1. Field of the Invention
This invention generally relates to four-stroke engines, and more specifically, to a lubrication device that is applicable to four-stroke engines.
2. Description of Related Art
In order to provide common portable work machines, such as lawn mowers, chain saws, and other trimmers with sufficient torque and long-term power, modern industry adopts designs that employ engines of internal combustion as power source. However, the foresaid portable work machines are commonly manipulated at various angles, for instance, a chain saw must be manipulated at various angles in accordance with a specific practical object to be cut, but not maintaining at a same angle; beside, to respond to the demands of manually manipulating light weight and high rotation speed, two-stroke engines are preferable selections of internal combustion engine to four-stroke engines theoretically.
When a foresaid two-stroke engine is operating, it emits exhaust fume and takes in air at the same time; in this situation, the emitted exhaust fume contains some fuel unburned or incompletely burned, such that that using the two-stroke engine will cause exhaust fume pollution, thereby not able to conform to some of the recently issued standards and regulations of pollution emissions. On the contrary, since four-stroke engines have fuel combusted more completely, they conform to the emission standards, Further, four-stroke engines produce less noise than the two-stroke engines during operation therefore it is an inevitable trend to adopt four-stroke engines in the designs of power work machines.
Although four-stroke engines have the advantages of less noise and lower emission pollution, they have disadvantage of requiring proper lubrication on cams and valves of the four-stroke engines, and therefore, a four-stroke engine must be integrated with a lubrication device. However, when a four-stroke engine integrated with a lubrication device is applied to a work machine, such as portable work machines like chain saws, due to the practical application environment, an user is likely to manipulate the four-stroke engine at an extremely slanting or even upside down angle, and at this moment, lubricant stored inside the crank case of the lubrication device is likely to flow into exhaust valves and possibly the flow path of air mixture in the combustion air as well, thereby interfering with effective air combustion and causing engine oil leakage.
In order to overcome the current drawbacks of four-stroke engines applied to portable work machines, some improved designs of lubrication device of four-stroke engines are provided according to U.S. patents, for instance, U.S. Pat. No. 6,213,078, and U.S. Pat. No. 6,170,456, and others.
As shown in
As shown in
Hence, it is a highly urgent issue in the industry for how to provide a lubrication device of four-stroke engines, which is capable of enabling lubricant to flow into valve chamber and cam room to provide effective lubrication, and meanwhile preventing massive lubricant from flowing into air-intake system to cause engine extinguishment, thereby allowing the user to manipulate engine at various angles.
In view of the foregoing drawbacks of the prior art, it is therefore an object of the present invention to provide a lubrication device of four-stroke engines, which enables four-stroke engines to be manipulated at various angles.
It is another object of the present invention to provide a lubrication device of four-stroke engines, which is capable of providing proper lubrication, thereby avoiding engine piston jammed in cylinder due to insufficient lubrication and wearing of valve.
It is a further object of the present invention to provide a lubrication device of four-stroke engines, which is capable of avoiding problems of lubricant consumption as well as air filter contamination caused by massive lubricant flowing out from breathing pipe.
In order to attain the above and other objectives, the present invention provides a lubrication device of four-stroke engines, comprising: a lubricant tank connected to an underneath crank case of the engine, for containing lubricant; a stirring chamber disposed underneath the crank case and partially disposed inside the lubricant tank, and having at least one oil hole connected to the lubricant tank; an oil stirring rod disposed at one end of piston connecting rod of the engine and is received in the stirring chamber, for stirring lubricant to form oil mists; an oil supply path comprising a pipeline connected to a rocker arm room and the crank case of the engine, and an oil supply channel disposed inside a crankshaft first section of the crank case and correspondingly connected to the pipeline and interior of the crank case, and when the crankshaft first section rotates to a first rotation angle, the oil supply channel opens to supply the oil mists through the rocker arm room to the cam room of the engine; and an oil recycling path having an oil recycling channel disposed inside the crankshaft second section and correspondingly connected to the interiors of the cam room and the crank case, and when the crankshaft second section rotates to a second rotation angle, the oil recycling channel opens to re-absorb the oil mists into the crank case.
In the foresaid lubrication device of four-stroke engines, the stirring chamber can have a long and narrow concave located inside the lubricant tank, wherein each of the oil holes is at least disposed on two sides and bottom end of the long and narrow concave, but not limited thereto, and each of the oil holes can further be disposed on the bottom end of the stirring chamber nearby two sides of the long and narrow concave. In addition, the basic condition of the first rotation angle and the second rotation angle is that they alternate to each other, without specific limitations, and in one embodiment, the first rotation angle and the second rotation angle alternate to each other at an angle of 180 degrees.
In one embodiment, the oil supply channel may comprises a first axial aperture connected to the interior of the crank case, and a first radial aperture connected to the first axial aperture and the pipeline. The oil supply channel may further comprises a first eccentric aperture connected to the first axial aperture and the interior of the crank case, and a first airtight oil plug is disposed at an axle center of the crankshaft first section corresponding to a rim of the first eccentric aperture. A first obstruction block, for instance, in the form of a half circular ring may be disposed on an external side of the crankshaft first section corresponding to the first radial aperture, and is for covering area beyond the first rotation angle.
Naturally, the oil recycling channel can be accordingly designed, and comprises a second axial aperture and a second radial aperture connected to the second axial aperture and the cam room. The oil recycling channel may further comprise a second eccentric aperture connected to the second axial aperture and the interior of the crank case, and a second airtight oil plug disposed at an axle center of the crankshaft second section corresponding to a rim of the second eccentric aperture. A second obstruction block, for instance, in the form of a half circular ring can be disposed on the crankshaft second section corresponding to the second radial aperture, is for covering area beyond the second rotation angle.
In another embodiment, the oil supply channel may comprise a first slanting aperture having a first end and a second end, the first end is connected to the pipeline and the second end is connected to the interior of the crank case. The oil supply channel may further comprise a first eccentric aperture connected to the second end and the interior of the crank case, and a first airtight oil plug is disposed at an axle center of the crankshaft first section corresponding to a rim of the first eccentric aperture. Further, a first obstruction block, for instance, in the form of a half circular ring, may be disposed on an external side of the crankshaft first section corresponding to the first end, and is for covering area beyond the first rotation angle.
Similarly, the oil recycling channel can also be accordingly designed and comprises a second slanting aperture having a first end and a second end, the first end is connected to the cam room and the second end is connected to the interior of the crank case. The oil recycling channel further comprises a second eccentric aperture connected to the second end and the interior of the crank case, and a second airtight oil plug is disposed at an axle center of the crankshaft second section corresponding to a rim of the second eccentric aperture. In addition, a second obstruction block, for instance, in the form of a half circular ring is disposed on an external side of the crankshaft second section corresponding to the first end, and is for covering area beyond the second rotation angle.
To attain the foresaid objects, the present invention further provides a lubrication device of four-stroke engines, which is applicable to four-stroke engines that have a cylinder, a crank case, a rocker arm room connected to a cam room, and a breathing pipe. The crank case has a crankshaft that is divided into a crankshaft first section, a connection part, and a crankshaft second section. The cylinder has a piston connecting rod therein, and the piston connecting rod is connected to the connection part. The cam room is disposed with cam having a camshaft. The lubrication device comprises: a lubricant tank connected to underneath the crank case, for containing lubricant; a stirring chamber disposed underneath the crank case and partially disposed inside the lubricant tank, has and having at least one oil hole connected to the lubricant tank; an oil stirring rod disposed at one end of the piston connecting rod and is set inside the stirring chamber, for stirring lubricant to oil mists; an oil supply path comprising a pipeline connected to the rocker arm room and the crank case, and an oil supply channel disposed inside the crankshaft first section correspondingly connected to the pipeline and the interior of the crank case, and when the crankshaft first section rotates to a first rotation angle, the oil supply channel opens to supply the oil mists through the rocker arm room to the cam room; an oil recycling path comprising an oil recycling channel disposed on the crankshaft second section correspondingly connected to the interiors of the cam room and the crank case, and when the crankshaft second section rotates to a second rotation angle, the oil recycling channel opens to re-absorb oil mists into the crank case; and an exhaust channel comprising a third axial aperture disposed on the camshaft and connected to the breathing pipe, and a third radial aperture connected to the third axial aperture and the cam room.
To attain the foresaid objectives, the present invention further provides a lubrication device of four-stroke engines, which is applicable to four-stroke engines that have a cylinder, a crank case, a rocker arm room connected to a cam room, and a breathing pipe. The crank case has a crankshaft that is divided into a crankshaft first section, a connection part, and a crankshaft second section. The cylinder has a piston connecting rod therein, and the piston connecting rod is connected to the connection part. The lubrication device comprises: a lubricant tank connected to the underneath of the crank case, for containing lubricant; a stirring chamber disposed underneath the crank case and partially disposed inside the lubricant tank, and having at least one oil hole connected to the lubricant tank; an oil stirring rod disposed at one end of the piston connecting rod and is set inside the stirring chamber, for stirring lubricant to oil mists; an oil supply path comprising a pipeline connected to the rocker arm room and the crank case, and an oil supply channel located inside the crankshaft first section correspondingly connected to the pipeline and the interior of the crank case, and when the crankshaft first section rotates to a first rotation angle, the oil supply channel opens to supply the oil mists through the rocker arm room to the cam room; an oil recycling path comprising an oil recycling channel disposed on the crankshaft second section correspondingly connected to the interiors of the cam room and the crank case, and when the crankshaft second section rotates to a second rotation angle, the oil recycling channel opens to re-absorb oil mists into the crank case, wherein the breathing pipe is connected to the space in the four-stroke engine, and the space can be a channel between the cylinder and the crank case.
Further, the design of the stirring chamber in the foresaid embodiments can be omitted. That is, the lubricant tank is connected to underneath the crank case for containing lubricant, and the oil stirring rod is disposed at one end of the piston connecting rod corresponding to the stirring chamber, for stirring lubricant to oil mists.
In view of the above, the lubrication device of four-stroke engine of the present invention mainly has a rocker arm room and a crank case connect to each other, and the alternating design of the oil supply and oil-absorption channels enables lubricant mists to cycle from the crank case through the rocker arm room to cam room, and then to be re-absorbed into the crank case, thereby allowing engine to be manipulated at various angles. Moreover, the design of the oil supply path and the oil recycling path provides proper lubrication, and in accordance with the design of eccentric apertures and airtight oil plugs, situation of excess lubricant flowing out of the crank case can be avoided, thereby avoiding consequent problems of excessive wearing of the valves and engine piston jammed in cylinder caused by insufficient lubrication. In addition, the design of the exhaust channel employs centrifugal force to prevent oil drops or massive oil mists from entering, thereby avoiding problems of lubricant consumption and air filter contamination caused by massive lubricant flowing out through the breathing pipe.
The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:
Embodiments of a multi-chip semiconductor device having leads and a method for fabricating the same proposed in the present invention are described as follows with reference to
As shown in
In the four-stroke engines of the embodiment, the crank case 3 has a crankshaft that is divided into a crankshaft first section 32 and a crankshaft second section 33 that are connected to each other via a connection part 31 and move simultaneously. The cylinder 2 comprises a piston connecting rod 21 connected to the connection part 31, and a piston 22 connected to a top end of the piston connecting rod 21. The rocker arm room 4 has a rocker arm 41, the cam room 5 is disposed with a cam 51 having a camshaft 52, and the rocker arm 41 is used for simultaneously activating the cam 51. In addition, the cam room 5 has a breathing pipe 6 connected to a air filter (not shown in the figures) for emitting exhaust fume. Since the principle of internal combustion of four-stroke engines is well understood by those in the industry and is not a creative feature of the present invention, descriptions of engine movement principles and detailed mechanism design will not be described in details herein.
The lubrication device of the present invention comprises: a lubricant tank 7 integrated to the underneath of the crank case 3, for containing lubricant 71; a stirring chamber 34 disposed beneath the crankshaft 3 and partially disposed inside the lubricant tank 7, and having at least one oil hole 342 connected to the lubricant tank 7; an oil stirring rod 23 disposed at bottom end of the piston connecting rod 21 and is set inside the stirring chamber 34, for string the lubricant 71 to form oil mists; an oil supply path comprising a pipeline 42 connected to the rocker arm room 4 and the crank case 3, and an oil supply channel 321 disposed inside the crankshaft first section 32 of the crank case 3 and correspondingly connected to the pipeline 42 and interior of the crank case 3, and when the crankshaft first section 32 is at a first rotation angle, the oil supply channel 321 opens to supply the oil mists through the rocker arm room 4 to the cam room 5; and an oil recycling path comprising an oil recycling channel 331 disposed inside the crankshaft second section 33 and correspondingly connected to the interiors of the cam room 5 and the crank case 3, and when the crankshaft second section 33 is at a second rotation angle, the oil recycling channel 331 opens to re-absorb the oil mists to the interior of the crank case 3.
In the embodiment, the stirring chamber 34 comprises a long and narrow concave 341 located inside the lubricant tank 7, wherein in addition to two sides and bottom end of the long and narrow concave 341, each of the oil holes 342 can also be formed on bottom of the stirring chamber 34 nearby the two sides of the long and narrow concave 341, thereby providing engines with proper oil dropping channel at various angles even in a upside down situation, as well as balancing pressure between the crank case 3 and the lubricant tank 7. Moreover, the crankshaft first section 32 and the crankshaft second section 33 are connected to each other via the connection part 31 and consequently move simultaneously. The basic principle of the said first rotation angle and the said second rotation angle is such that they alternate to each other, but there are no specific limitations. In the embodiment, the condition in which the first rotation angle and the second rotation angle alternate to each other at an angle of 180 degrees is used as an example, but not limited thereto.
Referring to
According to the above disclosed design of oil supply path, when the crankshaft first section 32 rotates, particles of oil drop are flung off via an end side of the crankshaft first section 32 by a centrifugal force, only allowing oil mists to pass through the oil supply channel 321. In other words, the first airtight oil plug 3217 mostly encloses the exterior of the axle center of the first axial aperture 3211, and therefore, the particles of oil drops can be flung off via end side of the crankshaft first section 32 by centrifugal force while rotating, and pressure difference enables the oil mists to travel only from the first eccentric aperture 3215 to the first axial aperture 3211. The foresaid first radial aperture 3213 and the first obstruction block 323 compose a supply switch that controls oil supply. In the embodiment, when the crankshaft first section 32 rotates to the first rotation angle (i.e., the first radial aperture 3213 is away from territory of the first obstruction block 323), and then based on the descending route of the piston 22, a positive pressure generated enables the oil mists to travel via the pipeline 42 passing the rocker arm room 4 to the cam room 5, thereby reaching object of oil mists transmission.
Referring to
According to the above disclosed design of oil recycling path, the second radial aperture 3313 and the second obstruction block 333 compose a re-absorption switch for controlling oil mists or oil drops. In the embodiment, when the crankshaft second section 33 rotates to the second rotation angle (i.e., the second radial aperture 3313 is away from territory of the second obstruction block 333), oil mists or oil drops can travel to the interior of the crank case 3 via the second radial aperture 3313 and the second axial aperture 3311. Based on the ascending route of the piston 22, a negative pressure generated inside the crank case 3 enables the oil mists to be re-absorbed and recycled. Furthermore, the second eccentric aperture 3315 is designed to employ a centrifugal force for preventing oil drops inside the stirring chamber 34 from reflowing into the second axial aperture 3311. It must be specifically stated herein that the condition in which the first rotation angle and the second rotation angle in the embodiment alternate to each other at an angle of 180 degrees is used as an example. In other words, when the crankshaft first section 32 rotates to the first rotation angle, the crankshaft second section 33 is at an angle 180 difference from the first rotation angle, and therefore, the oil supply channel 321 and the oil recycling channel 331 open alternately, but not at the same time.
Moreover, although the crankshaft of the crank case 3 in the embodiment comprises a crankshaft first section 32 and a crankshaft second section 33 connected to to each other via a connecting part 33 and moving simultaneously, it does not limit the scope of the present invention. The crankshaft may also be replaced with a single crankshaft, and of course, the single crankshaft may be divided into a first section, connection part, and a second section, and then form the foresaid oil supply channel 321 and oil recycling channel 331 on the first section and the second section, respectively, to achieve the same technique effect. Since disposal of a single piece crankshaft or two pieces fabricated crankshaft that move simultaneously inside crank case of engine is a conventional technique by the industry and not the creative feature of the present invention, no detailed descriptions are provided with reference to the figures.
The cam room 5 has a cam 51 disposed therein, the cam 51 and a cam gear 53 are fixed on a camshaft 52, and the cam gear 53 is activated by a crankshaft gear 335 fixed on the crankshaft second section 33. Besides, the camshaft 52 is disposed with an exhaust channel 521 in order to connect the cam room 5 and the breathing pipe 6, and the breathing pipe 6 is for connecting to air filter (not shown in the figures). Referring to
When the engine is operating in a level state, as shown in
When the crankshaft (including the crankshaft first section 32 and crankshaft second section 33) rotates counterclockwise to the first rotation angle, it enables the piston connecting rod 21 to descend, and consequently the interior pressure of the crank case 3 begins to increase due to a reduced volume, thereby forcing oil mists inside the crank case 3 to travel into the oil supply channel 321 inside the crankshaft first section 32, and then through the first eccentric aperture 3215 and the first axial aperture 3211 to the first radial aperture 3213, at this moment, the relation between the first radial aperture 3213 and the first obstruction block 323 is in an opening state, the first obstruction block 323 is opposite to an opening space connected to the pipeline 42, therefore the oil mists are capable of traveling into the pipeline 42, and then the oil mists can travel to the rocker arm room 4 through the pipeline 42 to lubricate the rocker arm 41 and other components, as well as travel to the cam room 5 to lubricate the cam 51, cam gear 53, and crankshaft gear 335. The design of the third radial aperture 5213 of the exhaust channel 521 employs a centrifugal force to prevent massive oil mists from entering the air filter, and congealed liquid lubricant and oil mists are gathered underneath the cam room 5. At this moment, the relation between the second radial aperture 3313 of the crankshaft second section 33 and the second obstruction block 333 is in a closing state.
When the piston 22 of the cylinder 2 descends to a dead end, the piston 22 is back on an ascending route, and then the first radial aperture 3213 of the crankshaft first section 32 and the first obstruction block 323 is in a closing state, while the second radial aperture 3313 of the crankshaft second section 33 and the second obstruction block 333 is in an opening state, and then the interior pressure of the crank case 3 begins to decrease due to an expanded volume. Therefore, via the second radial aperture 3313 of the crankshaft second section 33 and then passing through the second axial aperture 3311 and the second eccentric aperture 3315, the gathered lubricant and oil mists underneath the cam room 5 are absorbed into the crank case 3, and a lubrication cycle is thus completed.
As shown in
As shown in
In addition, although in the embodiment, the oil supply channel 321 mainly comprises a first axial aperture 3211 disposed on a crankshaft first section 32 and a first radial aperture 3213, and the oil recycling channel 331 mainly comprises a second axial aperture 3311 allocated on a crankshaft second section 33 and a second radial aperture 3313, but this example is not limit the scope of the present invention. For instance, as shown in
The exhaust channel 521 is disposed in the cam room 5 for avoiding problems, such as massive lubricant flowing out from the breathing pipe 6, and consequent massive lubricant consumption, air filter contamination and engine extinguished resulting from massive lubricant accumulated in the breathing pipe. For the sake of brevity, the foresaid feature is illustrated in the previous embodiment but not intended at limiting the positions of the exhaust channel 521 and the breathing pipe 6. The position of the breathing pipe 6 can be optionally designed in the four-stroke engine depending upon demand of practical application. As shown in
In addition, in this embodiment, the lubrication device of the four-stroke engine can be designed without the oil supply channel 321 and the oil recycling channel 331 (i.e., only the exhaust channel 521 is designed instead in the lubrication device).
In view of the above, the lubrication device of four-stroke engines of the present invention mainly has the rocker arm room and the crank case connected to each other, and the design of alternating oil supply and oil-absorption channels enables lubricant mists to cycle from the crank case through the rocker arm room to cam room, and then to be re-absorbed into the crank case, thereby allowing engine to be manipulated at various angles. The design of the oil supply path and the oil recycling path provides proper lubrication, and based on the design of eccentric apertures and airtight oil plugs, situation of excess lubricant flowing out of the crank case can be avoided. in Moreover, the design of the exhaust channel employs centrifugal force to prevent oil drops or massive oil mists from entering, thereby avoiding problems of excessive lubricant consumption and air filter contamination caused by massive lubricant flowing out through the breathing pipe. Therefore, the lubrication device of four-stroke engines provided by the present invention overcomes various drawbacks of the prior art, and has industrial applicability, novelty, and non-obviousness.
The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
96137017 A | Oct 2007 | TW | national |
This application is a Continuation-In-Part of co-pending application Ser. No. 12/068,094 filed on Feb. 1, 2008, and for which priority is claimed under 35 U.S.C. § 120. This application claims priority under 35 U.S.C. § 119(a) on Patent Application No. 096137017 filed in Taiwan on Oct. 3, 2007, the entire contents of each application being incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5964198 | Wu | Oct 1999 | A |
6170456 | Gu et al. | Jan 2001 | B1 |
6213078 | Ryu et al. | Apr 2001 | B1 |
6378396 | Reinhardt et al. | Apr 2002 | B1 |
6622688 | Everts et al. | Sep 2003 | B2 |
6631701 | Seader et al. | Oct 2003 | B2 |
6644263 | Hare | Nov 2003 | B2 |
6772726 | Kawamoto et al. | Aug 2004 | B2 |
6810849 | Hirsch et al. | Nov 2004 | B1 |
7363904 | Utsumi et al. | Apr 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20090090327 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12068094 | Feb 2008 | US |
Child | 12255487 | US |