Lubricating system for OHC engine

Information

  • Patent Grant
  • 6561315
  • Patent Number
    6,561,315
  • Date Filed
    Tuesday, May 22, 2001
    23 years ago
  • Date Issued
    Tuesday, May 13, 2003
    21 years ago
Abstract
A scraper is provided in a large end portion of a connecting rod in an inclined type of overhead camshaft engine to lubricate a timing system by dipping a lubricating oil stored in a lower portion of a crank case up. The scraper includes a bottom wall and a side wall set up on the bottom wall, and have a substantially L-shaped cross-section. An angle between the bottom wall and the side wall is set in a range of 60° to 90°. Thus, the droplets of the oil can be splashed to the side direction of scraper also in three-dimensional inclined direction, so that oil can be securely supplied to and lubricate the timing system which is offset from the scraper in a longitudinal direction of the crankshaft.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a lubricating system for an overhead camshaft engine (hereinafter referred to simply as “OHC engine”), in particular, to an effective technique applied to the OHC type of general-purpose engine, a cylinder axis of which is located with an inclination with respect to the gravitational direction.




In the prior art, an overhead valve (hereinafter referred to simply as “OHV”) and OHC type of general-purpose engines have been widely used as power sources for mowers, power sprayers, power generators, etc. For example, Japanese Patent Application Laid-open Publication No. Hei. 10-280932 discloses an engine of the OHV type, a cylinder axis of which is inclined in order to realize a compact size of the system. Further, Japanese Patent Application Laid-open Publication No. Hei. 8-177441 discloses an engine of the OHC type, an oil dipper of which rotates together with a crankshaft to improve a lubricating performance for a valve-operating system.




In such a general-purpose engine, a so-called splash method has been widely employed as a lubricating method of such a valve-operating system as chains, sprockets, and cams for reducing cost and size. In this splash method, an oil pump is not used, but is used the oil dipper in order to pick up a lubricating oil in an oil pan, so that splashes of the oil lubricates the system. As the oil dipper, while a paddle type is disclosed in the Publication No. Hei. 10-280932, a water mill wheel type is disclosed in the Publication No. Hei. 8-177441.




However, there was a problem of resulting in a cost up by increasing the number of components and in a complicated structure in the case of the lubricating system as described in the Publication No. Hei. 8-177441 since the oil dipper is disposed on an axis different from that of a crankshaft. In addition, there was also a problem of causing not only a large stirring resistance to become a rotational load, but also a raised oil temperature since the water mill wheel dips the lubricating oil up from the oil pan. Furthermore, there was a disadvantage that the height of the engine is increased by the height of the oil dipper.




On the other hand, the system of the Publication No. Hei. 10-280932 dips the oil up by means of the dipper mounted on a large end portion of a connecting rod, thereby lubricating the valve-operating system without increasing the number of components. In addition, this system can cause less stirring resistance, resulting in less raised oil temperature, since the paddle type of dipper moves as cutting the oil. Although, however, such a dipper can splash the oil along the circumference direction of the connecting rod, the dipper can not splash it toward a side of the connecting rod. Therefore, the valve-operating system of OHC engine can not be well lubricated by such a dipper since the valve-operating system deviates from the connecting rod in the longitudinal direction of the crankshaft.




Namely, in the OHV engine as described in the Publication No. Hei. 10-280932, the valve-operating system can be well lubricated by the paddle type of dipper since a valve-operating cam can be disposed in the vicinity of the oil dipper. In the OHC engine, however, a timing valve-operating member such as a chain or a cogged belt is offset from the connecting rod, so that the oil can not be splashed to the place of the chain by the dipper of the paddle type.




SUMMARY OF THE INVENTION




An object of the present invention is to securely supply a lubricating oil to a timing system without increasing the number of components in an OHC general-purpose engine.




In order to achieve the above mentioned object, there is provided a lubricating system of an overhead camshaft engine having a valve-operating cam provided on a cylinder head of the engine and driven in synchronization with a crankshaft via a timing system which comprises a scraper provided on a large end portion of a connecting rod of the engine in order to pick up a lubricating oil stored in a lower portion of a crankcase of the engine so as to lubricate the timing system. The scraper includes a bottom wall extending in a radial direction of the crankshaft and a side wall erected from the bottom wall.




According to the present invention, droplets of the oil can be splashed in the three-dimensional inclined direction, i.e., to the side direction of the scraper. Therefore, the droplets of the oil can be supplied to the timing system offsetted to the scraper in a longitudinal direction of the crankshaft. Thus, the timing system of the OHC engine can be securely lubricated without increasing the number of the components even though being offsetted from the scraper,




In this case, the engine may be an inclined type of OHC engine which has a cylinder axis, inclined with respect to the gravitational direction. In addition, an angle formed between the bottom wall and the side wall may be appropriately set within a range of 60° to 90°.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other objects and advantages of the present invention will become clearly understood from the following description with reference to the accompanying drawings, wherein:





FIG. 1

is a diagram illustrating a structure of an OHC engine using a lubricating system according to one embodiment of the present invention;





FIG. 2

is an explanatory cross-sectional view of a timing system of the engine of

FIG. 1

along a direction of a cylinder axis;





FIGS. 3



a


and


3




b


are diagrams illustrating the structure of a connecting rod including a scraper, which illustrate a front view and a side view of the scraper, respectively; and





FIG. 4

is a perspective view of the scraper.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




An embodiment of the present invention will now be described in detail with reference to the drawings.

FIG. 1

is a diagram illustrating a structure of an OHC engine using a lubricating system of a valve-operating device in one embodiment of the present invention.

FIG. 2

is an explanatory cross-sectional view of the engine of

FIG. 1

taken along the cylinder axis direction.




The engine of

FIG. 1

is a single-cylinder 4-cycle gasoline engine, and is a so-called “inclined type of OHC engine” in which the cylinder axis CL is inclined by an angle θ with respect to the gravitational direction (see FIG.


2


). In this engine, an engine body


1


includes a cylinder block


2


and a crank case


3


which are integrally formed therein. The engine body


1


is made of iron or a light metal alloy such as an aluminum alloy. A cylinder head


4


made of an aluminum alloy is attached to an upper portion of the cylinder block


2


. A rocker cover


5


made of a sheet metal or a synthetic resin is mounted on a top of the cylinder head


4


.




The crank case


3


has a large opening at the right side thereof in

FIG. 1

, thereby providing a main bearing case attachment surface


6


. A main bearing case


7


made of an aluminum alloy is attached to the main bearing case attachment surface


6


. Thus, a crank chamber


8


is provided in the crank case


3


, and an oil pan


10


is provided under the crank chamber


8


for storing a lubricating oil (hereinafter referred to simply as “oil”)


9


.




A main bearing


11




a


is press-fitted into the main bearing case


7


, and one end of a crankshaft


12


is supported by the main bearing


11




a


. An oil seal


13




a


is press-fitted on the outer side of the main bearing


11




a.






A main bearing


11




b


is press-fitted into a wall surface


14


opposite to the main bearing case attachment surface


6


of the crank case


3


. The other end side of the crankshaft


12


is supported by the main bearing


11




b


. Similarly, an oil seal


13




b


is provided on the outer side of the main bearing


11




b


. The oil seals


13




a


and


13




b


prevent the oil


9


stored in the oil pan


10


from leaking out of the crank case


3


along the crankshaft


12


.




A flywheel


15


and a cooling fan


16


are attached to an end portion of the crankshaft


12


that extends out of the crank case


3


through the wall surface


14


. The cooling fan


16


is provided outside the crank case


3


and within a casing


57


, and rotates together with the crankshaft


12


so as to induce a cooling air from an outside of the casing


57


. The engine body


1


, the cylinder head


4


, etc. are cooled by the induced cooling air. Moreover, a recoil device


17


is provided on the outer side of the casing


57


. By pulling a recoil lever


17




a


by hand, the crankshaft


12


is rotated to start the engine.




A cylinder bore


18


is provided in the cylinder block


2


. A piston


19


is fitted within the cylinder bore


18


so as to be slidable therein. An upper end of the cylinder bore


18


is closed by the cylinder head


4


, and an upper surface of the piston


19


and a bottom wall surface


20


of the cylinder head


4


form a combustion chamber


21


together. An intake valve


22


, an exhaust valve (not shown), an ignition plug (not shown), etc. are provided in the upper portion of the combustion chamber


21


.




A small end portion


25


of a connecting rod


24


is rotatably connected to the piston


19


via a piston pin


23


. A crank pin


27


of the crankshaft


12


is rotatably connected to a large end portion


26


of the connecting rod


24


. Thus, the crankshaft


12


is rotated along with the vertical reciprocation of the piston


19


.




On the other hand, a camshaft


28


is provided in the cylinder head


4


parallel to the crankshaft


12


on the cylinder axis CL. The camshaft


28


includes a valve-operating cam


29


and a sprocket


31


, which are integrally formed with each other. The valve-operating cam


29


is driven in synchronization with the crankshaft


12


by a timing system


30


.




A sprocket


32


is secured on the crankshaft


12


. Chain chambers


50


,


51


are provided in the cylinder block


2


and the cylinder head


4


, respectively, and the sprocket


31


and the sprocket


32


are connected to each other via a chain


33


provided in the chain chambers


50


and


51


. The sprockets


31


,


32


and the chain


33


form the timing system


30


together. The number of teeth of the sprocket


31


is twice as large as the number of teeth of the sprocket


32


, so that the valve-operating cam


29


undergoes one revolution per two revolutions of the crankshaft


12


. Also, an appropriate tension is applied to the chain


33


by a chain tensioner


55


.




The valve-operating cam


29


is provided with a cam surface


29




a


, and a slipper


35


formed at one end of a rocker arm


34


slidably contacts with the, cam surface


29




a


. The valve-operating cam


29


and the rocker arm


34


form a valve-operating device together. Two rocker arms


34


of a rocking type are provided respectively for intaking and exhausting air. Each of the rocker arms


34


is provided to rock about a rocker shaft


36


which is supported by a rocker support


59


. The other end of each rocker arm


34


is connected to a top end portion of the intake valve


22


or an exhaust valve (not shown) via an adjusting screw


56


. The intake valve


22


and the exhaust valve are each driven when the rocker arm


34


is rocked by the valve-operating cam


29


. The intake valve


22


and the exhaust valve are each biased by a valve spring


37


toward the closed position. Thus, the intake valve


22


is opened/closed by the rotation of the valve-operating cam


29


.




The timing system


30


is lubricated by a scraper


38


provided on a large end portion


26


of the connecting rod


24


.

FIGS. 3



a


and


3




b


are diagrams illustrating a structure of a connecting rod


24


including a scraper


38


, which illustrate a front view and a side view of the scraper


38


, respectively. Further,

FIG. 4

is a perspective view of the scraper


38


.




As illustrated in

FIG. 2

, the scraper


38


extends downward from a lower member


39


of the large end portion


26


, i.e., in a radial direction of the crankshaft


12


. The scraper


38


swings by the rotation of the crankshaft


12


through a path as indicated by a one-dotted-chain line in FIG.


2


. Thus, the oil


9


stored in the oil pan


10


is dipped and scraped up by the scraper


38


, and the oil


9


is splashed onto the chain


33


when the scraper


38


comes out of an oil surface


40


, thereby lubricating the timing system


30


.




The scraper


38


, having a generally L-shaped cross section, includes a bottom wall


41


and a side wall


42


extending upwardly on one lateral end of the bottom wall


41


as shown in FIG.


4


. In the present embodiment, the angle α formed by both the bottom wall


41


and the side wall


42


is set to be 90°. However, the angle therebetween is not limited to the right angle, but may be appropriately selected in the about range of 60° to 90°.




Along with the rocking of the scraper


38


, the oil


9


is dipped and scraped up by the bottom wall


41


, and guided to the side wall


42


and splashed away from the side wall


42


as shown in FIG.


4


. Thus, the droplets of the oil


9


are splashed also in three-dimensionally inclined directions, i.e., in the lateral direction from the scraper


38


, thereby throwing some droplets of the oil


9


toward a root portion of the chain tensioner


55


. Some of the droplets hit the inner wall of the crank case


3


and are bounced back toward the chain


33


.




In this way, droplets of the oil


9


can be supplied to the chain


33


, which is offsetted toward the main bearing case


7


with respect to the scraper


38


, thereby ensuring to supply the oil


9


to the chain


33


. In such a way, the timing system


30


of the OHC engine can also be securely lubricated without increasing the number of components even though the timing system


30


of the OHC engine is located at a deviated position from the longitudinal direction of the crankshaft due to the structure thereof.




The oil


9


thus splashed onto the chain


33


is transferred toward the cylinder head


4


along with the movement of the chain


33


, thereby lubricating the, sprocket


31


also. Moreover, the sprocket


32


is also lubricated by the oil


9


attached on the chain


33


.




On the side of the cylinder head


4


, some of the oil


9


attached on the chain


33


is shaken off by a centrifugal force. As the chain


33


travels around the sprocket


31


, some of the oil


9


on the chain


33


is thrown off from the chain


33


toward the circumferential directions of the sprocket


31


to be separated from the chain


33


. In the illustrated engine, the rocker cover


5


is provided above the sprocket


31


, and those droplets of the oil


9


hit the ceiling surface


53


of the rocker cover


5


. The oil


9


attached onto the ceiling surface


53


runs down along the ceiling surface


53


back into the oil pan


10


via the chain chambers


51


and


50


.




In the present invention, an oil dripping portion


54


having a convex shape are provided on one part of the ceiling surface


53


of the rocker cover


5


as shown in

FIG. 1

, so that the oil


9


attached onto the ceiling surface


53


drips from the oil dripping portion


54


. This oil dripping portion


54


is positioned above a contacting portion between the valve-operating cam


29


and the slipper


35


, thereby lubricating the contacting portion by the oil


9


dropped therefrom.




In the cylinder head


4


, a gas-liquid separation chamber


43


is further provided separately from the chain chamber


51


. Another gas-liquid separation chamber


45


is provided in the rocker cover


5


and is communicated to the gas-liquid separation chamber


43


via a lead valve


44


. The gas-liquid separation chamber


45


is further connected to an air cleaner


47


via a blow-by passage


46


. The air cleaner


47


is further connected to an intake port


49


in the cylinder head


4


via a carburetor


48


.




The gas-liquid separation chambers


43


,


45


are provided for separating a mist of the oil


9


from a blow-by gas when the blow-by gas stored in the crank chamber


8


is recirculated to the air cleaner


47


. In the illustrated engine, the gas-liquid separation chamber


43


is opened to the chain chamber


50


, which is provided separately from the cylinder bore


18


. Specifically, a gas inlet


52


is provided at an upper end portion of the chain chamber


50


of the cylinder block


2


, and the blow-by gas, which has flowed into the chain chamber


50


, flows into the gas-liquid separation chamber


43


via the gas inlet


52


. As the blow-by gas flows through the gas-liquid separation.chamber


43


, the oil mist contained therein attaches to a wall surface of the gas-liquid separation chamber


43


, thereby separating the oil mist from the blow-by gas. The oil component, which has been separated in the gas-liquid separation chamber


43


, returns to the oil pan


10


via the wall surfaces of the gas-liquid separation chamber


43


and then the chain chamber


50


.




The blow-by gas, which has flowed into the rocker cover via the lead valve


44


, is subjected to a further oil mist separation process in the gas-liquid separation chamber


45


. Specifically, the oil mist contained in the blow-by gas, which has entered the gas-liquid separation chamber


45


, attaches to the wall surface of the gas-liquid separation chamber


45


, thereby achieving a further gas-liquid separation. Incidentally, an oil return hole (not shown) may be provided in the bottom surface of the rocker cover


5


, whereby the oil, which has attached to the wall surface of the gas-liquid separation chamber


45


, flows into the chain chambers


51


,


50


through the oil return hole and returns to the oil pan


10


via the wall surface of the chain chambers


51


,


50


.




The present invention has been specifically described above based on a particular embodiment thereof. It is understood, however, that the present invention is not limited to the above-described embodiment, but rather various modifications can be made thereto without departing from the scope and spirit of the present invention.




For example, the scraper


38


may have not only a generally L-shaped cross section as described in the above embodiment, but also one of an acute angle or an arcuated shape in which the bottom wall and the side wall are continuously formed.




Moreover, while the present invention is applied to an air-cooled engine with a single-cylinder, the present invention may alternatively be applied to an air-cooled engine with a multi-cylinder, or a liquid-cooled engine with a single- or multi-cylinder. In addition, although the cylinder block


2


and the crank case


3


are formed integrally with each other in the embodiment described above, they may alternatively be provided separately, and further the cylinder head


4


and the cylinder block


2


may be formed integrally with each other.




Furthermore, the timing system


30


is provided by using the sprockets


31


,


32


and the chain


33


in the embodiment described above, but the timing system


30


may alternatively be provided by using other driving members known in the art, such as a cogged pulley and a cogged belt, or a timing pulley and a timing belt. Moreover, in the present invention, the term “rotation” has a general concept including a circular motion in both directions, i.e., a clockwise direction and a counterclockwise direction, not a circular motion in only one direction.




According to the lubricating system for the OHC engine of the present invention, the scraper is provided on a large end portion of a connecting rod with a L-shaped cross-section constructed by a bottom wall and a side wall, thereby allowing the droplets of the oil to be splashed in three-dimensional inclined directions, i.e., the side direction also of the scraper. Therefore, the droplets of the oil can be attached to the timing system also which is located at the deviated portion from the scraper in the longitudinal direction of the crankshaft. That is, even in the case of the OHC engine, the timing system of which is offsetted from the scraper, it becomes possible to securely lubricate the timing system without adding components such as an oil dipper according to the present invention.




While there has been described what are at present considered to be preferred embodiments of the present invention, it will be understood that various modifications may be made thereto, and it is intended that the appended claims cover all such modifications as fall within the true spirit and scope of the invention.



Claims
  • 1. A lubricating system of an overhead camshaft engine having a valve-operating cam provided on a cylinder head of the engine and driven in synchronization with a crankshaft via a timing system, the timing system being offset from a connecting rod in a direction of a crank shaft, comprising:a scraper provided on a large end portion of the connecting rod of the engine and including a bottom wall extending in a radial direction of the crankshaft and a side wall erected from the bottom wall on a side opposite to the timing system in order to pick up a lubricating oil stored in a lower portion of a crank case of the engine so as to lubricate said timing system.
  • 2. The lubricating system of the overhead camshaft engine according to claim 1, wherein said engine is an inclined type of engine which has a cylinder axis inclined with respect to a gravitational direction.
  • 3. The lubricating system of the overhead camshaft engine according to claim 1, wherein an angle formed between said bottom wall and said side wall is in a range of 60° to 90°.
  • 4. The lubricating system of the overhead camshaft engine according to claim 2, wherein an angle formed between said bottom wall and said side wall is in a range of 60° to 90°.
  • 5. The lubricating system of the overhead camshaft engine according to claim 1, wherein said scraper has an arc-shaped cross section in which the bottom wall and the side wall are continuously formed.
  • 6. The lubricating system of the overhead camshaft engine according to claim 1, wherein said timing system comprises sprockets and a chain for carrying the lubricating oil to the valve-operating cam.
Priority Claims (1)
Number Date Country Kind
2000-150850 May 2000 JP
US Referenced Citations (13)
Number Name Date Kind
766382 Potter Aug 1904 A
878783 Downie Feb 1908 A
1093659 Thornley Apr 1914 A
1558885 Hunt Oct 1925 A
1837825 Mead Dec 1931 A
1936101 Baits et al. Nov 1933 A
2050723 McMillin Aug 1936 A
2200051 Badertscher May 1940 A
2449227 Hobart Sep 1948 A
2498019 Thompson Feb 1950 A
3088783 Conover May 1963 A
4628878 Nakano et al. Dec 1986 A
4723237 Andrew et al. Feb 1988 A
Foreign Referenced Citations (2)
Number Date Country
8177441 Jul 1996 JP
10280932 Oct 1998 JP