 5.5 gm/cc, respectively for iron powder and its alloys.




It will, of course, be understood that the characteristics of iron powder and its alloys is used as exemplary only and that any powdered metal may be used, such as aluminum and its alloys with a resultant change in the absolute value of the densities at each stage of the process.




A second embodiment is shown in

FIG. 2

in which like components will be identified with like reference numerals and a suffix ‘a’ added for clarity. In the embodiment of

FIG. 2

, the die


12




a


is split into a lower part


40


and an upper part


42


. The axial wall


22




a


of the upper part


42


provides the second zone


32




a.


Initially, the two parts


40


,


42


of the die


12




a


are separated with the lower punch


14




a


cooperating with the lower part


40


to define a chamber to receive the powder charge C. Whilst the die


12




a


is separated into two parts, a lubricant L is applied to the axial wall of the upper part as indicated by the arrowheads. With the powder located in the chamber, and the lubricant applied to the upper part


42


, the two parts


40


,


42


of the die


12




a


are brought together with the first zone


30




a


of the axial wall aligned with the charge. Thereafter, the upper punch


16




a


performs a pre-compression as shown in

FIG. 2



c


and the die


12




a


is then lowered so that the second zone


32




a


is aligned with the partially compressed charge.




With the die


12




a


repositioned as shown in

FIG. 1



d,


the lubricated wall of upper zone


32




a


is adjacent to the charge and further compression from the upper punch


16




a


effects the radial flow and final compression of the powder. Thereafter, the two parts of the die may be separated and the punches removed to permit removal of the compacted component.




In each of the above cases, it will be noted that the lubricant is applied selectively to the wall of the die and the lubricated wall then brought into alignment with the partially compacted charge. In this way, the lubricant is available in the final high pressure compaction but is not in contact with the charge whilst it is in a porous state.




The technique described above may be used in toolsets utilizing core rods to provide local apertures within the component. As shown in

FIG. 3

in which like components are indicated with like reference numerals and a suffix ‘b’ added for clarity, a core rod


50


extends through the lower punch


14




b


and into the chamber


13




b.


The movement of the core rod


50


is controlled by a cylinder


52


and is initially positioned at or slightly below the level of the charge C. After insertion of the charge C, the cylinder


52


is adjusted so that an upper portion of the core rod, indicated at


54


, projects above the charge C. A lubricant is applied to the upper portion


54


and to the second zone


32




b


of the axial wall and the upper punch


16




b


inserted in die


12




b


with a central bore


56


accommodating the core rod


50


. Initial compression occurs with the powder charge C out of contact with the lubricated axial walls of the die


12




b


and core rod


50


. As shown in

FIG. 3



d,


after the initial compression, the die


12




b


and core rod


50


are moved axially to bring the lubricated walls into alignment with the powdered charge. Thereafter, final compression produces the requisite density of the finished component.




The movement of the core rod


50


maybe achieved conjointly with the movement of the die


12




b


by appropriate control of the cylinder


54


. Again, it will seem that the lubricated wall of the die and core rod are brought into contact with the compact after initial compression when there is limited porosity.




Alternatively, a toolset similar to that shown in

FIG. 2

maybe used with the core rod


50


formed in two parts, each associated with one part of the die, and the tow parts moved conjointly between the initial and subsequent compressions. A one piece core rod could also be used with such an embodiment with the upper portion


54


positioned to project above the charge C prior to assembly of the dies. However, the lubricant would then have to be applied to two distinct zones.




It will be appreciated that the embodiments have been shown in a schematic manner to illustrate the principals applied to the invention and that the surrounding controls and press structure are well known to the person skilled in the art. Naturally, more than one core rod may be incorporated and, if required, multiple punches may be used to achieve a staggered end surface to the component.




If preferred, the upper punch maybe retracted after the initial compression to allow the lubricant to be applied to the axial wall prior to repositioning of the die. The use of the split die and repositioning of the die during the sequential compression permits a further enhancement to be incorporated in the forming process. As shown in ghosted outline in

FIG. 2

, a heating element


44


may be incorporated into the upper die


42


. The heating element


44


maintains the die wall of the upper zone


32




a


at an elevated temperature so that when it moves into contact with the charge C an improved flow and densification is obtained.




Although the preferred embodiments show the use of a single die and punch to attain the sequential compression, it will be appreciated that benefits in the final product maybe obtained by utilizing separate dies and transferring the unsintered compact between the dies. The initial compression is conducted in a first unlubricated die and the compact transferred without sintering to a second die. The second die has lubricated sidewalls and permits the compaction to be completed. If preferred, the second die may also be preheated and maintained at an elevated temperature to assist in the forming process. The same effect maybe achieved by removal of the unsintered partially compressed compact from the die, lubrication of the die and replacement of the compact in the same die.




As a further alternative, a single die maybe used and after initial compression, the upper punch is removed and the die shifted axially to expose an area of the sidewall. Lubricant is then applied and the die repositioned so that the punch can continue to press the compact.




In each of the above alternative, the extra handling and assembly of the dies is believed to be less attractive than the single or split die arrangements shown in the accompanying drawings.



Claims
  • 1. A method of forming an unsintered component from a powdered metal charge comprising the steps of initially compressing said charge in a mold cavity to an intermediate density less than that of a final density, bringing a lubricated wall of a die into contact with said charge, and subsequently compressing said charge to said final density prior to sintering thereof and removing said compressed charge from said die to provide an unsintered component.
  • 2. A method according to claim 1 wherein said mold cavity is formed between said die and a pair of punches.
  • 3. A method according to claim 2 wherein said lubricant is applied to said die prior to initial compression of said charge to said intermediate density.
  • 4. A method according to claim 3 wherein said charge is maintained in said die between said initial compression and subsequent compression.
  • 5. A method according to claim 3 wherein said lubricated wall of said die is brought into contact with said charge by relative axial displacement between said die and said charge.
  • 6. A method according to claim 5 wherein said charge is maintained within said die between said initial compression and subsequent compression.
  • 7. A method according to claim 5 wherein said die is formed as separable parts and said lubricated wall of said die is provided on one of said parts, said method including the step of applying lubricant to said wall prior to assembly of said die.
  • 8. A method according to claim 7 wherein said charge is placed in a mold cavity formed on the other of said parts prior to assembly of said die.
  • 9. A method according to claim 8 wherein said parts of said die are moved axially conjointly between said initial compression and said subsequent compression.
  • 10. A method according to claim 2 wherein said lubricated wall of said die has an increased radial dimension to promote radial flow of said charge during subsequent compression.
  • 11. A method according to claim 7 including the step of heating said one part of said die.
  • 12. A method according to claim 1 wherein said initial compression produces a component that has a density of less than 80% of said final density.
  • 13. A method according to claim 12 wherein said initial compression produces a component that has a density of less than 75% of said final density.
  • 14. A method according to claim 12 wherein said initial compression produces a component that has a density of less than 70% of said final density.
  • 15. A method of forming a component from a powdered metal charge comprising the steps of establishing a mold cavity between an axial wall of a die and radial walls of a pair of opposed punches, positioning said punches to locate said charge in a first zone of said axial wall of said die, compressing said charge while maintaining it in contact with said first zone to an initial density less than a requisite final density, positioning said punches relative to said die to bring a second zone of said axial wall having a lubricant applied thereto in contact with said charge, compressing said charge between said punches to said requisite final density and removing the compressed charge from said cavity.
  • 16. A method according to claim 15 wherein lubricant is applied to said second zone prior to compression to said initial density.
  • 17. A method according to claim 16 wherein said lubricant is applied after insertion of said charge in said mold cavity.
  • 18. A method according to claim 17 wherein said die is formed from a first part including said first zone of said axial wall and a second part including said second zone of said axial wall, said first and second parts being assembled to define said mold cavity.
  • 19. A method according to claim 18 wherein lubricant is applied to said second zone prior to assembly of said parts.
  • 20. A method according to claim 19 wherein said die is moved axially relative to said punches to bring said second zone of said axial wall into contact with said charge.
  • 21. A method according to claim 15 wherein a core rod is provided in said mold cavity and said method includes the step of lubricating a portion of said core rod that is axially aligned with said second zone and bringing said portion of said core rod into contact with said charge prior to compressing said charge to said requisite final density.
  • 22. A method according to claim 21 wherein said die and said core rod are moved conjointly.
  • 23. A method according to claim 22 wherein said die and a punch are positioned to provide a chamber for said charge and said die is moved axially relative to said punch to expose said second zone after insertion of said charge in said chamber.
  • 24. A method according to claim 23 wherein said chamber is closed by insertion of a second of said punches after lubricant is applied to said wall in said second zone.
  • 25. A method according to claim 15 wherein said second zone is heated.
  • 26. A method according to claim 18 wherein said one part is heated to maintain said second zone at an elevated temperature.
  • 27. A toolset for forming a component from a powdered metal charge, said toolset comprising a die, a pair of punches each slidable relative to said die and cooperating with said die to define a mold cavity, said die having an axial wall with first and second zones axially spaced along said die, a first drive to control relative movement of said punches and a second drive to control movement of said die, said first drive and second drive being conjointly operable to compress a charge in said cavity to an initial density less than a requisite final density whilst maintaining said first zone in contact with said charge and said second drive being independently operable to position said second zone in contact with said charge upon attainment of said initial density, whereby said die is selectively moveable relative to said punches to bring either said first or second zone into contact with a charge contained in said chamber.
  • 28. A toolset according to claim 27 wherein said second zone has a greater radial extent than said first zone.
  • 29. A toolset according to claim 27 wherein said die is formed from a first part including said first zone of said axial wall and a second part including said second zone ofsaid axial wall, said first and second parts being assembled to define said mold cavity.
  • 30. A toolset according to claim 27 including a core rod axially moveable relative to said punches and having a portion thereof coextensive in an axial direction with said second zone of said axial wall.
  • 31. A toolset according to claim 27 including a heater to maintain said second zone at an elevated temperature.
  • 32. A toolset according to claim 29 wherein said one part includes a heater to maintain said second zone at an elevated temperature.
  • 33. A method of forming an unsintered component from a high compressibility iron powder charge having less than 0.2% by weight of admixed lubricant comprising the steps of initially compressing said charge in a mold cavity to an intermediate density less than that of a final density, bringing a lubricated wall of a die into contact with said charge, and subsequently compressing said charge to a final density of greater than 7.3 gm/cc prior to sintering thereof and removing said compressed charge from said die to provide an unsintered component.
  • 34. A method according to claim 33 wherein said compression achieves a final density of between 7.3 and 7.5 gm/cc.
  • 35. A method according to claim 33 wherein said initial compression produces a component that has a density of less than 6.2 gm/cc of said final density.
  • 36. A method according to claim 35 wherein said initial compression produces a component that has a density of less than 5.8 gm/cc.
  • 37. A method according to claim 36 wherein said initial compression produces a component that has a density of less than 5.5 gm/cc.
US Referenced Citations (7)
Number Name Date Kind
5085828 Shain et al. Feb 1992 A
5093076 Young et al. Mar 1992 A
5321060 Oliver et al. Jun 1994 A
5682591 Inculet et al. Oct 1997 A
5698149 Hinzmann et al. Dec 1997 A
5767426 Oliver et al. Jun 1998 A
5993729 Levebvre et al. Nov 1999 A