Lubricating oil additive composition and method of making the same

Abstract
A post-treated polymeric dispersant which comprises reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic polycarboxylic acid or an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) an oil-soluble lubricating oil additive composition prepared by the process which comprises reacting a copolymer, with at least one ether compound and with at least one aliphatic compound capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof.
Description
FIELD OF THE INVENTION

The present invention is directed to an improved dispersant additive composition that is used in engine oils; and it is also directed to the process of making the same.


BACKGROUND OF THE INVENTION

It is known to employ nitrogen containing dispersants and/or detergents in the formulation of lubricating oil compositions. Many of the known dispersant/detergent compounds are based on the reaction of an alkenylsuccinic acid or anhydride with an amine or polyamine to produce an alkenylsuccinimide or an alkenyl succinamic acid as determined by selected conditions of reaction. One problem facing the lubricant manufacturer is dispersancy of particulate matter in internal combustion engines. Failure to have adequate particulate matter dispersancy may result in filter plugging, sludge accumulation, and oil thickening.


DESCRIPTION OF THE RELATED ART

Liu et al., U.S. Pat. No. 6,117,825, discloses a lubricating oil composition that comprises a major amount of an oil of lubricating viscosity; and a minor amount of a synergistic combination of an antioxidant-dispersant additive and a dispersant additive, said combination comprising: (i) a polyisobutylene succinimide (PIBSAD) and (ii) an ethylene-propylene succinimide (LEPSAD).


Nalesnik, U.S. Pat. No. 5,139,688, discloses an additive composition comprising an oxidized ethylene copolymer or terpolymer of a C3-C10 alpha-monoolefin and, optionally, a non-conjugated diene or triene which has been reacted with a formaldehyde compound and with an amino-aromatic polyamine compound.


Günther et al., U.S. Pat. No. 6,512,055, discloses a copolymer obtained by free radical copolymerization of at least one monoethylenically unsaturated C4-C6 dicarboxylic acid or anhydride thereof, an oligomer, and one monoethylenically unsaturated compound.


Günther et al., U.S. Pat. No. 6,284,716, discloses a lubricating oil composition comprising a lubricant oil and a copolymer obtained by free radical copolymerization of at least one monoethylenically unsaturated C4-C6 dicarboxylic acid or anhydride thereof, an oligomer, and one monoethylenically unsaturated compound, wherein the copolymer is further reacted with an amine.


Harrison et al., U.S. Pat. No. 5,792,729, discloses a dispersant terpolymer and polysuccinimide compositions derived from the terpolymers. The terpolymer is obtained by free radical copolymerization of an unsaturated acidic reagent, a 1-olefin, and a 1,1-disubstituted olefin in the presence of a free radical initiator.


Barr et al., U.S. Pat. No. 5,670,462, discloses a lubricating oil additive composition that is the reaction product of (i) a copolymerized olefin and unsaturated carboxylic acylating agent monomer with a free radical initiator and (ii) a succinimide prepared from an acyclic hydrocarbyl substituted succinic acylating agent and a polyamine wherein the hydrocarbyl substituted succinic acylating agent is prepared by reacting a polyolefin and an acylating agent under conditions such that at least 75 mole % of the starting polyolefin is converted to the hydrocarbyl-substituted succinic acylating agent.


Harrison et al., U.S. Pat. No. 6,451,920, discloses copolymerizing a polyalkene and an unsaturated acidic reagent, followed by reacting any unreacted polyalkene with the unsaturated acidic reagent at elevated temperatures in the presence of a strong acid.


Chung et al., U.S. Pat. Nos. 5,427,702 and 5,744,429, disclose a mixture of derivatized ethylene-alpha olefin copolymers, wherein functional groups are grafted onto the copolymer. The functionalized copolymer is mixed with at least one of an amine, alcohol, including polyol, amino alcohol etc. to form multi-functional viscosity index improver additive components.


Harrison et al., U.S. Pat. No. 5,112,507, discloses novel copolymers of unsaturated acidic reactants and high molecular weight olefins wherein at least 20% of the total high molecular weight olefin comprises the alkylvinylidene isomer which copolymers are useful as dispersants in lubricating oils and fuels and also may be used to prepare polysuccinimides and other post-treated additives useful in lubricating oils and fuels.


Harrison et al., U.S. Pat. No. 6,358,892 discloses a succinimide composition.


Harrison et al., U.S. Pat. No. 6,451,920 discloses a process of making polysuccinimides.


Harrison, U.S. Pat. No. 5,849,676 discloses a succinimide.


Harrison, U.S. Pat. No. discloses a haze-free post-treated succinimide.


Frank et al., U.S. Pat. No. 3,287,271 discloses a novel lubricating oil composition containing a combined detergent-corrosion inhibitor.


Le Suer U.S. Pat. No. 3,374,174 discloses nitrogen containing compositions obtained from the reaction of an amine with a high molecular weight carboxylic acid such as a monocarboxylic acid and alkylene or arylene dicarboxylic.


Liston U.S. Pat. No. 3,692,681 discloses a terephthalic acid dispersed in a hydrocarbon medium containing highly hindered acylated alkylene polyamines.


Durand et al. U.S. Pat. No. 4,747,964 discloses a new dispersing additive composition.


Clark et al. U.S. Pat. No. 6,255,258 discloses an oil-soluble dispersant.


Scattergood et al. EPA No. 0438848A1 discloses a method of lubricating mechanical parts.


Michio et al., JP51130408 discloses lubricating oil additives.


SUMMARY OF THE INVENTION

In its broadest embodiment, the present invention is directed to a post-treated polymeric dispersant prepared by the process comprising reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear polycarbonate, an aromatic polycarboxylic acid, an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) a lubricating oil additive composition prepared by the process comprising reacting


(A) at least one of the following copolymers:


(i) a copolymer obtained by free radical copolymerization of components comprising:


(a) at least one monoethylenically unsaturated C3 to C28 monocarboxylic acid or ester thereof, or C4 to C28 dicarboxylic acid, anhydride or ester thereof;


(b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof; and


(c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of:


(1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;


(2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;


(3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;


(4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and


(5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);


(ii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;


(iii) a copolymer obtained by (a) reacting compound (i)(a) with compound (i)(b) or (i)(c) in a non-free radical catalyzed reaction in the presence of copolymer (i) or copolymer (ii) or both; or by (b) contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c); with


(B) at least one ether compound capable of being reacted with at least two monocarboxylic acids or esters thereof, or with at least two dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof;


(C) at least one aliphatic compound having at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent.


In one embodiment, the present invention is directed to a lubricating oil composition comprising a major amount of an oil of lubricating viscosity and a minor amount of a post-treated polymeric dispersant prepared by the process which comprises reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic polycarboxylic acid or an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) a lubricating oil additive composition prepared by the process comprising reacting

    • (A) at least one of the following copolymers:
      • (i) a copolymer obtained by free radical copolymerization of components comprising:
        • (a) at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid, anhydride or ester thereof;
        • (b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof; and
        • (c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of:
          • (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;
          • (2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;
          • (3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;
          • (4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and
          • (5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);
      • (ii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;
      • (iii) a copolymer obtained by (a) reacting compound (i)(a) with compound (i)(b) or (i)(c) in a non-free radical catalyzed reaction in the presence of copolymer (i) or copolymer (ii) or both; or by (b) contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(h) or (i)(c); with
    • (B) at least one ether compound capable of being reacted with at least two monocarboxylic acids or esters thereof, or with at least two dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof;
    • (C) at least one aliphatic compound having at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent.


In one embodiment, the present invention is directed to a method of making a post-treated polymeric dispersant comprising reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic polycarboxylic acid or an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) a lubricating oil additive composition which comprises reacting

    • (A) at least one of the following copolymers:
      • (i) a copolymer obtained by free radical copolymerization of components comprising:
        • (a) at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or a C4-C28 dicarboxylic acid, anhydride or ester thereof;
        • (b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof; and
        • (c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of:
          • (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;
          • (2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;
          • (3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;
          • (4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and
          • (5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);
      • (iii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;
      • (iii) a copolymer obtained by (a) reacting compound (i)(a) with compound (i)(b) or (i)(c) in a non-free radical catalyzed reaction in the presence of copolymer (i) or copolymer (ii) or both; or by (b) contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c); with
    • (B) at least one ether compound capable of being reacted with at least two monocarboxylic acids or esters thereof, or with at least two dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof;
    • (C) at least one aliphatic compound having at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent.


Accordingly, the present invention relates to multi-functional lubricating oil additives which are useful as dispersants in an internal combustion engine. The dispersants, which are post-treated, have demonstrated improved dispersancy over dispersants which have not been post-treated.







DETAILED DESCRIPTION OF THE INVENTION

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


Definitions


The following terms used with the description are defined as such:


The term “PIB” is an abbreviation for polyisobutene.


The term “PIBSA” is an abbreviation for polyisobutenyl or polyisobutyl succinic anhydride.


The term “polyPIBSA” refers to a class of copolymers employed within the scope of the present invention which are copolymers of polyisobutene and a monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof; or a C4-C28 dicarboxylic acid, anhydride or ester thereof which have carboxyl groups, preferably succinic groups, and polyisobutyl groups. The preferred polyPIBSA is a copolymer of polyisobutene and maleic anhydride having the general formula:




embedded image



wherein n is one or greater; R1, R2, R3 and R4 are selected from hydrogen, methyl and polyisobutyl having at least about 8 carbon atoms, preferably at least about 30 carbon atoms and more preferably at least about 50 carbon atoms wherein either R1 and R2 are hydrogen and one of R3 and R4 is methyl and the other is polyisobutyl, or R3 and R4 are hydrogen and one of R1 and R2 is methyl and the other is polyisobutyl. The polyPIBSA copolymer may be alternating, block, or random.


The term “succinic group” refers to a group having the formula:




embedded image



wherein W and Z are independently selected from the group consisting of —OH, —Cl, —O-alkyl or taken together are —O— to form a succinic anhydride group. The term “—O-alkyl” is meant to include alkoxy of from about 1 to about 40 carbon atoms, preferably from about 1 to about 8 carbon atoms.


The term “degree of polymerization” refers to the average number of repeating structural units in the polymer chain.


The term “terpolymer” refers to a polymer derived from the free radical copolymerization of at least 3 monomers.


The term “1-olefin” refers to a monounsaturated olefin that has the double bond in the 1-position. They can also be called alpha-olefins, and have the following structure:

CH2═CHR

where R is the rest of the olefin molecule.


The term “1,1-disubstituted olefin” refers to a disubstituted olefin, also called a vinylidene olefin, that has the following structure:

CH2═CR5R6

wherein R5 and R6 are the same or different, and constitute the rest of the olefin molecule. Preferably, either R5 or R6 is a methyl group, and the other is not.


The term “succinimide” is understood in the art to include many of the amide, imide, etc. species which are also formed by the reaction of a succinic anhydride with an amine. The predominant product, however, is succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl- or alkyl-substituted succinic acid or anhydride with an amine. Alkenyl or alkyl succinimides are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and related materials encompassed by the term of art “succinimide” are taught in U.S. Pat. Nos. 2,992,708; 3,018,291; 3,024,237; 3,100,673; 3,219,666; 3,172,892; and 3,272,746, the disclosures of which are hereby incorporated by reference.


The term “polysuccinimide” refers to the reaction product of a succinic group-containing copolymer with an amine.


The term “alkenyl or alkylsuccinic acid derivative” refers to a structure having the formula:




embedded image



wherein R7 is selected from hydrogen, methyl and polyisobutyl having at least about 8 carbon atoms, preferably at least about 30 carbon atoms and more preferably at least about 50 carbon atoms; wherein L and M are independently selected from the group consisting of —OH, —Cl, —O-alkyl or taken together are —O— to form an alkenyl or alkylsuccinic anhydride group.


The term “alkylvinylidene” or “alkylvinylidene isomer” refers to an olefin having the following vinylindene structure:




embedded image



wherein R8 is alkyl or substituted alkyl. R8 generally has at least about 5 carbon atoms, preferably about 30 carbon atoms, and more preferably at least about 50 carbon atoms and R9 is lower alkyl of from about 1 to about 6 carbon atoms.


The term “soluble in lubricating oil” refers to the ability of a material to dissolve in aliphatic and aromatic hydrocarbons such as lubricating oils or fuels in essentially all proportions.


The term “high molecular weight olefins” refers to olefins (including polymerized olefins having a residual unsaturation) of sufficient molecular weight and chain length to lend solubility in lubricating oil to their reaction products. Typically olefins having about 30 carbons or more suffice.


The term “high molecular weight polyalkyl” refers to polyalkyl groups of sufficient molecular weight such that the products prepared having such sufficient molecular weight are soluble in lubricating oil. Typically these high molecular weight polyalkyl groups have at least about 30 carbon atoms, preferably at least about 50 carbon atoms. These high molecular weight polyalkyl groups may be derived from high molecular weight polyolefins.


The term “amino” refers to —NR10R11 wherein R10 and R11 are independently hydrogen or a hydrocarbyl group.


The term “alkyl” refers to both straight- and branched-chain alkyl groups.


The term “lower alkyl” refers to alkyl groups having from about 1 to about 6 carbon atoms and includes primary, secondary and tertiary alkyl groups. Typical lower alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, iso-pentyl, n-hexyl and the like.


The term “polyalkyl” refers to an alkyl group that is generally derived from polyolefins which are polymers or copolymers of mono-olefins, particularly 1-mono-olefins, such as ethylene, propylene, butylene, and the like. Preferably, the mono-olefin employed will have from about 2 to about 24 carbon atoms, and more preferably, from about 3 to about 12 carbon atoms. More preferred mono-olefins include propylene, butylene, particularly isobutylene, 1-octene and 1-decene. Preferred, polyolefins prepared from such mono-olefins include polypropylene, polybutene, especially polyisobutene.


The Lubricating Oil Additive Composition


One embodiment of the present invention is an oil-soluble lubricating oil additive composition prepared by the process which comprises reacting

    • (A) at least one of the following copolymers:
      • (i) a copolymer obtained by free radical copolymerization of components comprising:
        • (a) at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid, anhydride or ester thereof;
        • (b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof; and
        • (c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of:
          • (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing 1 to 40 carbon atoms;
          • (2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of 3 to 10 carbon atoms where the alkyl substituent contains 1 to 40 carbon atoms;
          • (3) an N-vinylcarboxamide of carboxylic acids of 1 to 8 carbon atoms;
          • (4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and
          • (5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);
      • (ii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;
      • (iii) a copolymer obtained by (a) reacting compound (i)(a) with compound (i)(b) or (i)(c) in a non-free radical catalyzed reaction in the presence of copolymer (i) or copolymer (ii) or both; or by (b) contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c); with
    • (B) at least one ether compound capable of being reacted with at least two monocarboxylic acids, or esters, thereof, or dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof; and
    • (C) at least one aliphatic compound capable of reacting with at least two monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof.


      Copolymer (i)


(a) The Monoethylenically Unsaturated Monocarboxylic Acid or Ester Thereof or Dicarboxylic Acid, Anhydride or Ester Thereof


In the present invention, at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid, anhydride or ester thereof is used to prepare the copolymers of copolymer (i). Preferably the at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid, anhydride or ester thereof is a dicarboxylic acid, anhydride or ester thereof.


The general formula of the preferred dicarboxylic acid, anhydride or ester thereof is as follows:




embedded image



wherein X and X′ are the same or different, provided that at least one of X and X′ is a group that is capable of reacting to esterify alcohols, form amides or amine salts with ammonia or amines, form metal salts with reactive metals or basically reacting metal compounds and otherwise function as acylating agents. Typically, X and/or X′ is —OH, —O-hydrocarbyl, OM+ where M+ represents one equivalent of a metal, ammonium or amine cation, —NH2, —Cl, —Br, and taken together X and X′ can be —O— so as to form an anhydride. Preferably X and X′ are such that both carboxylic functions can enter into acylation reactions. Maleic anhydride is a preferred reactant. Other suitable reactants include electron-deficient olefins such as monophenyl maleic anhydride; monomethyl, dimethyl, monochloro, monobromo, monofluoro, dichloro and difluoro maleic anhydride; N-phenylmaleimide and other substituted maleimides, isomaleimides; fumaric acid, maleic acid, alkyl hydrogen maleates and fumarates, dialkyl fumarates and maleates, fumaronilic acids and maleanic acids; and maleonitrile and fumaronitrile.


Suitable monomers for (a) are monoethylenically unsaturated dicarboxylic acids or anhydrides of from about 4 to 28 carbon atoms selected from the group consisting of maleic acid, fumaric acid, itaconic acid, mesaconic acid, methylenemalonic acid, citraconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride and methylenemalonic anhydride and mixtures of these with one another, among which maleic anhydride is preferred.


Other suitable monomers are monoethylenically unsaturated C3-C28-monocarboxylic acids selected from the group consisting of acrylic acid, methacrylic acid, dimethacrylic acid, ethylacrylic acid, crotonic acid, allylacetic acid and vinylacetic acid, among which acrylic and methacrylic acid are preferred.


Another group of suitable monomers is C1-C40 alkyl esters of monoethylenecially unsaturated C3-C10 mono- or C4-C10 dicarboxylic acids such as ethyl acrylate, butyl acrylate, 2-ethyl acrylate, decyl acrylate, docedyl acrylate, loctadecyl acrylate and the esters of industrial alcohol mixtures of from about 14 to 28 carbon atoms, ethyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, octadecyl methacrylate, monobutyl maleate, dibutyl maleate, monodecyl maleate, didodecyl maleate, monooctadecyl maleate, and dioctadecyl maleate.


(b) The 1-Olefin or Polyolefin


In the present invention at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of vinyl, vinylidene or alkyl vinylidene group is employed.


Suitable 1-olefins for preparing copolymer (i) comprise from about 2 to about 40 carbon atoms, preferably from about 6 to about 30 carbon atoms, such as decene, dodecene, octadecene and mixtures of C20-C24-1-olefins and C24-C28-1-olefins, more preferably from about 10 to about 20 carbon atoms. Preferably 1-olefins, which are also known as alpha olefins, with number average molecular weights in the range 100-4,500 or more are preferred, with molecular weights in the range of 200-2,000 being more preferred. For example, alpha olefins obtained from the thermal cracking of paraffin wax. Generally, these olefins range from about 5 to about 20 carbon atoms in length. Another source of alpha olefins is the ethylene growth process which gives even number carbon olefins. Another source of olefins is by the dimerization of alpha olefins over an appropriate catalyst such as the well known Ziegler catalyst. Internal olefins are easily obtained by the isomerization of alpha olefins over a suitable catalyst such as silica. Preferably, 1-olefins from C6-C30 are used because these materials are commercially readily available, and because they offer a desirable balance of the length of the molecular tail, and the solubility of the terpolymer in nonpolar solvents. Mixtures of olefins may also be employed.


Suitable polyolefins for preparing copolymer (i) are polyolefins comprising about 4 to about 360 carbon atoms. These polymers have a number average molecular weight (Mn) of from about 56 to about 5000 g/mol. Examples of these are oligomers of ethylene, of butene, including isobutene, and of branched isomers of pentene, hexene, octene and of decene, the copolymerizable terminal group of the oligomer being present in the form of a vinyl, vinylidene or alkylvinylidene group, oligopropenes and oligopropene mixtures of from about 9 to about 200 carbon atoms and in particular oligoisobutenes, as obtainable, for example, according to DE-A 27 02 604, corresponding U.S. Pat. No. 4,152,499, are preferred. Mixtures of the stated oligomers are also suitable, for example, mixtures of ethylene and other alpha olefins. Other suitable polyolefins are described in U.S. Pat. No. 6,030,930 which is herein incorporated by reference. The molecular weights of the oligomers may be determined in a conventional manner by gel permeation chromatography.


The copolymerizable polyolefin that is reacted with the unsaturated mono- or di-carboxylic reactant are polymers comprising a major amount of C2-C8 mono-olefin, e.g., ethylene, propylene, butylene, isobutylene and pentene. These polymers can be homopolymers such as polyisobutylene as well as copolymers of 2 or more such olefins such as copolymers of: ethylene and propylene, butylene, and isobutylene, etc.


The polyolefin polymer usually contains from about 4 to about 360 carbon atoms, although preferably 8 to 200 carbon atoms; and more preferably from about 12 to about 175 carbon atoms.


Since the high molecular weight olefins used to prepare the copolymers of the present invention are generally mixtures of individual molecules of different molecular weights, individual copolymer molecules resulting will generally contain a mixture of high molecular weight polyalkyl groups of varying molecular weight. Also, mixtures of copolymer molecules having different degrees of polymerization will be produced.


The copolymers of the present invention have an average degree of polymerization of 1 or greater, preferably from about 1.1 to about 20, and more preferably from about 1.5 to about 10.


(c) The Mono-Olefin Compound


The present invention employs at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of:

  • (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;


Suitable monomers include the following: vinyl and allyl alkyl ethers where the alkyl radical is of about 1 to about 40 carbon atoms are also suitable, and the alkyl radical may carry further substituents, such as hydroxyl, amino, dialkyamino or alkoxy. Examples are methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, decylvinyl ether, dodecyl vinyl ether, octadecyl vinyl ether, 2-(diethylyamino)ethyl vinyl ether, 2-(di-n-butylamino)ethyl vinyl ether, and the corresponding allyl ethers.

  • (2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;


Another group of monomers comprises C1-C40 alkyl amines and C1-C40 —N-alkylamides of monoethylenically unsaturated C3-C10-mono- or dicarboxylic acids, such as dimethylaminoethyl acrylate, diethylaminoethyl acrylate, dibutylaminoethyl methacrylate, acrylamide, methacrylamide, N-tert-butylacrylamide, N-octylacrylamide, N,N′-dibutylacrylamide, N-dodecylmethacrylamide and N-octadecylmethacrylamide.

  • (3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;
    • Another group of monomers includes the following: N-vinylcarboxamides of carboxylic acids of from about 1 to about 8 carbon atoms, such as N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetramide, N-vinyl-N-ethylacetamide, N-vinyl-N-methylpropionamide and N-vinylpropionamide.
  • (4) an N-vinyl substituted nitrogen-containing heterocyclic compound; Another group of monomers includes the following: N-vinyl compounds of nitrogen-containing heterocyles, such as N-vinylimidazole, N-vinylmethylimidazole, N-vinylpyrrolidone and N-vinylcaprolactam.
  • (5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising from about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);
    • Suitable 1-olefins comprise about 2 to 40 carbon atoms, preferably from about 8 to about 30 carbon atoms, such as decene, dodecene, octadecene and mixtures of C20-C24-1-olefins and C24-C28-1-olefins. Preferably 1-olefins, which are also known as alpha olefins, with number average molecular weights in the range of from about 28 to about 560 are preferred, with molecular weights in the range of from about 112 to about 420 being more preferred. For example, alpha olefins obtained from the thermal cracking of paraffin wax may be employed. Generally, these olefins range from about 5 to about 20 carbon atoms in length. Another source of alpha olefins is the ethylene growth process which gives even number carbon olefins. Another source of olefins is by the dimerization of alpha olefins over an appropriate catalyst such as the well known Ziegler catalyst. Internal olefins are easily obtained by the isomerization of alpha olefins over a suitable catalyst such as silica. Preferably, 1-olefins from C10-C30 are used because these materials are commercially readily available, and because they offer a desirable balance of the length of the molecular tail, and the solubility of the terpolymer in nonpolar solvents. Mixtures of olefins are also suitable.


      Preparation of Copolymer (i)


Copolymer reactant (i) may be prepared from well known methods which are described in the art including, but not limited to, those methods which are disclosed in the following patents, which are herein incorporated by reference: Harrison et al., U.S. Pat. No. 5,792,729; Günther et al., U.S. Pat. No. 6,284,716; and Günther et al., U.S. Pat. No. 6,512,055.


In one embodiment of the present invention the copolymer reactant is a polyalkenyl succinic anhydride terpolymer. These terpolymers are composed of at least one of monomers (a) to (c) as described herein.


Typically, the terpolymers of this invention contain at least one monomer from each group (a) to (c). In general, these components react to form terpolymers which can be random terpolymers or alternating terpolymers or block terpolymers and can be prepared by known procedures for making copolymers. Additionally, it is possible to form a small percentage of copolymers which are composed of monomers (a) and (b) and monomers (a) and (c). Component (a), the monocarboxylic acid or ester thereof or dicarboxylic acid or anhydride or ester thereof, is selected from those disclosed above, preferably maleic anhydride. Component (b), the 1-olefin or polyolefin, is preferably polybutene. Component (c), the mono-olefin, is preferably a linear alpha olefin containing from about 12 to 18 carbon atoms.


The degree of polymerization of the terpolymers can vary over a wide range. Preferably, the degree of polymerization is from about 2 to about 10. In general, terpolymer degree of polymerization decreases as the polymerization temperature increases.


The terpolymerization is conducted in the presence of a suitable free radical initiator. Examples of suitable polymerization initiators are peroxide compounds, such as tertbutyl perpivalate, tertbutyl perneocecanoate, tert-butylperethylhexanoate, tertbutylperisobutyrate, di-tert-butyl peroxide, di-tert-amyl peroxide, diacetyl peroxydicaronate and dicyclohexyldicaronate, or azo compounds, such as 2,2′-azobisisobutyrontrile. The initiators may be used alone or as a mixture with one another. Redox co-initiators may also be present. Preferably, the initiator is a peroxide type initiator, e.g., di(t-butyl) peroxide, dicumyl peroxide or azo type initiator, e.g., isobutylnitrile type initiators. Procedures for preparing poly 1-olefin copolymers are, for example, described in U.S. Pat. Nos. 3,560,455 and 4,240,916, hereby incorporated by reference in their entirety. Those procedures could be used to prepare terpolymers. Both patents also describe a variety of initiators.


Copolymer (i), wherein a second olefin is employed in the reaction, can be prepared in the same manner as copolymer (ii) which is described below.


Copolymer (ii)


In another embodiment of the present invention, the copolymer reactant is a copolymer obtained by reacting (a) at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or a C4-C28 dicarboxylic acid, anhydride or ester thereof and (b) at least one copolymerizable polymer composed of at least 3 olefin molecules of propene or of a branched 1-olefin of from about 4 to about 10 carbon atoms, having a number average molecular weight Mn of from about 112 to about 5000, and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group in the presence of a free radical initiator.


Thus, preferred copolymers of the present invention are prepared by reacting a “reactive” high molecular weight olefin in which a high proportion of unsaturation, at least about 20% is in the alkylvinylidene configuration, e.g.,




embedded image



wherein R8 and R9 are an alkyl or substituted alkyl of sufficient chain length to give the resulting molecule stability in lubricating oils and fuels, thus R8 generally has at least about 30 carbon atoms, preferably at least about 50 carbon atoms and R9 is a lower alkyl of from about 1 to about 6 carbon atoms, with an unsaturated acidic reactant in the presence of a free radical initiator.


Typically, the copolymer product has alternating polyalkylene and succinic groups and has an average degree of polymerization of 1 or greater.


The preferred copolymers (ii) of the present invention have the general formula:




embedded image



wherein W′ and Z′ are independently selected from the group consisting of —OH, —O-alkyl or taken together are —O— to form a succinic anhydride group, n is one or greater; and R1, R2, R3 and R4 are selected from hydrogen, alkyl of from about 1 to about 40 carbon atoms, and high molecular weight polyalkyl wherein either R1 and R2 are hydrogen and one of R3 and R4 is lower alkyl having from about 1 to about 6 carbon atoms and the other is high molecular weight polyalkyl, or R3 and R4 are hydrogen and one of R1 and R2 is lower alkyl having from about 1 to 6 carbon atoms and the other is high molecular weight polyalkyl.


Copolymer (ii) may be alternating, block, or random.


In a preferred embodiment, when maleic anhydride is used as the reactant, the reaction produces copolymers predominantly of the following formula:




embedded image



wherein n is from about 1 to about 100, preferably from about 2 to about 20, more preferably from about 2 to about 10, and R1, R2, R3 and R4 are selected from hydrogen, lower alkyl of from about 1 to about 6 carbon atoms and higher molecular weight polyalkyl, wherein either R1 and R2 are hydrogen and one of R3 and R4 is lower alkyl having from about 1 to about 6 carbon atoms and the other is high molecular weight polyalkyl or R3 and R4 are hydrogen and one of R1 and R2 is lower alkyl and the other is high molecular weight polyalkyl.


Preferably, the high molecular weight polyalkyl group has at least about 30 carbon atoms (more preferably at least about 50 carbon atoms). Preferred high molecular weight polyalkyl groups include polyisobutyl groups. Preferred polyisobutyl groups include those having number average molecular weights of from about 500 to about 5000, more preferably from about 900 to about 2500. Preferred lower alkyl groups include methyl and ethyl; especially preferred lower alkyl groups include methyl.


A particularly preferred class of olefin polymers comprises the polybutenes, which are prepared by polymerization of isobutene. These polybutenes are readily available commercial materials well known to those skilled in the art. Disclosures thereof will be found, for example, in U.S. Pat. Nos. 4,152,499 and 4,605,808, which are herein incorporated by reference for their disclosures of suitable polybutenes.


Preferably, 1,1-disubstituted olefins are used to provide a high molecular weight, oil soluble tail in the terpolymer. Preferably the 1,1-disubstituted olefin has a number average Mn of from about 500 to about 5000. One particularly useful 1,1-disubstituted olefin is a 1,1-disubstituted polyisobutylene, such as methylvinylidene polyisobutylene.


Preferably the copolymerizable polymer comprises a high molecular weight polyalkyl group which is derived from a high molecular weight olefin. The high molecular weight olefins used in the preparation of the copolymers of the present invention are of sufficiently long chain length so that the resulting composition is soluble in and compatible with mineral oils, fuels and the like; and the alkylvinylidene isomer of the high molecular weight olefin comprises at least about 20% of the total olefin composition. Preferably, the alkyl vinylidene isomer comprises at least 50%, more preferably at least 70%, of the total olefin composition.


Such high molecular weight olefins are generally mixtures of molecules having different molecular weights and can have at least one branch per 6 carbon atoms along the chain, preferably at least one branch per 4 carbon atoms along the chain, and particularly preferred that there be about one branch per 2 carbon atoms along the chain. These branched chain olefins may conveniently comprise polyalkenes prepared by the polymerization of olefins of from about 3 to about 6 carbon atoms, and preferably from olefins of from about 3 to about 4 carbon atoms, and more preferably from propylene or isobutylene. The addition-polymerizable olefins employed are normally 1-olefins. The branch may be of from about 1 to about 4 carbon atoms, more usually of from about 1 to about 2 carbon atoms and preferably methyl.


The preferred alkylvinylidene isomer comprises a methyl- or ethylvinylidene isomer, more preferably the methylvinylidene isomer.


The especially preferred high molecular weight olefins used to prepare the copolymers of the present invention are polyisobutenes which comprise at least about 20% of the more reactive methylvinylidene isomer, preferably at least about 50% and more preferably at least about 70%. Suitable polyisobutenes include those prepared using BF3 catalysis. The preparation of such polyisobutenes in which the methylvinylidene isomer comprises a high percentage of the total composition is described in U.S. Pat. Nos. 4,152,499 and 4,605,808.


Preparation of Copolymer (ii)


As noted above, copolymer (ii) of the present invention is prepared by reacting an olefin and an unsaturated acidic reactant in the presence of a free radical initiator. The process of the preparation of copolymer (ii) is described in Harrison, U.S. Pat. No. 5,112,507, which is herein incorporated by reference in its entirety.


The reaction may be conducted at a temperature of about −30° C. to about 210° C., preferably from about 40° C. to about 160° C. The degree of polymerization is inversely proportional to temperature. Accordingly, for the preferred high molecular weight copolymers, it is advantageous to employ lower reaction temperatures.


The reaction may be conducted neat, that is, both the high molecular weight olefin, acidic reactant and the free radical initiator are combined in the proper ratio, and then stirred at the reaction temperature.


Alternatively, the reaction may be conducted in a solvent. Suitable solvents include those in which the reactants and free radical initiator are soluble and include acetone, tetrahydrofuran, chloroform, methylene chloride, dichloroethane, toluene, dioxane, chlorobenzene, xylenes, or the like. After the reaction is complete, volatile components may be stripped off. When a solvent is employed, it is preferably inert to the reactants and products formed and is generally used in an amount sufficient to ensure efficient mixing.


Alternatively, the reaction may be conducted in a diluent, such as mineral oil, as long as the diluent does not contain constituents that interfere with the free radical polymerization, e.g., sulfur compounds, antioxidants and the like.


In general, the copolymerization can be initiated by any free radical initiator. Such initiators are well known in the art. However, the choice of free radical initiator may be influenced by the reaction temperature employed.


The preferred free-radical initiators are the peroxide-type polymerization initiators and the azo-type polymerization initiators. Radiation can also be used to initiate the reaction, if desired.


The peroxide-type free-radical initiator can be organic or inorganic, the organic having the general formula: R12 OOR13 where R12 is any organic radical and R13 is selected from the group consisting of hydrogen and any organic radical. Both R12 and R13 can be organic radicals, preferably hydrocarbon, aryl, and acyl radicals, carrying, if desired, substituents such as halogens, etc. Preferred peroxides include di-tert-butyl peroxide, dicumyl peroxide, and di-tert-amyl peroxide.


Examples of other suitable peroxides, which in no way are limiting, include benzoyl peroxide; lauroyl peroxide; other tertiary butyl peroxides; 2,4-dichlorobenzoyl peroxide; tertiary butyl hydroperoxide; cumene hydroperoxide; diacetyl peroxide; acetyl hydroperoxide; diethylperoxycarbonate; tertiary butyl perbenzoate; and the like.


The azo-type compounds, typified by alpha,alpha-azobisisobutyronitrile, are also well-known free-radical promoting materials. These azo compounds can be defined as those having present in the molecule group —N═N— wherein the balances are satisfied by organic radicals, at least one of which is preferably attached to a tertiary carbon. Other suitable azo compounds include, but are not limited to, p-bromobenzenediazonium fluoroborate; p-tolyldiazoaminobenzene; p-bromobenzenediazonium hydroxide; azomethane and phenyldiazonium halides. A suitable list of azo-type compounds can be found in U.S. Pat. No. 2,551,813, issued May 8, 1951 to Paul Pinkney.


The amount of initiator to employ, exclusive of radiation, of course, depends to a large extent on the particular initiator chosen, the high molecular olefin used and the reaction conditions. The usual concentrations of initiator are between 0.001:1 and 0.2:1 moles of initiator per mole of acidic reactant, with preferred amounts between 0.005:1 and 0.10:1.


The polymerization temperature must be sufficiently high to break down the initiator to produce the desired free-radicals. For example, using benzoyl peroxide as the initiator, the reaction temperature can be between about 75° C. and about 90° C., preferably between about 80° C. and about 85° C. higher and lower temperatures can be employed, a suitable broad range of temperatures being between about 20° C. and about 200° C., with preferred temperatures between about 50° C. and about 150° C.


The reaction pressure should be sufficient to maintain the solvent in the liquid phase. Pressures can therefore vary between about atmospheric and 100 psig or higher.


The reaction time is usually sufficient to result in the substantially complete conversion of the acidic reactant and high molecular weight olefin to copolymer. The reaction time is suitable between one and 24 hours, with preferred reaction times between 2 and 10 hours.


As noted above, the subject reaction is a solution-type polymerization reaction. The high molecular weight olefin, acidic reactant, solvent and initiator can be brought together in any suitable manner. The important factors are intimate contact of the high molecular weight olefin and acidic reactant in the presence of a free-radical producing material. The reaction, for example, can be conducted in a batch system where the high molecular weight olefin is added all initially to a mixture of acidic reactant, initiator and solvent or the high molecular weight olefin can be added intermittently or continuously to the reactor. Alternatively, the reactants may be combined in other orders; for example, acidic reactant and initiator may be added to high molecular weight olefin in the reactor. In another manner, the components in the reaction mixture can be added continuously to a stirred reactor with continuous removal of a portion of the product to a recovery train or to other reactors in series. In yet another manner, the reaction may be carried out in a batch process, wherein the high molecular weight olefin is added initially to the reactor, and then the acidic reactant and the initiator are added gradually over time. The reaction can also suitably take place in a tubular-type reactor where the components are added at one or more points along the tube.


Copolymer (iii)


In one embodiment, copolymer reactant (iii) is obtained by a copolymer obtained by (a) reacting compound (i)(a) with compound (i)(b) or (i)(c) in a non-free radical catalyzed reaction in the presence of copolymer (i) or copolymer (ii) or both; or by (b) contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c).


Preparation of Copolymer (iii)


A process for the preparation of copolymer (iii) is described, for example, in Harrison et al., U.S. Pat. No. 6,451,920, which is herein incorporated by reference in its entirety.


In process step (a) above, any unreacted olefin, generally the more hindered olefins, i.e., the beta-vinylidene, that do not react readily with the monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid or an anhydride or ester thereof, under free radical conditions, are reacted with monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid or an anhydride or ester thereof, under thermal conditions, i.e., at temperatures of from about 180° C. to about 280° C. These conditions are similar to those used for preparing thermal process PIBSA. Optionally, this reaction takes place in the presence of a strong acid, such as sulfonic acid. See for example U.S. Pat. No. 6,156,850.


Optionally, a solvent may be used to dissolve the reactants. The reaction solvent must be one which dissolves both the acidic reactant and the high molecular weight olefin. It is necessary to dissolve the acidic reactant and high molecular weight olefin so as to bring them into intimate contact in the solution polymerization reaction. It has been found that the solvent must also be one in which the resultant copolymers are soluble.


Suitable solvents include liquid saturated or aromatic hydrocarbons having from about 6 to about 20 carbon atoms; ketones having from about 3 to about 5 carbon atoms; and liquid saturated aliphatic dihalogenated hydrocarbons having from about 1 to about 5 carbon atoms per molecule, preferably from about 1 to about 3 carbon atoms per molecule. By “liquid” is meant liquid under the conditions of polymerization. In the dihalogenated hydrocarbons, the halogens are preferably on adjacent carbon atoms. By “halogen” is meant F, Cl and Br. The amount of solvent must be such that it can dissolve the acidic reactant and high molecular weight olefin in addition to the resulting copolymers. The volume ratio of solvent to high molecular weight olefin is suitably between 1:1 and 100:1 and is preferably between 1.5:1 and 4:1.


Suitable solvents include the ketones having from about 3 to about 6 carbon atoms and the saturated dichlorinated hydrocarbons having from about 1 to about 5, more preferably from about 1 to about 3, carbon atoms.


Examples of suitable solvents include, but are not limited to:

  • 1. ketones, such as: acetone; methylethylketone; diethylketone; and methylisobutylketone;
  • 2. aromatic hydrocarbons, such as: benzene; xylene; and toluene;
  • 3. saturated dihalogenated hydrocarbons, such as: dichloromethane; dibromomethane; 1-bromo-2-chloroethane; 1,1-dibromoethane; 1,1-dichloroethane, 1,2-dichloroethane; 1,3-dibromopropane; 1,2-dibromopropane; 1,2-dibromo-2-methylpropane; 1,2-dichloropropane; 1,1-dichloropropane; 1,3-dichloropropane; 1-bromo-2-chloropropane; 1,2-dichlorobutane; 1,5-dibromopentane; and 1,5-dichloropentane; or
  • 4. mixtures of the above, such as: benzenemethylethylketone.


The copolymer is conveniently separated from solvent and any unreacted acidic reactant by conventional procedures such as phase separation, solvent distillation, precipitation and the like. If desired, dispersing agents and/or co-solvents may be used during the reaction.


The polyisobutenyl succinic anhydride (PIBSA), which may be directly added to copolymer reactant (i) or (ii), is generally prepared by a number of well-known processes including the method disclosed within. For example, there is a well-known thermal process (see, e.g., U.S. Pat. No. 3,361,673), an equally well-known chlorination process (sec, e.g., U.S. Pat. No. 3,172,892), a combination of the thermal and chlorination processes (see, e.g., U.S. Pat. No.3,912,764), catalytic strong acid processes (see, e.g., U.S. Pat. Nos. 3,819,660 and 6,156,850), and free radical processes (see, e.g., U.S. Pat. Nos. 5,286,799 and 5,319,030). Such compositions include one-to-one monomeric adducts (see, e.g., U.S. Pat. Nos. 3,219,666 and 3,381,022), as well as high succinic ratio products, adducts having alkenyl-derived substituents adducted with at least 1.3 succinic groups per alkenyl-derived substituent (see, e.g., U.S. Pat. No. 4,234,435).


Polyalkylene succinic anhydrides also can be produced thermally also from high methylvinylidene polybutene as disclosed in U.S. Pat. No. 4,152,499. This process is further discussed in U.S. Pat. No. 5,241,003 for the case where the succinic ratio is less than 1.3 and in EP 0 355 895 for the case where the succinic ratio is greater than 1.3. European Applications EP 0 602 863 and EP 0 587 381, and U.S. Pat. No. 5,523,417 disclose a procedure for washing out the polymaleic anhydride resin from polyalkylene succinic anhydride prepared from high methylvinylidene polybutene. A polyalkylene succinic anhydride with a succinic ratio of 1.0 is disclosed. One advantage of polyalkylene succinic anhydride from high methylvinylidene polybutene is that it can be prepared essentially free of chlorine. U.S. Pat. No. 4,234,435 teaches a preferred polyalkene-derived substituent group with a number average (Mn) in the range of from about 1500 to about 3200. For polybutenes, an especially preferred number average (Mn) range is from about 1700 to about 2400. This patent also teaches that the succinimides must have a succinic ratio of at least 1.3. That is, there should be at least 1.3 succinic groups per equivalent weight of polyalkene-derived substituent group. Most preferably, the succinic ratio should be from 1.5 to 2.5.


Other suitable alkenyl succinic anhydrides includes those described in U.S. Pat. No. 6,030,930. Typical alkenyl used in the preparation are ethylene and 1-butene copolymers.


(B) The Ether Compounds


In one embodiment of the present invention, the copolymer may further be reacted with an ether compound capable of linking two succinimide groups. Suitable ether compounds include, but are not limited to, the following:


Polyether Polyamines


Examples of suitable polyetheramines include compounds having the following structure:




embedded image



wherein R14 is independently hydrogen or a hydrocarbyl group having from about 1 to about 4 carbons, and n is the degree of polymerization. Generally the polyether polyamines suitable for use in the present invention will contain at least about one ether unit, preferably from about 5 to about 100, more preferably from about 10 to about 50, and even more preferably from about 15 to about 25 ether units.


The polyether polyamines can be based on polymers derived from C2-C6 epoxides such as ethylene oxide, propylene oxide, and butylene oxide. Examples of polyether polyamines are sold under the Jeffamine® brand and are commercially available from Hunstman Corporation located in Houston, Tex.


Other examples of suitable polyetheramines include polyoxytetramethylene polyamine compounds having the following structure:




embedded image



wherein n is the degree of polymerization (i.e., number of monomer ether units).


Polyether Amine Derivatives


Furthermore, the copolymer reactant may be reacted with a polyether amino alcohol or amino thiol.


Polyether Amino Alcohol


Typically, amino alcohols may be formed when the alcohol end groups of a compound are not completely converted to amines during reactions, such as reductive amination. Also, one may initiate a polymer chain (i.e. grow propylene or ethylene oxide) from an amino group and therefore have an amino on one end of the polymer chain (i.e. initiator) and an alcohol terminus, or an amine internally in the molecule with alcohol termini.


Examples of suitable polyetheramino alcohols include compounds having the following structure:




embedded image



wherein R15 is independently a hydrogen or hydrocarbyl group, having about 1 to about 4 carbons, and n is the degree of polymerization. Generally, the polyether amino alcohols, suitable for use in the present invention will contain at least about one ether unit, preferably from about 5 to about 100, more preferably from about 10 to about 50, and even more preferably from about 15 to about 25 ether units.


Other examples of suitable polyetheramino alcohols include polyoxytetramethyleneamino alcohol compounds having the following structure:




embedded image



wherein n is the degree of polymerization.


Polyether Amino Thiol


Examples of suitable polyetheramino thiols include compounds having the following structure:




embedded image



wherein R16 is independently a hydrogen or hydrocarbyl group, having from about 1 to about 4 carbons and n is the degree of polymerization.


Other examples of suitable polyetheramino thiols include polyoxytetramethyleneamino thiol having the following structure:




embedded image



wherein n is the degree of polymerization.


Generally, the polyetheramino thiols suitable for use in the present invention will contain at least about one ether unit, preferably from about 5 to about 100, more preferably from about 10 to about 50, and even more preferably from about 15 to about 25 ether units.


Ether Polyamines


Ether Diamines


In yet another embodiment of the present invention, the copolymer may be reacted with ether diamines. Suitable diamines are reacted with the copolymer, such as decyloxypropyl-1,3-diaminopropane, isodecyloxypropyl-1,3-diaminopropane, isododecyloxypropyl-1,3-diaminopropane, dodecyl/tetradecyloxypropyl-1,3-diaminopropane, isotridecyloxypropyl-1,3-diaminopropane, tetradecyloxypropy-1,3-diaminopropane.


Ether Triamines


In yet another embodiment of the present invention, the copolymer may be reacted with ether triamines. Suitable triamines include the following:




embedded image



wherein R′ is C1-C6;


wherein x+y+z=1-85.




embedded image



wherein x+y+z approx. 5-6;


Triamines of this type may be purchased from Huntsman Petrochemical Corporation, Woodlands, Tex.


Polyether Polyol


In yet another embodiment of the present invention, the copolymer may be reacted with a polyether containing at least two hydroxyl end groups to form an ester. The polyether polyols have the following structure:




embedded image



wherein R17 is independently a hydrogen or hydrocarbyl group, having from about 1 to about 4 carbons, and n is the degree of polymerization.


Other examples of suitable polyether polyols include polyoxytetramethylene polyol compounds, such as those referred to as Terathane® which may be purchased from DuPont Corporation, Wilmington, Del., having the following structure:




embedded image



wherein n is the degree of polymerization.


Suitable polyether polyols include, but are not limited to, the following: polyoxyethylene glycol, polyoxypropylene glycol, polyoxybutylene glycol, and polyoxytetramethylene glycol.


The number average molecular weight of the presently employed polyether polyol will generally range from about 150 to about 5000, preferably from about 500 to about 2000.


Generally, the polyether compounds suitable for use in the present invention will contain at least one ether unit preferably from about 5 to about 100, more preferably from about 10 to about 50, and even more preferred from about 15 to about 25 ether units.


Generally, the polyether compounds suitable for use in the present invention may be derived from only one ether type or a mixture of ether types, such as poly(oxyethylene-co-oxypropylene)diamine. The mixture of ether units may be block, random, or alternating copolymers. The presently employed ether compounds are capable of reacting with at least two carboxylic acid groups or anhydride derivatives thereof.


Generally, the copolymer may be reacted with a mixture of polyether polyamines, polyether amino alcohols, polyether amino thiols, polyether polyols, or ether diamines to form a mixture of imides, amides and esters.


(C) Aliphatic Compound


The aliphatic compound employed in the present invention has at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent which is described hereinbelow. Preferably, the aliphatic compound will contain two or more amino functional groups or two or more hydroxyl functional groups or both. More preferably, the aliphatic compound will contain two or more amino functional groups.


Amino Aliphatic Compound


In addition to the ether compound (i.e. polyether polyamine, polyether polyamine derivative, polyether polyol, ether diamines and ether triamine) above, the copolymer is also reacted with an aliphatic compound. The aliphatic compound employed may be an amino aliphatic compound.


The amino aliphatic compound may be selected from (a) aliphatic diamines, (b) aliphatic polyamines or (c) polyalkylene diamines and polyamines. The amino aliphatic compound will have at least two reactive amino groups, that is, primary or secondary amino groups, and preferably primary amino groups. Suitable examples include ethylenediamine, diethylene triamine, triethylene tetraamine, hexamethylene diamine, aminoethyl piperazine, tetraethylene pentamine, pentaethylene hexamine and heavy polyamine, HPA, (available from Dow Chemical Company, Midland, Mich.). Such amines encompass isomers such as branched-chain polyamines, cyclic polyamines and hydrocarbyl-substituted polyamines.


Since more than one primary or secondary amino group is present, the reaction conditions and/or stoichiometry should be such that oil solubility is maintained.


Hydroxyl Aliphatic Compound


In addition to the other compound (i.e. polyether aromatic compound) above, optionally, the copolymer may also be reacted with at least one aliphatic compound which may be a hydroxyl aliphatic compound wherein the hydroxyl aliphatic compound has at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent which is described hereinbelow.


The multifunctional hydroxyl compounds used according to the process of the present invention may contain primary, secondary or tertiary alcohols.


Suitable hydroxyl aliphatic compounds include, but are not limited to, glycerol, pentaerythritol, trimethylol propane and the like. Additionally, the hydroxyl aliphatic compound could be a polyether containing at least two hydroxyl groups.


Aliphatic Compounds Containing Both an Amine Function and a Hydroxyl Function


In another embodiment of the present invention, the aliphatic compound may have at least one amine group and at least one hydroxyl group. Examples of such compounds include, but are not limited to, ethanol amine, diethanol amine, triethanol amine, and the like.


Method of Making the Lubricating Oil Additive Composition


The lubricating oil additive composition is prepared by a process comprising charging the reactant copolymer (e.g., at least one of copolymers (i), (ii) and (iii) as described herein) in a reactor, optionally under a nitrogen purge, and heating at a temperature of from about 80° C. to about 170° C. Optionally, diluent oil may be charged optionally under a nitrogen purge in the same reactor, thereby producing a diluted copolymer reactant. The amount of diluent oil in the diluted copolymer is up to about 80 wt. %, more preferred from about 20 to about 60 wt. %, and most preferred from about 30 to about 50 wt. %. Both an aliphatic compound and an ether compound are charged, optionally under a nitrogen purge, to the reactor. This mixture is heated under a nitrogen purge to a temperature in range from about 130° C. to about 200° C. Optionally, a vacuum is applied to the mixture for about 0.5 to about 2.0 hours to remove excess water.


The lubricating oil additive composition can also be made using a process comprising simultaneously charging all the reactants (reactant copolymer (i), (ii), or (iii); the aliphatic compound; and the ether compound at the desired ratios into the reactor. One or more of the reactants can be charged at an elevated temperature to facilitate mixing and reaction. A static mixer can be used to facilitate mixing of the reactants as they are being charged to the reactor. The reaction is carried out for about 0.5 to about 2 hours at a temperature from about 130° C. to about 200° C. Optionally a vacuum is applied to the reaction mixture during the reaction period.


Since more than one functional group is present on the aliphatic compound, the reaction conditions and/or stoichiometry should be such that oil solubility is maintained. For example, since multifunctional aliphatic compounds are used, the linker group (i.e., the polyether compound) and the copolymer are preferably charged to the reactor first and allowed to react prior to addition of the multifunctional aliphatic compound. Furthermore, the stoichiometry should be such that when the multifunctional aliphatic compound is charged to the reactor, there is generally about one mole of reactive sites remaining per mole of the multifunctional aliphatic compound. This reaction order and stoichiometry reduces excessive crosslinking by limiting the number of un-reacted reactive sites in the co-polymer relative to the number of reactive sites on the multifunctional aliphatic compound. Reduction of excessive crosslinking may decrease the probability of gel formation and therefore increase the probability of oil solubility.


Post-Treatment of the Lubricating Oil Additive Composition


In one embodiment of the present invention, the lubricating oil additive composition is post-treated with a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic mono- or polycarboxylic acid, an aromatic mono- or polycarboxylic anhydride, or an aromatic mono- or polycarboxylic acid ester.


Typical cyclic carbonates for use in this invention include the following: 1,3-dioxolan-2-one (ethylene carbonate); 4-methyl-1,3-dioxolan-2-one (propylene carbonate); 4-hydroxymethyl-1,3-dioxolan-2-one; 4,5-dimethyl-1,3-dioxolan-2-one; 4-ethyl-1,3-dioxolan-2-one; 4,4-dimethyl-1,3-dioxolan-2-one; 4-methyl-5-ethyl-1,3-dioxolan-2-one; 4,5-diethyl-1,3-dioxolan-2-one; 4,4-diethyl-1,3-dioxolan-2-one; 1,3-dioxan-2-one; 4,4-dimethyl-1,3-dioxan-2-one; 5,5-dimethyl- 1,3-dioxan-2-one; 5,5-dihydroxymethyl-1,3-dioxan-2-one; 5-methyl-1,3-dioxan-2-one; 4-methyl-1,3-dioxan-2-one; 5-hydroxy-1,3-dioxan-2-one; 5-hydroxymethyl-5-methyl-1,3-dioxan-2-one; 5,5-diethyl-1,3-dioxan-2-one; 5-methyl-5-propyl-1,3-dioxan-2-one; 4,6-dimethyl-1,3-dioxan-2-one; 4,4,6-trimethyl-1,3-dioxan-2-one and spiro[1,3-oxa-2-cyclohexanone-5,5′-1′,3′-oxa-2′-cyclohexanone]. Other suitable cyclic carbonates may be prepared from sacchrides such as sorbitol, glucose, fructose, galactose and the like and from vicinal diols prepared from C1-C30 olefins by methods known in the art.


Several of these cyclic carbonates are commercially available such as 1,3-dioxolan-2-one or 4-methyl-1,3-dioxolan-2-one. Cyclic carbonates may be readily prepared by known reactions. For example, reaction of phosgene with a suitable alpha alkane diol or an alkan-1,3-diol yields a carbonate for use within the scope of this invention as for instance in U.S. Fat. No. 4,115,206 which is incorporated herein by reference.


Likewise, the cyclic carbonates useful for this invention may be prepared by transesterification of a suitable alpha alkane diol or an alkan-1,3-diol with, e.g., diethyl carbonate under transesterification conditions. See, for instance, U.S. Pat. Nos. 4,384,115 and 4,423,205 which are incorporated herein by reference for their teaching of the preparation of cyclic carbonates.


Typical linear mono-carbonates include diethyl carbonate, dimethyl carbonate, dipropyl carbonate and the like. Typical linear poly-carbonates include poly(propylene carbonate) and the like.


Typical aromatic polycarboxylic anhydrides include 2,3-pyrazinedicarboxylic anhydride; 2,3-pydridinedicarboxylic anhydride; 3,4-pyridinedicarboxylic anhydride; diphenic anhydride; isatoic anhydride; phenyl succinic anhydride; 1-naphthalene acetic anhydride; 1,2,4-benzene tricarboxylic anhydride and the like. Typical aromatic polycarboxylic acids include the acids of the aforementioned anhydrides.


Typical aromatic polycarboxylic acid esters include dimethyl phthalate, diethyl phthalate, dimethylhexyl phthalate, mono methylhexyl phthalate, mono ethyl phthalate, and mono methyl phthalate.


In one embodiment, the post-treating agent is a cyclic carbonate or a linear mono- or poly-carbonate. In another embodiment, the post-treating agent is an aromatic polycarboxylic acid, anhydride or ester.


Preferably, the lubricating oil additive composition is post-treated with a post-treating agent that is selected from ethylene-carbonate, phthalic anhydride, or naphthalic anhydride.


Typically, the post-treating agent (i.e., ethylene carbonate, phthalic anhydride, or 1,8-naphthalic anhydride) is added to the reactor containing the lubricating oil additive composition and heated, thereby producing a post-treated lubricating oil additive composition.


Other Additives


The following additive components are examples of some of the components that can be favorably employed in the present invention. These examples of additives are provided to illustrate the present invention, but they are not intended to limit it:

  • 1. Metal Detergents
    • Sulfurized or unsulfurized alkyl or alkenyl phenates, alkyl or alkenyl aromatic sulfonates, borated sulfonates, sulfurized or unsulfurized metal salts of multi-hydroxy alkyl or alkenyl aromatic compounds, alkyl or alkenyl hydroxy aromatic sulfonates, sulfurized or unsulfurized alkyl or alkenyl naphthenates, metal salts of alkanoic acids, metal salts of an alkyl or alkenyl multiacid, and chemical and physical mixtures thereof.
  • 2. Anti-Oxidants
    • Anti-oxidants reduce the tendency of mineral oils to deteriorate in service which deterioration is evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by an increase in viscosity. Examples of anti-oxidants useful in the present invention include, but are not limited to, phenol type (phenolic) oxidation inhibitors, such as 4,4′-methylene-bis(2,6-di-tert-butylphenol), 4,4′-bis(2,6-di-tert-butylphenol), 4,4′-bis(2-methyl-6-tert-butylphenol), 2,2′-methylene-bis(4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis(3-methyl-6-tert-butylphenol), 4,4′-isopropylidene-bis(2,6-di-tert-butylphenol), 2,2′-methylene-bis(4-methyl-6-nonylphenol), 2,2′-isobutylidene-bis(4,6-dimethylphenol), 2,2′-5-methylene-bis(4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,4-dimethyl-6-tert-butyl-phenol, 2,6-di-tert-1-dimethylamino-p-cresol, 2,6-di-tert-4-(N,N′-dimethylaminomethylphenol), 4,4′-thiobis(2-methyl-6-tert-butylphenol), 2,2′-thiobis(4-methyl-6-tert-butylphenol), bis(3-methyl-4-hydroxy-5-tert-10-butylbenzyl)-sulfide, and bis(3,5-di-tert-butyl-4-hydroxybenzyl). Diphenylamine-type oxidation inhibitors include, but are not limited to, alkylated diphenylamine, phenyl-alpha-naphthylamine, and alkylated-alpha-naphthylamine. Other types of oxidation inhibitors include metal dithiocarbamate (e.g., zinc dithiocarbamate), and 15-methylenebis(dibutyldithiocarbamate).
  • 3. Anti-Wear Agents
    • As their name implies, these agents reduce wear of moving metallic parts. Examples of such agents include, but are not limited to, phosphates and thiophosphates and salts thereof, carbamates, esters, and molybdenum complexes.
  • 4. Rust Inhibitors (Anti-Rust Agents)
    • a) Nonionic polyoxyethylene surface active agents: polyoxyethylene lauryl ether, polyoxyethylene higher alcohol ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene octyl stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene sorbitol monostearate, polyoxyethylene sorbitol mono-oleate, and polyethylene glycol mono-oleate.
    • b) Other compounds: stearic acid and other fatty acids, dicarboxylic acids, metal soaps, fatty acid amine salts, metal salts of heavy sulfonic acid, partial carboxylic acid ester of polyhydric alcohol, and phosphoric ester.
  • 5. Demulsifiers
    • Addition product of alkylphenol and ethylene oxide, polyoxyethylene alkyl ether, and polyoxyethylene sorbitan ester.
  • 6. Extreme Pressure Anti-Wear Agents (EP/AW Agents)
    • Sulfurized olefins, zinc dialky-1-dithiophosphate (primary alkyl, secondary alkyl, and aryl type), diphenyl sulfide, methyl trich lorostea rate, chlorinated naphthalene, fluoroalkylpolysiloxane, lead naphthenate, neutralized or partially neutralized phosphates, dithiophosphates, and sulfur-free phosphates.
  • 7. Friction Modifiers
    • Fatty alcohol, fatty acid (stearic acid, isostearic acid, oleic acid and other fatty acids or salts thereof), amine, borated ester, other esters, phosphates, other phosphites besides tri- and di-hydrocarbyl phosphites, and phosphonates.
  • 8. Multifunctional Additives
    • Sulfurized oxymolybdenum dithiocarbamate, sulfurized oxymolybdenum organo phosphorodithioate, oxymolybdenum monoglyceride, oxymolybdenum diethylate amide, amine-molybdenum complex compound, and sulfur-containing molybdenum complex compound.
  • 9. Viscosity Index Improvers
    • Polymethacrylate type polymers, ethylene-propylene copolymers, styrene-isoprene copolymers, hydrated styrene-isoprene copolymers, polyisobutylene, and dispersant type viscosity index improvers.
  • 10. Pour Point Depressants
    • Polymethyl methacrylate.
  • 11. Foam Inhibitors
    • Alkyl methacrylate polymers and dimethyl silicone polymers.
  • 12. Metal Deactivators
    • Disalicylidene propylenediamine, triazole derivatives, mercaptobenzothiazoles, thiadiazole derivatives, and mercaptobenzimidazoles.
  • 13. Dispersants
    • Alkenyl succinimides, alkenyl succinimides modified with other organic compounds, alkenyl succinimides modified by post-treatment with ethylene carbonate or boric acid, esters of polyalcohols and polyisobutenyl succinic anhydride, phenate-salicylates and their post-treated analogs, alkali metal or mixed alkali metal, alkaline earth metal borates, dispersions of hydrated alkali metal borates, dispersions of alkaline-earth metal borates, polyamide ashless dispersants and the like or mixtures of such dispersants.


      Lubricating Oil Composition


The lubricating oil additive composition described above is generally added to a base oil that is sufficient to lubricate moving parts, for example internal combustion engines, gears, and transmissions. Typically, the lubricating oil composition of the present invention comprises a major amount of an oil of lubricating viscosity and a minor amount of the lubricating oil additive composition.


The base oil employed may be any of a wide variety of oils of lubricating viscosity. The base oil of lubricating viscosity used in such compositions may be mineral oils or synthetic oils. A base oil having a viscosity of at least 2.5 cSt at 40° C. and a pour point below 20° C., preferably at or below 0° C., is desirable. The base oils may be derived from synthetic or natural source.


Mineral oils for use as the base oil in this invention include, for example, paraffinic, naphthenic and other oils that are ordinarily used in lubricating oil compositions. Synthetic oils include, for example, both hydrocarbon synthetic oils and synthetic esters and mixtures thereof having the desired viscosity. Hydrocarbon synthetic oils may include, for example, oils prepared from the polymerization of ethylene, polyalphaolefin or PAO oils, or oils prepared from hydrocarbon synthesis procedures using carbon monoxide and hydrogen gases such as in a Fisher-Tropsch process. Useful synthetic hydrocarbon oils include liquid polymers of alpha olefins having the proper viscosity. Especially useful are the hydrogenated liquid oligomers of C6 to C12 alpha olefins such as 1-decene trimer. Likewise, alkyl benzenes of proper viscosity, such as didodecyl benzene, can be used. Useful synthetic esters include the esters of monocarboxylic acids and polycarboxylic acids, as well as mono-hydroxy alkanols and polyols. Typical examples are didodecyl adipate, pentaerythritol tetracaproate, di-2-ethylhexyl adipate, dilaurylsebacate, and the like. Complex esters prepared from mixtures of mono and dicarboxylic acids and mono and dihydroxy alkanols can also be used. Blends of mineral oils with synthetic oils are also useful.


Thus, the base oil can be a refined paraffin type base oil, a refined naphthenic base oil, or a synthetic hydrocarbon or non-hydrocarbon oil of lubricating viscosity. The base oil can also be a mixture of mineral and synthetic oils.


Method of Use of the Present Invention


The lubricating oil additive composition of the present invention is added to an oil of lubricating viscosity thereby producing a lubricating oil composition. The lubricating oil composition contacts the engine, improving dispersancy. Accordingly, the present invention is also directed to a method of improving soot dispersancy, sludge dispersancy or both in an internal combustion engine which comprises operating the engine with the lubricating oil composition of the invention.


Optionally, the lubricating oil additive composition described above may be used as a fuel additive. When used in fuels, the proper concentration of the additive that is necessary to achieve the desired detergency is dependent upon a variety of factors including the type of fuel used, the presence of other detergents or dispersants or other additives, etc. Generally, however, the range of concentration of the additive in the base fuel is 10 to 10,000 weight parts per million, preferably from 30 to 5,000 parts per million of the additive. If other detergents are present, a lesser amount of the additive may be used. The additives described herein may be formulated as a fuel concentrate, using an inert stable oleophilic solvent boiling in the range of about 150-400° F. (65.6-204.4° C.). Preferred solvents boil in the gasoline or diesel fuel range. Preferably, an aliphatic or an aromatic hydrocarbon solvent is used, such as a benzene, toluene, xylene or higher-boiling aromatics or aromatic thinners. Aliphatic alcohols of about 3 to 8 carbon atoms, such as isopropanol, isobutylcarbinol, n-butanol and the like in combination with -hydrocarbon solvents are also suitable for use with the fuel additive. In the fuel concentrate, the amount of the additive will be ordinarily at least 5% by weight and generally not exceed 70% by weight, preferably from 5 to 50 and more preferably from 1.0 to 25 wt. %.


The following examples are presented to illustrate specific embodiments of this invention and are not to be construed in any way as limiting the scope of the invention.


EXAMPLES
Example 1 (Comparative)
Polysuccinimide Derived from 1000 MW PolyPIBSA,
Polyetherdiamine and Heavy Polyamine

A 2 L glass reactor was charged with polyPIBSA derived from 1000 MW PIB (610.92 g; available from Chevron Oronite, LLC) and Exxon 100N base oil (793.45 g). The solution was heated under a nitrogen atmosphere to 160° C. Jeffamine® XTJ-501 polyetherdiamine (151.60 g; available from Huntsman) was then added and mixture heated for 1 h. A vacuum (<20 mm Hg) was applied for 30 minutes at 160° C. The vacuum was released and then heavy polyamine (36.66 g) was added to the reactor. The mixture was heated at 160° C. for 1 h. A vacuum (<20 mm Hg) was then applied for 30 minutes at 160° C. Analysis of the final product found the following:


Viscosity at 100° C.=43.16 cSt


Nitrogen content=1.09 wt %


Total Base Number (ASTM D 2896)=25.77 mg KOH/g


Example 2
Phthalic Anhydride Post-Treated Polysuccinimide
Derived from 1000 MW
PolyPIBSA/Polyetherdiamine/Heavy Polyamine

A 500 mL glass reactor was charged with polysuccinimide (429.93 g) as prepared in Example 1 and heated to 160° C. under a nitrogen atmosphere. Phthalic anhydride (5.36 g; available from Sigma-Aldrich) was added and the mixture was heated at 160° C. for 2 h. Analysis of the final product found the following:


Viscosity at 100° C.=702.2 cSt


Total Base Number=19.64 mg KOH/g


Example 3
Ethylene Carbonate Post-Treated Polysuccinimide
Derived from 1000 MW
PolyPIBSA/Polyetherdiamine/Heavy Polyamine

A 500 mL glass reactor was charged with polysuccinimide (392.34 g) as prepared in Example 1 and heated to 160° C. under a nitrogen atmosphere. Ethylene carbonate (14.23 g) was added over 1 h at 160° C. The mixture was heated at 160° C. for additional 7 h.


Example 4(Comparative)
Polysuccinimide Derived from 2300 MW PolyPIBSA,
Polyetherdiamine and Heavy Polyamine

A 2-L glass reactor was charged with polyPIBSA derived from 2300 MW PIB (1183.18 g; available from Chevron Oronite, LLC) and Exxon 100N base oil (129.66 g). The solution was heated under a nitrogen atmosphere to 160° C. Jeffamine® XTJ-501 polyetherdiamine (141.71 g) was added and the mixture was heated at 160° C. for 1 h. A vacuum (<20 mm Hg) was applied for 30 minutes at 160° C. The vacuum was released and then heavy polyamine (34.27 g) was then added to the reactor. The mixture was heated at 160° C. for 1 h. A vacuum (≦20 mm Hg) was applied for 30 minutes at 160° C. Analysis of the final product found the following:


Viscosity at 100° C.=577.8 cSt


Nitrogen content=1.10 wt %


Total Base Number=24.04 mg KOH/g


Example 5
Phthalic Anhydride Post-Treated Polysuccinimide
Derived from 2300 MW
PolyPIBSA/Polyetherdiamine/Heavy Polyamine

A 500 mL glass reactor was charged with polysuccinimide (351.48 g) as prepared in Example 4 and heated to 160° C. under a nitrogen atmosphere. Phthalic anhydride (4.38 g) was added and the mixture was heated at 160° C. for 2 h. Analysis of the final product found the following:


Viscosity at 100° C.=696.2 cSt


Total Base Number=18.44 mg KOH/g


Example 6
Ethylene Carbonate Post-Treated Polysuccinimide
Derived from 2300 MW
PolyPIBSA/Polyetherdiamine/Heavy Polyamine

A 500 mL glass reactor was charged with polysuccinimide (390.21 g) as prepared in Example 4 and was heated to 160° C. under a nitrogen atmosphere. Ethylene carbonate (14.15 g) was added over 1 h at 160° C. The mixture was heated at 160° C. for additional 5.5 h.


Example 7(Comparative)
Polysuccinimide Derived from 2300 MW Terpolymer
PIBSA, Polyetherdiamine and Heavy Polyamine

A 1 L reactor was charged with terpolymer PIBSA derived from 2300 MW PIB (645.22 g; available from Chevron Oronite, LLC). The solution was placed under a nitrogen atmosphere and heated to 160° C. Jeffamine® XTJ-501 polyetherdiamine (84.59 g) was then added over 15 minutes. The mixture was heated at 160° C. for 1 h. A vacuum (22 mm Hg) was applied at 160° C. for 45 minutes. The vacuum was released and heavy polyamine (20.56 g) was then added to the solution over 10 minutes. The mixture was heated at 160° C. for 1 h and then a vacuum (24 mm Hg) was applied for 45 min at 160° C.


Example 8
Phthalic Anhydride Post-Treated Polysuccinimide
Derived from 2300 MW Terpolymer
PIBSA/Polyetherdiamine/Heavy Polyamine

The product of Example 7 was charged in a 1 L reactor and heated to 160° C. under a nitrogen atmosphere. Phthalic anhydride (8.31 g) was added and the mixture was heated at 160° C. for 1 h. A vacuum (20 mm Hg) was then applied for 30 minutes.


Example 9
Naphthalic Anhydride Post-Treated Polysuccinimide
Derived from 2300 MW Terpolymer
PIBSA/Polyetherdiamine/HPA

A 0.5 L reactor was charged with terpolymer PIBSA derived from 2300 MW PIB (334.86 g); available from Chevron Oronite, LLC). The solution was placed under a nitrogen atmosphere and heated to 160° C. Jeffamine® XTJ-501 polyetherdiamine (43.39 g) was then added over 10 minutes. The mixture was heated at 160° C. for 1 h. A vacuum (<20 mm Hg) was applied at 160° C. for 30 minutes. The vacuum was released and heavy polyamine (9.79 g) was then added to the mixture over 7 minutes. The mixture was heated at 160° C. for 1 h and then a vacuum (<20 mm Hg) was applied for 30 min at 160° C. The vacuum was released and naphthalic anhydride (5.32 g) was added. The mixture was heated at 160° C. for 1 h and then heated at 180° C. for 1 h. A vacuum (<20 mm Hg) was then applied for 30 minutes.


Example 10(Comparative)
Polysuccinimide Derived from 2300 MW Terpolymer
PIBSA, Polyetherdiamine and Diethylenetriamine
(DETA)

A 1 L reactor was charged with terpolymer PIBSA derived from 2300 MW PIB (445.69 g) available from Chevron Oronite, LLC). The mixture was placed under a nitrogen atmosphere and heated to 160° C. Jeffamine® XTJ-501 polyetherdiamine (57.55 g) was then added over 15 minutes. The mixture was heated at 160° C. for 1 h. A vacuum (<20 mm Hg) was applied at 160° C. for 30 minutes. The vacuum was released and the reactor was cooled to 95° C. DETA (4.89 g) was then added to the mixture. The mixture was heated to 160° C. and this temperature was maintained for 1 h. Then a vacuum (<20 mm Hg) was applied for 37 min at 160° C.


Example 11
Phthalic Anhydride Post-Treated Polysuccinimide
Derived from 2300 MW Terpolymer
PIBSA/Polyetherdiamine/DETA

A 0.5 L reactor was charged with terpolymer PIBSA derived from 2300 MW PIB (296.53 g) available from Chevron Oronite, LLC). The solution was placed under a nitrogen atmosphere and heated to 160° C. Jeffamine® XTJ-501 polyetherdiamine (38.29 g) was then added over 8 minutes. The mixture was heated at 160° C. for 1 h. A vacuum (<20 mm Hg) was applied at 160° C. for 30 minutes. The vacuum was released and the reaction mixture was cooled to 95° C. DETA (3.25 g) was then added to the mixture over 3 minutes. The mixture was heated to 160° C. and temperature was maintained for 1 h. Then a vacuum (<20 mm Hg) was applied for 30 min at 160° C. The vacuum was released and phthalic anhydride (3.52 g) was added, and the mixture was heated at 160° C. for 1.5 h. A vacuum (<20 mm Hg) was then applied for 30 minutes.


Example 12
Naphthalic Anhydride Post-Treated Polysuccinimide
Derived from 2300 MW Terpolymer
PIBSA/Polyetherdiamine/DETA

The 269.11 g of product of Example 10 was charged in a 0.5 L reactor and heated to 160° C. under a nitrogen atmosphere. Naphthalic anhydride (3.78 g) was added and the mixture was heated at 160° C. for 1.5 h. A vacuum (<20 mm Hg) was then applied for 30 minutes.


Soot Thickening Bench Test Results

The polysuccinimides and post-treated polysuccinimides from Examples 1-12 were reacted in the soot thickening bench test, which measures the ability of a formulation to disperse and control viscosity increase resulting from the addition of carbon black, a soot surrogate. In this test, 98.0 g of the test sample was weighed and placed into a 250 ml beaker. The test sample contained 7.6 wt. % of the test dispersant, 50 millimoles of an overbased phenate detergent, 18 millimoles of a zinc dithiophosphate wear inhibitor and 7.3 wt. % of a VI improver, in 85% 150N oil, 15% 600N oil. To this was added 2.0 g Vulcan XC-72® carbon black from Cabot Co. The mixture was stirred and then stored for 16 hours in a dessicator. A second sample without the carbon black was mixed for 60 seconds using a Willems Polytron Homogenizer-Model PF 45/6 and then degassed in a vacuum oven for 30 minutes at 50 to 55° C. The viscosity of the two samples was then measured at 100° C. using a capillary viscometer. The percent viscosity increase was calculated by comparing the viscosity of the samples with and without carbon black. Thus, the lower the percent viscosity increase the better the dispersancy of the dispersant. The results from the soot thickening bench test are shown in Table 1.












TABLE 1








Soot





Thickening


Exam-

Post-
% Visc.


ple
Description
Treatmcnt
Increase


















1
1000 MW PolyPIBSA/XTJ-501/HPA

128.80


2
1000 MW PolyPIBSA/XTJ-501/HPA
PA1
25.24


3
1000 MW PolyPIBSA/XTJ-501/HPA
EC2
38.25


4
2300 MW PolyPIBSA/XTJ-501/HPA

105.10


5
2300 MW PolyPIBSA/XTJ-501/HPA
PA
16.69


6
2300 MW PolyPIBSA/XTJ-501/HPA
EC
28.58


7
2300 MW Terpolymer PIBSA/XTJ-

49.76



501/HPA


8
2300 MW Terpolymer PIBSA/XTJ-
PA
24.92



501/HPA


9
2300 MW Terpolymer PIBSA/XTJ-
NA3
19.06



501/HPA


10
2300 MW Terpolymer PIBSA/XTJ-

121.39



501/DETA


11
2300 MW Terpolymer PIBSA/XTJ-
PA
78.49



501/DETA


12
2300 MW Terpolymer PIBSA/XTJ-
NA
19.26



501/DETA






1phthalic anhydride




2ethylene carbonate




3naphthalic anhydride







As evidenced in Table 1, the results of the soot thickening bench test indicate that the percent viscosity increase of formulated oils comprising phthalic anhydride, ethylene carbonate or naphthalic anhydride post-treated polysuccinimides was significantly lower than the percent viscosity increase in formulated oils that contain polysuccinimides that are not post-treated. This test indicates that the lubricating oil additives of the present invention have superior dispersant properties, as compared to the non-post treated polysuccinimides.


It is understood that although modifications and variations of the invention can be made without departing from the spirit and scope thereof, only such limitations should be imposed as are indicated in the appended claims.

Claims
  • 1. A post-treated polymeric dispersant prepared by a process comprising reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic polycarboxylic acid, an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) a lubricating oil additive composition prepared by the process comprising reacting (A) at least one of the following copolymers: (i) a copolymer obtained by free radical copolymerization of components comprising: (a) at least one monoethylenically unsaturated C3 to C28 monocarboxylic acid or ester thereof, or C4 to C28 dicarboxylic acid, anhydride or ester thereof;(b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof; and(c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of: (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;(2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;(3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;(4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and(5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);(ii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;(iii) a copolymer obtained by contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c); with(B) at least one ether compound capable of being reacted with at least two monocarboxylic acids or esters thereof, or with at least two dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof; and(C) at least one aliphatic compound having at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent.
  • 2. The post-treated polymeric dispersant of claim 1 wherein the post-treating agent is a cyclic carbonate, a linear mono-carbonate or a linear poly-carbonate.
  • 3. The post-treated polymeric dispersant of claim 1, wherein the post-treating agent is an aromatic polycarboxylic acid, an aromatic polycarboxylic anhydride, or aromatic polycarboxylic ester.
  • 4. The post-treated polymeric dispersant of claim 1 wherein the post-treating agent is ethylene carbonate, phthalic anhydride, or naphthalic anhydride.
  • 5. The post-treated polymeric dispersant of claim 1, wherein the at least one aliphatic compound has more than one functional group capable of reacting with a monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof.
  • 6. The post-treated polymeric dispersant of claim 1, wherein in copolymer (iii)(b), said copolymer (i) or copolymer (ii) or both are contacted with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c) in the presence of component (C).
  • 7. The post-treated polymeric dispersant of claim 1 wherein the copolymer is copolymer (i).
  • 8. The post-treated polymeric dispersant of claim 1 wherein the copolymer is copolymer (iii).
  • 9. The post-treated polymeric dispersant of claim 1 wherein the monoolefin of (i)(c) is a 1-olefin.
  • 10. The post-treated polymeric dispersant of claim 1 wherein the copolymer is copolymer (ii).
  • 11. The post-treated polymeric dispersant of claim 10 wherein copolymer (ii) is polyPIBSA, obtained by the free radical catalyzed reaction of maleic anhydride and polyisobutylene.
  • 12. The post-treated polymeric dispersant of claim 1 wherein (i)(a) is a dicarboxylic acid, anhydride or ester thereof.
  • 13. The post-treated polymeric dispersant of claim 12 wherein (i)(a) is maleic anhydride or ester thereof.
  • 14. The post-treated polymeric dispersant of claim 1 wherein compound (i)(b) of copolymer (i) is polyisobutene having a number average molecular weight (Mn) of from about 112 to about 5000.
  • 15. The post-treated polymeric dispersant of claim 14 wherein the number average molecular weight (Mn) is from about 500 to about 3000.
  • 16. The post-treated polymeric dispersant of claim 15 wherein the number average molecular weight (Mn) is from about 1000 to about 2500.
  • 17. The post-treated polymeric dispersant of claim 1, wherein the at least one ether compound (B) is selected from the group comprising an ether polyamine, a polyether polyamine, a polyether amino alcohol, a polyether amino thiol, and a polyether polyol.
  • 18. The post-treated polymeric dispersant of claim 17, wherein the at least one ether compound (B) is a polyether polyamine.
  • 19. The post-treated polymeric dispersant of claim 18, wherein the polyether polyamine is a polyoxyalkylene diamine wherein each alkylene unit individually contains from about 2 to about 5 carbon atoms.
  • 20. The post-treated polymeric dispersant of claim 19 wherein the oxyalkylene moiety is oxyethylene or oxypropylene, or mixtures thereof.
  • 21. The post-treated polymeric dispersant of claim 1 wherein the aliphatic compound is an amino aliphatic compound.
  • 22. The post-treated polymeric dispersant of claim 21 wherein the amino aliphatic compound is selected from the group consisting of aliphatic diamines, aliphatic polyamines and polyalkylene polyamines.
  • 23. The post-treated polymeric dispersant of 22, wherein the aliphatic compound is an polyalkylene polyamine.
  • 24. The post-treated polymeric dispersant of claim 22 wherein the aliphatic compound is an aliphatic diamine.
  • 25. The post-treated polymeric dispersant of claim 24 wherein the aliphatic diamine is ethylene diamine, hexamethylene diamine, and butylene diamine.
  • 26. A lubricating oil composition comprising a major amount of an oil of lubricating viscosity and a minor amount of a post-treated polymeric dispersant prepared by a process which comprises reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic polycarboxylic acid or an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) a lubricating oil additive composition prepared by the process comprising reacting (A) at least one of the following copolymers: (i) a copolymer obtained by free radical copolymerization of components comprising: (a) at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or C4-C28 dicarboxylic acid, anhydride or ester thereof;(b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof and(c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of: (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;(2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;(3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;(4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and(5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);(ii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;(iii) a copolymer obtained by contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c); with(B) at least one ether compound capable of being reacted with at least two monocarboxylic acids or esters thereof, or with at least two dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof; and(C) at least one aliphatic compound having at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent.
  • 27. The lubricating oil composition of claim 26 wherein the post-treating agent is a cyclic carbonate, a linear mono-carbonate or a linear poly-carbonate.
  • 28. The lubricating oil composition of claim 26, wherein the post-treating agent is an aromatic polycarboxylic acid, an aromatic polycarboxylic anhydride, or an aromatic polycarboxylic ester.
  • 29. The lubricating oil composition of claim 26 wherein the post-treating agent is ethylene carbonate, phthalic anhydride, or naphthalic anhydride.
  • 30. The lubricating oil composition of claim 26, wherein the at least one aliphatic compound has more than one functional group capable of reacting with a monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof.
  • 31. The lubricating oil composition of claim 26, wherein in copolymer (iii)(b), said copolymer (i) or copolymer (ii) or both are contacted with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c) in the presence of component (C).
  • 32. The lubricating oil composition of claim 26 wherein the copolymer is copolymer (i).
  • 33. The lubricating oil composition of claim 26 wherein the copolymer is copolymer (iii).
  • 34. The lubricating oil composition of claim 26 wherein the monoolefin of (i)(c) is a 1-olefin.
  • 35. The lubricating oil composition of claim 26 wherein the copolymer is copolymer (ii).
  • 36. The lubricating oil composition of claim 35 wherein copolymer (ii) is polyPIBSA, obtained by the free radical catalyzed reaction of maleic anhydride and polyisobutylene.
  • 37. The lubricating oil composition of claim 26 wherein (i)(a) is a dicarboxylic acid, anhydride or ester thereof.
  • 38. The lubricating oil additive composition of claim 37 wherein wherein (i)(a) is maleic anhydride or ester thereof.
  • 39. The lubricating oil composition of claim 26 wherein compound (i)(b) of copolymer (i) is polyisobutene having a number average molecular weight (Mn) of from about 112 to about 5000.
  • 40. The lubricating oil composition of claim 39 wherein the number average molecular weight (Mn) is from about 500 to about 3000.
  • 41. The lubricating oil composition of claim 40 wherein the number average molecular weight (Mn) is from about 1000 to about 2500.
  • 42. The lubricating oil composition of claim 26, wherein the at least one ether compound (B) is selected from the group comprising an ether polyamine, a polyether polyamine, a polyether amino alcohol, a polyether amino thiol, and a polyether polyol.
  • 43. The lubricating oil composition of claim 42, wherein the at least one ether compound (B) is a polyether polyamine.
  • 44. The lubricating oil composition of claim 43, wherein the polyether polyamine is a polyoxyalkylene diamine wherein each alkylene unit individually contains from about 2 to about 5 carbon atoms.
  • 45. The lubricating oil composition of claim 44 wherein the oxyalkylene moiety is oxyethylene or oxypropylene, or mixtures thereof.
  • 46. The lubricating oil composition of claim 26 wherein the aliphatic compound is an amino aliphatic compound.
  • 47. The lubricating oil composition of claim 46 wherein the amino aliphatic compound is selected from the group consisting of aliphatic diamines, aliphatic polyamines and polyalkylene polyamines.
  • 48. The lubricating oil composition of 47, wherein the aliphatic compound is a polyalkylene polyamine.
  • 49. The lubricating oil composition of claim 47 wherein the aliphatic compound is an aliphatic diamine.
  • 50. The lubricating oil composition of claim 49 wherein the aliphatic diamine is ethylene diamine, hexamethylene diamine, and butylene diamine.
  • 51. A method of making a post-treated polymeric dispersant comprising reacting (I) a post-treating agent selected from a cyclic carbonate, a linear mono-carbonate, a linear poly-carbonate, an aromatic polycarboxylic acid or an aromatic polycarboxylic anhydride or an aromatic polycarboxylic acid ester and (II) a lubricating oil additive composition which comprises reacting (A) at least one of the following copolymers: (i) a copolymer obtained by free radical copolymerization of components comprising: (a) at least one monoethylenically unsaturated C3-C28 monocarboxylic acid or ester thereof, or a C4-C28 dicarboxylic acid, anhydride or ester thereof;(b) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof; and(c) at least one monoolefin compound which is copolymerizable with the monomers of (a) and (b) and is selected from the group consisting of: (1) an alkyl vinyl ether and an allyl alkyl ether where the alkyl group is hydroxyl, amino, dialkylamino or alkoxy substituted or is unsubstituted, and containing from about 1 to about 40 carbon atoms;(2) an alkyl amine and an N-alkylamide of a monoethylenically unsaturated mono- or dicarboxylic acid of from about 3 to about 10 carbon atoms where the alkyl substituent contains from about 1 to about 40 carbon atoms;(3) an N-vinylcarboxamide of carboxylic acids of from about 1 to about 8 carbon atoms;(4) an N-vinyl substituted nitrogen-containing heterocyclic compound; and(5) at least one 1-olefin comprising about 2 to 40 carbon atoms or at least one polyolefin comprising about 4 to about 360 carbon atoms and having a terminal copolymerizable group in the form of a vinyl, vinylidene or alkyl vinylidene group or mixtures thereof, provided that the olefin employed is not the same as the olefin employed in (i)(b);(iii) a copolymer obtained by reacting compound (i)(a) and compound(i)(b) in the presence of a free radical initiator;(iii) a copolymer obtained by contacting copolymer (i) or copolymer (ii) or both with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c); with(B) at least one ether compound capable of being reacted with at least two monocarboxylic acids or esters thereof, or with at least two dicarboxylic acids, anhydrides or esters thereof, or mixtures thereof; and(C) at least one aliphatic compound having at least two functional groups, wherein one of the functional groups is capable of reacting with at least one monocarboxylic acid or ester thereof, or dicarboxylic acid, anhydride or ester thereof and wherein another functional group is capable of reacting with at least one post-treating agent.
  • 52. The method of making the post-treated polymeric dispersant of claim 51, wherein in copolymer (iii)(b), said copolymer (i) or copolymer (ii) or both are contacted with the non-free radical catalyzed reaction product of compound (i)(a) and compound (i)(b) or (i)(c) in the presence of component (C).
  • 53. The method of making the post-treated polymeric dispersant of claim 51 wherein the post-treating agent is a cyclic carbonate, a linear mono-carbonate or a linear poly-carbonate.
  • 54. The method of making the post-treated polymeric dispersant of claim 51, wherein the post-treating agent is an aromatic polycarboxylic acid, an aromatic polycarboxylic anhydride or aromatic polycarboxylic ester.
  • 55. The method of making the post-treated polymeric dispersant of claim 51 wherein the post-treating agent is ethylene carbonate, phthalic anhydride, or naphthalic anhydride.
  • 56. A method of improving soot dispersancy or sludge dispersancy or both in an internal combustion engine which comprises operating the engine with a lubricating oil composition comprising a major amount of oil of lubricating viscosity and an effective amount of the post-treated polymeric dispersant of claim 1.
US Referenced Citations (50)
Number Name Date Kind
2551813 Pinkney May 1951 A
2992708 Lyon Jul 1961 A
3018291 Anderson et al. Jan 1962 A
3024237 Drummond et al. Mar 1962 A
3100673 Ulmer et al. Aug 1963 A
3172892 Le Suer et al. Mar 1965 A
3219666 Norman et al. Nov 1965 A
3272746 Le Suer et al. Sep 1966 A
3287271 Stuart et al. Nov 1966 A
3361673 Stuart et al. Jan 1968 A
3374174 Le Suer et al. Mar 1968 A
3381022 Le Suer Apr 1968 A
3560455 Hazen et al. Feb 1971 A
3692681 Liston Sep 1972 A
3708522 LeSuer Jan 1973 A
3804763 Meinhardt Apr 1974 A
3819660 Cahill et al. Jun 1974 A
3912764 Palmer, Jr. Oct 1975 A
4115206 Murtha Sep 1978 A
4152499 Boerzel et al. May 1979 A
4234435 Meinhardt et al. Nov 1980 A
4240916 Rossi Dec 1980 A
4384115 Renga May 1983 A
4423205 Rajan Dec 1983 A
4605808 Samson Aug 1986 A
4612132 Wollenberg et al. Sep 1986 A
4747964 Durand et al. May 1988 A
4780111 Dorer et al. Oct 1988 A
5112507 Harrison May 1992 A
5139688 Nalesnik Aug 1992 A
5241003 Degonia et al. Aug 1993 A
5286799 Harrison et al. Feb 1994 A
5319030 Harrison et al. Jun 1994 A
5427702 Chung et al. Jun 1995 A
5523417 Blackborow et al. Jun 1996 A
5670462 Barr et al. Sep 1997 A
5792729 Harrison et al. Aug 1998 A
5849676 Harrison et al. Dec 1998 A
6030930 Emert et al. Feb 2000 A
6117825 Liu et al. Sep 2000 A
6156850 Harrison et al. Dec 2000 A
6255258 Clark et al. Jul 2001 B1
6284716 Gunther et al. Sep 2001 B1
6358892 Harrison et al. Mar 2002 B1
6451920 Harrison et al. Sep 2002 B1
6512055 Gunther et al. Jan 2003 B2
6617396 Harrison et al. Sep 2003 B1
20060247386 Ruhe et al. Nov 2006 A1
20080103236 Stokes et al. May 2008 A1
20080113889 Ruhe et al. May 2008 A1
Foreign Referenced Citations (9)
Number Date Country
2702604 Jul 1978 DE
0355895 Feb 1990 EP
0438848 Jul 1991 EP
0587381 Mar 1994 EP
0602863 Jun 1994 EP
0 985 725 Mar 2000 EP
1 316 564 Jun 2003 EP
1 916 293 Apr 2008 EP
51130408 Nov 1976 JP
Related Publications (1)
Number Date Country
20090270531 A1 Oct 2009 US