The present disclosure generally related to lubrication of journal bearings and, more specifically, to lubrication of journal bearings during clockwise and counter-clockwise rotation.
A gear-turbofan engine consists of an epicyclic gear system coupling the turbine to the fan. In this manner, both the fan and the turbine can operate at each component's own optimum speed. The fan and the turbine may be coupled to one another through a gear train that is supported by a journal bearing system.
During powered operation of the engine, lubricant is delivered to the journal bearings by means of one or multiple oil pumps. This lubricant develops a hydrodynamic film at the journal bearing surface between the gear bore and the journal pin shaft in order to minimize wear as these surfaces move with respect to one another. The oil pump(s) pump lubricant from an oil sump and deliver pressurized oil to the journal bearings. At the journal bearings, oil is squeezed by the rotation of the gears and generates a hydrodynamic film which is necessary to prevent undesirable metal-to-metal contact between the gear bore and the journal pin shaft.
During the non-operating condition of the engine, the oil pump(s) stop running. There is therefore no lubricant delivered to the journal bearings and thus the gear bore is in direct contact with the journal pin shaft under the effect of gravity. Under this circumstance, any relative motion between the gear bore inner surface and the journal pin outer surface can cause premature wear and undesirable damage to these surfaces.
In the engine non-operating mode, rotation of the rotor, and hence the gears, can be caused by wind-milling, a phenomenon resulting from ambient wind blowing through the engine, causing the turbofan engine to rotate due to forces imparted by the wind to engine surfaces. Depending on the wind direction, either toward the fan blade through the nacelle inlet or toward the turbine blade through the exhaust duct, the rotor can rotate in either direction, clockwise or counter-clockwise with respect to the pilot view.
Currently, there are no known means to deliver oil effectively to the journal bearings when the wind-milling phenomenon occurs in both rotational directions. The present disclosure is related to a system and method of supplying lubricant to the journal bearings of a gear-turbofan engine operating with a gear train when the rotor is subjected to a wind-milling condition in both directions, either clockwise or counter-clockwise. The presently disclosed embodiments will also find applicability in other applications where lubrication is to be applied when a gear train is operating in either clockwise or counter-clockwise directions.
In one embodiment, a gear system is disclosed, comprising: a shaft; and a lubrication system, the lubrication system comprising: a gear including a gear bearing surface, the gear operatively driven by the shaft; and a pump operatively driven by the gear, the pump including a pump inlet and a pump outlet; wherein rotation of the gear below a predetermined operational speed range in either direction causes the pump to transfer lubricant to the gear bearing surface.
In another embodiment, a turbofan engine is disclosed, comprising: a fan; a fan shaft operably coupled to the fan; a gear including a gear bearing surface, the gear operatively driven by the fan shaft; and a pump operatively driven by the gear, the pump including a pump inlet and a pump outlet; wherein rotation of the fan shaft in either direction causes the pump to transfer lubricant to the gear bearing surface when the engine is in a non-operational mode.
Other embodiments are also disclosed.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to certain embodiments and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, and alterations and modifications in the illustrated device, and further applications of the principles of the invention as illustrated therein are herein contemplated as would normally occur to one skilled in the art to which the invention relates.
The present disclosure is applicable to all gear trains using a journal bearing as a means of supporting gear shaft rotation. In an embodiment, lubricant is supplied to the journal bearings of a gear-turbofan engine gear train when the fan rotor is subjected to a wind-milling condition in both directions, either clockwise or counter-clockwise.
One embodiment of an engine, such as, for example, a gear-turbofan engine, is shown in partial cross-section in
During powered operation of the engine 100, which operates within a design operational speed range, lubricant is delivered to the journal bearings 116 by means of one or multiple oil pumps (not shown). At the journal bearings 116, oil is squeezed by the rotation of the planetary gears 112 and generates a hydrodynamic film at the journal bearing surface 118. The hydrodynamic film is necessary to prevent undesirable metal-to-metal contact between the planetary gear 112 and the journal bearing 116. As explained above, during the non-operating condition of the engine 100, the oil pump(s) do not operate. As a result, no lubricant is delivered to the journal bearings 116 and thus the planetary gear 112 may come into direct contact with the journal bearing 116 . Under this circumstance, any relative motion between the planetary gear 112 inner surface and the journal bearing surface 118 may cause premature wear and undesirable damage to either or both of these surfaces.
When the engine 100 is in the non-operating mode, wind-milling, which is a phenomenon resulting from ambient wind blowing through the engine 100, may rotate the rotor below the operational speed range, causing the planetary gears 112 and/or the engine 100 to rotate. Depending on the wind direction, either aft toward the fan blade 102 through the nacelle inlet or stern toward the turbine blade through the exhaust duct, the rotor can rotate in either the clockwise or counter-clockwise direction.
In some embodiments, the wind-milling lubrication system disclosed herein consists of an auxiliary oil tank, an oil gutter, a bi-directional pump, and gear train. The auxiliary oil tank 202 may be located at the top of the epicyclic gear train so that oil will drip to the journal bearings 116 through oil line 204 by gravity. Although the embodiments disclosed herein make reference to oil as the lubricant, those skilled in the art will recognize that any appropriate lubricant may be used, whether naturally occurring or synthetic. Referring now to
The rotor speed under a wind-milling condition is a fraction of the engine operational speed range, therefore the bi-directional pump disclosed herein is configured to operate below the operational speed range. A schematic representation of one embodiment auxiliary oil pump system is indicated generally at 400. The pump 402 is driven by the fan shaft 104 through the idler gear 302 during wind-milling rotation (as described in greater detail hereinbelow with respect to
In some embodiments, the pump 402 is of the rotary vane type, consisting of a rotor and an internal housing which is connected to the outer housing by any desired means, such as a woodruff key (not shown), a press fit, or a spline connection, to name just a few non-limiting examples. The manner in which the internal and external housings are connected is not critical. As shown in
As shown in
As shown in
Considering positive rotation as clockwise in the view of
Consider cases in which |⊖|≧45 degrees. A positive angle [+] is for clockwise rotation of the pump rotor, while a negative angle [−] is for the reverse rotation case. Within this angular range, oil is pushed out of the oil outlet 502 at the top to the pump outlet 412. During rotation of the pump rotor 600, the vanes 702 tend to slide out of their respective vane slots 604 under the effect of centrifugal force, while the radial motion is restrained by the interaction with the inner surface 704 of the pump inner housing 500.
In the illustrated embodiment, the vanes 702 exist in pairs and are positioned generally opposite to one another. As shown in
When the wind blows toward the fan blade 102 through the nacelle, the rotor rotates in the normal operating direction. Assuming the normal rotating direction is clockwise, the vane 702 at location A (see
When the wind blows toward the turbine blade through the exhaust duct of the engine, the rotor rotates in the opposite direction of the normal operating condition (i.e., in the counter-clockwise direction). The same phenomenon occurs in the reverse direction. Vane 702 at location A will extend, sweep the inlet oil and compress it, and as the pump rotor 600 rotates the vane to location C, the compressed oil is delivered to the oil outlet 502 located at the top.
One option of preventing wear and tear of the pump 402 during normal (powered) operational conditions is to decouple the pump 402 from the driver. In an embodiment, the pump 402 may be connected to the idler gear 302 through a disconnectable mechanism such as a spring-frictional disc or equivalent system (not shown), as will be appreciated by those skilled in the art after reading the present disclosure. At high speed, the disconnectable mechanism is engages the pump 402 from the idler gear 302, thus protecting the pump 402 from wear and tear.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of and incorporates by reference herein the disclosure of U.S. Ser. No. 61/769,476, filed Feb. 26, 2013.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/078435 | 12/31/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61769476 | Feb 2013 | US |