Inkjet printing mechanisms, such as printers, may use print cartridges which shoot drops of liquid colorant, referred to generally herein as “ink,” onto a print medium, such as a page of paper. Each print cartridge may have a printhead formed with very small nozzles through which the ink drops are fired. To print an image, the printhead, or a printhead carriage supporting the printhead, may be propelled back and forth across the page along a printhead carriage rod, shooting drops of ink in a desired pattern as it moves. The particular ink ejection mechanism within the printhead may be implemented in a variety of different ways, such as by piezo-electric or thermal printhead technology.
To enhance print quality, smooth motion of the printhead carriage along the carriage rod may be desired. However, during printing the carriage rod may become fouled with contaminants such as dust, ink aerosol particles, and print media particulate matter such as paper fibers. Such contaminants may interfere with smooth motion of the printhead carriage, thereby reducing print quality. The contaminants may cause friction between the printhead carriage and the carriage rod, thereby increasing strain on printer motors. The contaminants may also damage the printhead carriage or the carriage rod, thereby reducing the working life of the printer.
To clean and lubricate the carriage rod a lubricating pad, in the shape of a closed loop or a “doughnut”, may be frictionally fit around a circumference of the carriage rod. An inner diameter of the closed pad may be made smaller than the outer diameter of the carriage rod to ensure intimate contact of the closed pad with the sliding surface of the rod so that lubricating fluid is imparted thereto. The lubricating pad may lubricate and clean around the entire circumference of the carriage rod as the closed pad is moved therealong. However, the tight fitting closed pad may impart a large drag to the printhead carriage thereby straining printer motors and inhibiting accurate movement of the printhead carriage. Moreover, slight variations in the diameters of different closed pads may result in different drag sensitivities of pads on different carriage rods, thereby reducing consistency in print quality between similarly produced printers. The doughnut shaped closed pad which completely encircles the carriage rod may require the carriage rod to be end-supported, which may facilitate vibration of the carriage rod during use. Such vibration may cause positional errors and print quality defects of the printhead.
A lubricating system includes a flexible, nominally planar lubricating structure including first and second end regions and a central region positioned therebetween. The lubricating structure is impregnated with a lubricating fluid and is adapted for securement to a printhead carriage only at said first and second end regions.
While it is apparent that the printer components may vary from model to model, the inkjet printer 20 may include a chassis 22, such as a metal frame, surrounded by a housing or casing enclosure 24, typically manufactured of a polymeric material such as plastic. Sheets of print media are fed through a printzone 25 by a print media handling system 26. The print media may be any type of suitable sheet material, such as paper, card-stock, transparencies, mylar, and the like, but for convenience, the illustrated embodiment is described using paper as the print medium. The print media handling system 26 typically has a feed tray 28 for storing sheets of paper before printing. A series of motor-driven paper drive rollers (not shown) may be used to move the print media from tray 28 into the printzone 25 for printing. After printing, the sheet lands on output tray portion 30. The media handling system 26 may include a series of adjustment mechanisms for accommodating different sizes of print media, including letter, legal, A-4, envelopes, etc., such as a sliding length and width adjustment levers 32 and 33 for the input tray, and a sliding length adjustment lever 34 for the output tray.
The printer 20 also has a printer controller, illustrated schematically as a microprocessor 35, that receives instructions from a host device, typically a computer, such as a personal computer (not shown), communicatively coupled to printer 20 via electrical, optical, or RF methods and the like. Indeed, many of the printer controller functions may be performed by the host computer, by the electronics on board the printer, or by interactions therebetween. As used herein, the term “printer controller 35” encompasses these functions, whether performed by the host computer, the printer, an intermediary device therebetween, or by a combined interaction of such elements. The printer controller 35 may also operate in response to user inputs provided through a key pad (not shown) located on the exterior of the casing 24. A monitor coupled to the host computer may be used to display visual information to an operator, such as the printer status or the user interface of a particular program being run on the host computer.
Still referring to
The illustrated exemplary printhead carriage 40 carries two inkjet print cartridges 44 and 46 over the printzone 25 for printing, though any number or type of cartridges may be used. Each of the printheads may selectively eject droplets of ink onto a sheet of print media (not shown) in response to firing signals received from the controller 35, such as black ink from cartridge 44, and/or at least one colored ink from cartridge 46. It is apparent that any type of inks and/or colors may be used in cartridges 44 and 46, such as dye-based inks, pigment based inks, thermoplastic, wax or paraffin based inks, as well as hybrid or composite inks having both dye and pigment characteristics. The illustrated cartridges 44 and 46 may each include reservoirs for storing a supply of ink.
One suitable type of carriage support system is shown in U.S. Pat. No. 5,366,305, assigned to Hewlett-Packard Company, the assignee of the subject application. Any carriage propulsion system may be used to drive the printhead carriage 40, including a position feedback system, which communicates carriage position signals to the controller 35. For instance, a carriage drive gear (not shown) and a DC motor assembly 52 may be coupled to drive an endless belt secured to the carriage 40, with the motor operating in response to control signals received from the printer controller 35. To provide carriage positional feedback information to printer controller 35, an optical encoder reader (not shown) may be mounted to carriage 40 to read an encoder strip extending along the path of carriage travel.
Pad 42 may be manufactured of an absorbent textile material, such as needlefelt. Needlefelt is a non-woven textile produced by mechanically, chemically or thermally interlocking layers of fibers, filaments or yarns, in a process called needle punching on a needle loom machine. Pad 42 may be impregnated with a lubricating fluid, such as a low-viscosity lubricating oil. The oil may be drawn out of the pad through capillary action and deposited onto the sliding surface of the carriage rod 36 as necessary. Pad 42 may be impregnated with a sufficient amount of lubricating fluid such that pad 42 will lubricate the carriage rod throughout the life of the printer. In other embodiments, pad 42 may be periodically cleaned, lubricated and/or replaced throughout the life of the printer.
Carriage rod 36 may comprise a generally circular cross sectional shape but any shaped cross section of carriage rod 36 may be utilized. For example, carriage rod 36 may comprise a square, an oval or a rectangular cross-shaped shaft. Rod 36 may also comprise an inverted “U” shaped cross-sectional shape, wherein the rod is supported along its length by a bar received within the lower recess of the carriage rod. Support of carriage rod 36 entirely along its length may reduce vibrational and positional errors of the printhead carriage, and a printhead supported thereon, during printing as the printhead carriage is moved along the carriage rod.
Still referring to
In addition to applying lubricating oil to working surface 76 of the carriage rod 36, pad 42 physically wipes the pad contacting surface 76 of rod 36 so as to remove contaminants therefrom. Pad 42, therefore, lubricates and cleans carriage rod 36, thereby reducing frictional drag on the carriage rod and increasing the life of the printer. By “pad contacting surface” 76 of the carriage rod, Applicants generally mean the portion of the outer surface of the carriage rod used to support the printhead carriage 40. In the embodiment shown, the pad contacting surface 76 of carriage rod 36 comprises approximately one fifth of the circumference of the generally cylindrically shaped carriage rod, extending upwardly and around the top surface of carriage rod 36, approximately from line 80 to line 82 (both lines shown in end view in FIG. 5). In other embodiments, the pad contacting surface of the carriage rod 36 may comprise any portion less than 100% of the outer periphery of the carriage rod, as for example, within a range of 0 to 50% of the outer periphery or perimeter of the carriage rod 36. Pad 42 generally does not contact the entire outer periphery of carriage rod 36 but only contacts the carriage rod in a portion of the periphery, i.e., rod contacting surface 78 of the pad 42 only contacts rod 36 along pad contacting surface 76 of the rod 36. In one embodiment, pad contacting surface 76 of rod 36 and rod contacting surface 78 of pad 42 are contiguous with one another such that the entire pad contacting surface of the rod is cleaned and lubricated while producing a reduced amount of friction on the rod when compared to the friction produced by prior art closed pads which entirely surround and frictionally engage a carriage rod. Moreover, because planar pad 42 only contacts a portion of the entire periphery of the rod, the rod may be supported along its length, such as along a lower or a side surface of the rod 36 by a cross bar 84, thereby reducing vibration of the rod 36 and the printhead carriage 40 as it moves along the rod.
The nominally planar lubricating pad 42 provides many benefits. The pad 42 limits migration of lubricants from the pad during use because it utilizes capillary action to dispense the lubricant to the carriage rod 36 during use. Contact of the pad 42 with only the forward most portion, or the pad contacting surface 76, of the carriage rod reduces the printhead carriage drag's sensitivity to pad geometry, thereby increasing consistency of operation between similarly manufactured printers. In other words, slight variations in the inner diameter of closed pads of the prior art may result in inconsistent drag forces, whereas slight variations in the length of the planar pad 42 shown may be compensated for when the pad is secured within slots 66 and 68 of the printhead carriage 40. The pad 42 lubricates and cleans the pad contacting surface 76 of the carriage rod 36 in a single motion. Moreover, the planar pad geometry allows the carriage rod 36 to be supported completely or periodically along its length, thereby allowing different mounting methods that may reduce carriage rod vibrations so as to improve positional accuracy and overall print quality.
Although a specific embodiment has been illustrated and described herein for purposes of description of the preferred embodiment, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations calculated to achieve the same purposes may be substituted for the specific embodiment shown and described herein without departing from the scope of the present invention. Those with skill in the chemical, mechanical, electromechanical, electrical, and computer arts will readily appreciate that the present invention may be implemented in a very wide variety of embodiments. This application is intended to cover any adaptations or variations of the preferred embodiments discussed herein. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
1536896 | Liorens | May 1925 | A |
3985404 | Plaza et al. | Oct 1976 | A |
4452542 | Akazawa | Jun 1984 | A |
Number | Date | Country |
---|---|---|
05031989 | Sep 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20040080567 A1 | Apr 2004 | US |