This disclosure is directed to processes for decreasing friction between dies and workpieces during forging operations and increasing the forgeability of workpieces, such as, for example, metal and alloy ingots and billets.
“Forging” refers to the working and/or shaping of a solid-state material by plastic deformation. Forging is distinguishable from the other primary classifications of solid-state material forming operations, i.e., machining (shaping of a workpiece by cutting, grinding, or otherwise removing material from the workpiece) and casting (molding liquid material that solidifies to retain the shape of a mold). Forgeability is the relative capacity of a material to plastically deform without failure. Forgeability depends on a number of factors including, for example, forging conditions (e.g., workpiece temperature, die temperature, and deformation rate) and material characteristics (e.g., composition, microstructure, and surface structure). Another factor that affects the forgeability of a given workpiece is the tribology of the interacting die surfaces and workpiece surfaces.
The interaction between die surfaces and workpiece surfaces in a forging operation involves heat transfer, friction, and wear. As such, insulation and lubrication between a workpiece and forging dies are factors influencing forgeability. In forging operations, friction is decreased by the use of lubricants. However, prior forging lubricants have various deficiencies, particularly in the context of hot forging titanium alloys and superalloys. The present disclosure is directed to lubrication processes for decreasing the friction between dies and workpieces during forging operations that overcome various deficiencies of prior forge lubrication methods.
Embodiments disclosed herein are directed to forge lubrication processes. A solid lubricant sheet is positioned between a workpiece and a die in a closed-die forging apparatus. The solid lubricant sheet has a pre-formed shape that matches the contours of at least a region of the die so that the solid lubricant sheet can be inserted into and fit a die cavity in the closed-die forging apparatus. The die applies force to the workpiece to plastically deform the workpiece, and the solid lubricant sheet provides lubrication between the workpiece and the die in the closed-die forging apparatus.
Other embodiments disclosed herein are directed to forge lubrication processes in which a solid graphite sheet is positioned between a die and a titanium workpiece or a titanium alloy workpiece in a closed-die forging apparatus. The solid graphite sheet has a pre-formed shape that matches the contours of at least a region of the die so that the solid graphite sheet can be inserted into and fit a die cavity in the closed-die forging apparatus. The die applies force to the workpiece to plastically deform the workpiece at a temperature in the range of 1000° F. to 1600° F. (538° C. to 871° C.). The shear friction factor between the die and the workpiece during forging is less than 0.50.
It is understood that the invention disclosed and described herein is not limited to the embodiments disclosed in this Summary.
Various characteristics of the non-limiting and non-exhaustive embodiments disclosed and described herein may be better understood by reference to the accompanying figures, in which:
The reader will appreciate the foregoing details, as well as others, upon considering the following detailed description of various non-limiting and non-exhaustive embodiments according to the present disclosure. The reader may also comprehend additional details upon implementing or using embodiments described herein.
It is to be understood that the descriptions of the disclosed embodiments have been simplified to illustrate only those features and characteristics that are relevant to a clear understanding of the disclosed embodiments, while eliminating, for purposes of clarity, other features and characteristics. Persons having ordinary skill in the art, upon considering this description of the disclosed embodiments, will recognize that other features and characteristics may be desirable in a particular implementation or application of the disclosed embodiments. However, because such other features and characteristics may be readily ascertained and implemented by persons having ordinary skill in the art upon considering this description of the disclosed embodiments, and are, therefore, not necessary for a complete understanding of the disclosed embodiments, a description of such features, characteristics, and the like, is not provided herein. As such, it is to be understood that the description set forth herein is merely exemplary and illustrative of the disclosed embodiments and is not intended to limit the scope of the invention defined by the claims.
In the present disclosure, other than where otherwise indicated, all numerical parameters are to be understood as being prefaced and modified in all instances by the term “about”, in which the numerical parameters possess the inherent variability characteristic of the underlying measurement techniques used to determine the numerical value of the parameter. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter described in the present description should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Also, any numerical range recited herein is intended to include all sub-ranges subsumed within the recited range. For example, a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value equal to or less than 10. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited herein is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicants reserve the right to amend the present disclosure, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently disclosed herein such that amending to expressly recite any such sub-ranges would comply with the requirements of 35 U.S.C. §112, first paragraph, and 35 U.S.C. §132(a).
The grammatical articles “one”, “a”, “an”, and “the”, as used herein, are intended to include “at least one” or “one or more”, unless otherwise indicated. Thus, the articles are used herein to refer to one or more than one (i.e., to “at least one”) of the grammatical objects of the article. By way of example, “a component” means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.
Any patent, publication, or other disclosure material that is said to be incorporated by reference herein, is incorporated herein in its entirety unless otherwise indicated, but only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material expressly set forth in this description. As such, and to the extent necessary, the express disclosure as set forth herein supersedes any conflicting material incorporated by reference herein. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material. Applicant reserves the right to amend the present disclosure to expressly recite any subject matter, or portion thereof, incorporated by reference herein.
The present disclosure includes descriptions of various embodiments. It is to be understood that the various embodiments described herein are exemplary, illustrative, non-limiting, and non-exhaustive. Thus, the present disclosure is not limited by the description of the various exemplary, illustrative, non-limiting embodiments, and non-exhaustive embodiment. Rather, the invention is defined by the claims, which may be amended to recite any features or characteristics expressly or inherently described in, or otherwise expressly or inherently supported by, the present disclosure. Further, Applicants reserve the right to amend the claims to affirmatively disclaim features or characteristics that may be present in the prior art. Therefore, any such amendments would comply with the requirements of 35 U.S.C. §112, first paragraph, and 35 U.S.C. §132(a). The various embodiments disclosed and described herein can comprise, consist of, or consist essentially of the features and characteristics as variously described herein.
In forging operations, the interface friction between workpiece surfaces and die surfaces may be quantitatively expressed as the frictional shear stress. The frictional shear stress (τ) may be expressed as a function of the solid flow stress of the deforming material (σ) and the shear friction factor (m) by the following equation:
The value of the shear friction factor provides a quantitative measure of lubricity for a forging system. For example, the shear friction factor may range from 0.6 to 1.0 when forging titanium alloy workpieces without lubricants, whereas the shear friction factor may range from 0.1 to 0.3 when hot forging titanium alloy workpieces with certain molten lubricants. Lubricity, quantified as the shear friction factor (m) of a system, may be measured using a ring compression test in which a flat ring-shaped specimen is compressed to a predetermined reduction in height. Ring compression testing is generally described, for example, in Atlan et al., Metal Forming: Fundamentals and Applications, Ch. 6. Friction in Metal Forming, ASM: 1993, which is incorporated by reference herein.
Inadequate forging lubrication, characterized, for example, by a relatively high value of the shear friction factor for a forging operation, may have a number of adverse effects. In forging, the solid-state flow of material is caused by the force transmitted from the dies to the plastically deforming workpiece. The frictional conditions at the die/workpiece interface influence metal flow, formation of surface and internal stresses within the workpiece, stresses acting on the dies, and pressing load and energy requirements.
In this manner, the forged workpiece 10b exhibits “barreling” under high friction conditions, whereas the forged workpiece 10a does not exhibit any barreling under frictionless conditions. Barreling and other effects of non-uniform plastic deformation due to die/workpiece interface friction during forging are generally undesirable. For example, in closed-die forging, interface friction may cause the formation of void spaces where deforming material does not fill all the cavities in the die. This may be particularly problematic in net-shape or near-net-shape forging operations where workpieces are forged within tighter tolerances. As a result, forging lubricants may be employed to reduce interface friction between die surfaces and workpiece surfaces during forging operations.
In various non-limiting embodiments, a forge lubrication process comprises positioning a solid lubricant sheet between a workpiece and a die in a forging apparatus. As used herein, a “solid lubricant sheet” is a relatively thin piece of material comprising a solid-state lubricant that reduces friction between metallic surfaces. The solid-state lubricant is in the solid state under ambient conditions and remains in the solid state under forging conditions (e.g., at elevated temperatures). The solid lubricant sheet may decrease the shear friction factor between a die and a workpiece during forging to less than 0.50, or to less than 0.20, for example. The solid lubricant sheet may comprise a solid-state lubricant material selected from the group consisting of graphite, molybdenum disulfide, tungsten disulfide, and boron nitride, for example. As used herein, a “solid graphite sheet” is a solid lubricant sheet comprising graphite; a “solid molybdenum disulfide sheet” is a solid lubricant sheet comprising molybdenum disulfide; a “solid tungsten disulfide sheet” is a solid lubricant sheet comprising tungsten disulfide; and a “solid boron nitride sheet” is a solid lubricant sheet comprising boron nitride.
In various non-limiting embodiments, a solid lubricant sheet may comprise a solid-state lubricant having a coefficient of friction less than or equal to 0.3 at room temperature and/or a melting point temperature greater than or equal to 1500° F. (816° C.). Solid-state lubricants finding utility in the solid lubricant sheets disclosed herein may also be characterized, for example, by a shear flow stress value of up to and including 20% of the shear flow stress value of a material being forged with a solid lubricant sheet comprising the solid-state lubricant. In various non-limiting embodiments, a solid-state lubricant included in a solid lubricant sheet may be characterized by a shear ductility of greater than or equal to 500%. Solid-state lubricants finding utility in the solid lubricant sheets disclosed herein possess the capability of being processed into sheet form. In various non-limiting embodiments, the solid-state lubricant may be processed into sheet form with or without suitable binder or bonding agent.
In various non-limiting embodiments, a solid lubricant sheet may be relatively flexible and capable of being positioned in cavities and over contours and non-planar surfaces of forging dies and/or workpieces. In various non-limiting embodiments, a solid lubricant sheet may be relatively rigid and maintain a pre-formed shape or contour before, during, and/or after being positioned between a die and a workpiece in a forging apparatus.
In various non-limiting embodiments, a solid lubricant sheet may consist of a solid-state lubricant compound (such as, for example, graphite, molybdenum disulfide, tungsten disulfide, and/or boron nitride) and residual impurities (such as, for example, ash), and contain no binders, fillers, or other additives. Alternatively, in various non-limiting embodiments, a solid lubricant sheet may comprise solid-state lubricant and binders, fillers, and/or other additives. For example, a solid lubricant sheet may contain oxidation inhibitors that allow for continuous or repeated use at elevated temperatures in oxygen-containing environments, such as, for example, ambient air or high temperature air.
In various non-limiting embodiments, a solid lubricant sheet may comprise a laminate of solid-state lubricant bonded to a fiber sheet. For example, solid-state lubricants may be adhesively-bonded or thermally-bonded to ceramic fiber sheets, glass fiber sheets, carbon fiber sheets, or polymeric fiber sheets. Suitable fiber sheets include woven and non-woven fiber sheets. A solid lubricant sheet may comprise a laminate of solid-state lubricant bonded to one side, or both sides, of a fiber sheet, for example. Non-limiting examples of laminates of a flexible graphite sheet bonded to a flexible fiber sheet, which may find utility as solid lubricant sheets in the processes disclosed herein, are described, for example, in U.S. Pat. No. 4,961,991, which is incorporated by reference herein.
In various non-limiting embodiments, a solid lubricant sheet may comprise a laminate of solid-state lubricant bonded to a polymeric sheet. For example, solid-state lubricants may be adhesively-bonded or thermally-bonded to one side, or both sides, of a flexible polymer sheet. In various non-limiting embodiments, a solid lubricant sheet may comprise an adhesive-backed sheet of solid-state lubricant. For example, a sheet of graphite, molybdenum disulfide, tungsten disulfide, and/or boron nitride may comprise an adhesive compound applied to one side of the sheet. An adhesive-backed solid lubricant sheet may be applied and adhered to die and/or workpiece surfaces before forging to ensure proper positioning of the solid lubricant sheet during the forging operation, for example. Solid lubricant sheets comprising polymeric materials, adhesives, and/or other organic materials may be used in hot forging operations where organic burn-out is acceptable.
In various non-limiting embodiments, a solid lubricant sheet may have a thickness in the range 0.005″ (0.13 mm) to 1.000″ (25.4 mm), or any sub-range therein. For example, in various non-limiting embodiments, the solid lubricant sheet may have a minimum, maximum, or average thickness of 0.005″ (0.13 mm), 0.006″ (0.15 mm), 0.010″ (0.25 mm), 0.015″ (0.38 mm), 0.020″ (0.51 mm), 0.025″ (0.64 mm), 0.030″ (0.76 mm), 0.035″ (0.89 mm), 0.040″ (1.02 mm), 0.060″ (1.52 mm), 0.062″ (1.57 mm), 0.120″ (3.05 mm), 0.122″ (3.10 mm), 0.24″ (6.10 mm), 0.5″ (12.70 mm), or 0.75″ (19.05 mm). The above thicknesses may be obtained with a single solid lubricant sheet or with a stack of multiple solid lubricant sheets.
The thickness of the solid lubricant sheet or stack of sheets used in a forging operation may depend on various factors including, for example, forge temperature, forge time, workpiece size, die size, forge pressure, extent of deformation of the workpiece, and the like. For example, the temperature of the workpiece and a die in a forging operation may affect lubricity of the solid lubricant sheet and heat transfer through the solid lubricant sheet. Thicker sheets or stacks of sheets may be useful at higher temperatures and/or longer forge times due to, for example, compression, caking, and/or oxidation of the solid-state lubricant. In various non-limiting embodiments, the solid lubricant sheets disclosed herein may thin out over the surfaces of a workpiece and/or a die during a forging operation and, therefore, thicker sheets or stacks of sheets may be useful for increased deformation of the workpiece.
In various non-limiting embodiments, the solid lubricant sheet may be a solid graphite sheet. The solid graphite sheet may have a graphitic carbon content of at least 95% by weight of the solid graphite sheet. For example, the solid graphite sheet may have a graphitic carbon content of at least 96%, 97%, 98%, 98.2%, 99.5%, or 99.8%, by weight of the graphite sheet. Solid graphite sheets suitable for the processes disclosed herein include, for example: the various grades of Grafoil® flexible graphite materials available from GrafTech International, Lakewood, Ohio, USA; the various grades of graphite foils, sheets, felts, and the like, available from HP Materials Solutions, Inc, Woodland Hills, Calif., USA; the various grades of Graph-Lock® graphite materials available from Garlock Sealing Technologies, Palmyra, N.Y., USA; the various grades of flexible graphite available from Thermoseal, Inc., Sidney, Ohio, USA; and the various grades of graphite sheet products available from DAR Industrial Products, Inc., West Conshohocken, Pa., USA.
In various non-limiting embodiments, a solid lubricant sheet may be positioned on a working surface of a die in a forging apparatus and a workpiece positioned on the solid lubricant sheet on the die. As used herein, a “working surface” of a die is a surface that does, or may, contact a workpiece during a forging operation. For example, a solid lubricant sheet may be positioned on a lower die of a press forging apparatus and a workpiece is positioned on the solid lubricant sheet so that the solid lubricant sheet is in an interposed position between a bottom surface of the workpiece and the lower die. An additional solid lubricant sheet may be positioned onto a top surface of the workpiece before or after the workpiece is positioned on the solid lubricant sheet on the lower die. Alternatively, or in addition, a solid lubricant sheet may be positioned on an upper die in the forging apparatus. In this manner, at least one additional solid lubricant sheet may be interposed between a top surface of the workpiece and the upper die. Force may then be applied to the workpiece between the dies to plastically deform the workpiece with decreased friction between the dies and the workpiece, which decreases undesirable frictional effects.
In various non-limiting embodiments, a solid lubricant sheet may be a relatively flexible or rigid sheet that may be bent, formed, or contoured to match the shape of a die and/or a workpiece in a forging operation. A solid lubricant sheet may be bent, formed, or contoured before being positioned on a workpiece and/or a die in a forging apparatus, i.e., pre-formed into a predetermined shape or contour. For example, pre-formed shapes may include one or more folds in a solid lubricant sheet (e.g., an approximately 135° axial bend to aid in the placement of the sheet on the upper curved surface of a cylindrical workpiece along its longitudinal axis, or one or more approximately 90° bends to aid in the placement of the sheet on a rectangular workpiece). Alternatively, a solid lubricant sheet may be formed into a flexible or rigid sleeve, tube, hollow cylinder, or other geometry intended to locate and mechanically secure the solid lubricant sheet on a die or workpiece surface before forging. In other non-limiting embodiments, a solid lubricant sheet may be shaped as the solid lubricant sheet is being positioned.
In various non-limiting embodiments, a solid lubricant sheet comprises a pre-formed shape that matches a contour of at least a region of a die in a forging apparatus. A solid lubricant sheet comprising a pre-formed shape may be inserted into a die cavity in the die. The pre-formed shape of the solid lubricant sheet matches the contour of at least a region of the die in the die cavity, thereby providing a relatively close fit between the solid lubricant sheet and the die. The solid lubricant sheet may have sufficient structural rigidity so that it maintains the pre-formed shape before, during, and/or after it has been inserted and positioned in a die cavity. In various non-limiting embodiments, a solid lubricant sheet comprises a pre-formed shape that matches the contours of all the regions of a die in a forging apparatus that contact or may contact a workpiece during a forging operation.
Embodiments employing solid lubricant sheets having pre-formed shapes may find particular utility in forging operations where the dies include sharp contours and/or deep recessed features, which in combination with a workpiece may function as a punch that could cut a solid lubricant sheet that does not match the contours and/or recesses of the dies. Solid lubricant sheets having pre-formed shapes may exhibit improved forge lubrication were the solid lubricant sheet is relatively inelastic and, therefore, could tear or be cut during forging rather than move between a workpiece and a die surface. In this manner, solid lubricant sheets having pre-formed shapes may provide forge lubrication that is more uniformly distributed over die surfaces. In addition, solid lubricant sheets having pre-formed shapes may provide more uniform thickness lubrication because of a decreased tendency of the sheets to thin-out or tear during forging.
Solid lubricant sheets having pre-formed shapes may be employed, for example, in closed-die forging operations, such as, for example, net-shape or near-net-shape forging operations, which generally employ dies having relatively sharper and deeper features in order to provide fully-formed or nearly-formed forgings.
When a solid lubricant sheet is interposed between a die and a workpiece in a forging apparatus, the solid lubricant sheet may provide a solid-state barrier between the die and the workpiece. In this manner, the die indirectly contacts the workpiece through the solid lubricant sheet, which reduces friction between the die and the workpiece. The solid-state lubricant of the solid lubricant sheet may be characterized by a relatively low shear flow stress value and a relatively high shear ductility value, which allows the solid lubricant sheet to flow along the die-workpiece interface as a continuous film during forging. For example, in various non-limiting embodiments, solid-state lubricants finding utility in the solid lubricant sheets disclosed herein may be characterized, for example, by a shear ductility of greater than or equal to 500% and a shear flow stress value of up to and including 20% of the shear flow stress value of the material being forged with a solid lubricant sheet comprising the solid-state lubricant.
By way of example, graphite solid-state lubricant is composed of stacked graphene layers. The graphene layers are one-atom-thick layers of covalently-bonded carbon. The shear forces between graphene layers in graphite are very low and, therefore, the graphene layers can slide relative to each other with very little resistance. In this manner, graphite exhibits relatively low shear flow stress and relatively high shear ductility, which allows a graphite sheet to flow along a die-workpiece interface as a continuous film during forging. Hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide have similar crystalline lattice structures with very low shear forces between the crystalline lattice layers that minimize resistance between sliding surfaces and, therefore, exhibit analogous dry lubricity properties.
During a forging operation, as the solid lubricant sheet is compressed between a die and a workpiece and flows in shear to maintain lubricity, it may mechanically adhere to the surfaces of the die and workpiece as the solid lubricant sheet compacts at locations where forge pressure is applied. In various non-limiting embodiments, any compacted or “caked” solid lubricant sheet may be retained on or removed from either the workpiece or the die before subsequent forging operations or other operations. For example, in various non-limiting embodiments, solid lubricant deposited on dies and workpieces from solid lubricant sheets during forging operations may be removed by heating in an oxidizing atmosphere, such as, for example, in a furnace. Deposited solid lubricant may also be removed by a washing procedure.
In various non-limiting embodiments, residual solid-state lubricant (such as, for example, graphite) present on a forging and/or a die may be removed, for example, by a washing procedure or by heating the forging and/or the die in an oxidizing atmosphere after the forging is removed from the die. Alternatively, after forging with a solid lubricant sheet comprising a solid graphite sheet, the dies, the forging, and the solid graphite sheet may be heated in an oxidizing atmosphere before the forging is removed from the die. In this manner, the graphite changes from a solid state material to a gaseous material during oxidation, and is thereby at least partially removed from between the forging and the die, leaving a space between the forging and the die. The space may allow for easier removal of the forging from the die and the die cavity.
In various non-limiting embodiments, a solid lubricant sheet may be positioned on a workpiece before the workpiece is positioned in a forging apparatus. For example, at least a portion of a surface of a workpiece may be wrapped with a solid lubricant sheet.
In various non-limiting embodiments, a solid lubricant sheet may be positioned on one or more of the dies in a forging apparatus before a workpiece is positioned in the forging apparatus. In various non-limiting embodiments, adhesive-backed solid lubricant sheets are positioned on workpieces and/or dies before forging. Alternatively, solid lubricant sheets may be secured with a separate adhesive on workpieces and/or dies to better ensure proper positioning of the solid lubricant sheets during the forging operation. In various non-limiting embodiments, adhesive is not employed and a solid lubricant sheet is held in place by mechanical forces such as gravity. In embodiments where a forging operation comprises two or more strokes of the forging apparatus, additional solid lubricant sheets may be interposed between a die surface and a workpiece surface between any two strokes.
The forge lubrication processes disclosed herein may be applied to any forging operation wherein enhanced lubrication and forgeability would be advantageous. For example, and without limitation, the forge lubrication processes disclosed herein may be applied to open-die forging, closed-die forging, forward extrusion, backward extrusion, radial forging, upset forging, and draw forging. In addition, the forge lubrication processes disclosed herein may be applied to net-shape and near-net shape forging operations.
As illustrated in
During a press stroke in a forging operation without lubrication, a workpiece may die-lock until the pressing force overcomes the sticking friction forces. When the pressing force overcomes the sticking friction forces in a non-lubricated forging operation, the workpiece may rapidly accelerate inside the forging apparatus. For example, as illustrated in
The rapid acceleration of a workpiece inside a forging apparatus may damage the workpiece, the forging apparatus, or both. For example, when the pressing force exceeds the sticking friction forces, the workpiece and/or the dies may gall, i.e., material may be undesirably removed from the localized contact areas that seized during the die-locking (e.g., areas 47 in
During a press stroke in a forging operation with a solid lubricant sheet, an off-center workpiece is less likely to experience die-locking because of the decrease in friction. The solid lubricant sheet significantly decreases or eliminates sticking friction and, therefore, unacceptably rapid acceleration of the workpiece is less likely to occur. Instead, a relatively smooth self-centering action is likely to occur as the upper die contacts the workpiece or a lubricant sheet on the workpiece. For example, as illustrated in
As illustrated in
A workpiece 130 is inserted into the die cavity 139 (
As shown in
A workpiece 140 is inserted into the die cavity 149b and onto the solid lubricant sheet 148b (
As shown in
The dies 154 and 156 apply force to the workpiece 150 to forge the workpiece. The forging 150a shown in
Referring to
Referring to
As shown in
The dies 164 and 166 apply force to the workpiece 160 to forge the workpiece. The forging 160a shown in
As shown in
The dies 174 and 176 apply force to the workpiece 170 to forge the workpiece. The forging 170a shown in
Any residual solid-state lubricant (such as, for example, graphite) present on the forging 178 and/or the die 176 may be removed, for example, by a washing procedure or by heating the forging 178 and/or die 176 in an oxidizing atmosphere after the forging 170a is removed from the die 176. Alternatively, after forging with a solid lubricant sheet 178 comprising a solid graphite sheet, the die 176, forging 170a, and solid graphite sheet 178 can be heated in an oxidizing atmosphere before the forging 170a is removed from the die 176. The graphite changes from a solid state material to a gaseous material during oxidation, and is thereby at least partially removed from between the forging 170a and the die 176, leaving a space 173 between the forging and the die, as shown in
The forging 170a is shown removed from the closed-die forging apparatus in
In various non-limiting embodiments, the solid lubricant sheets disclosed herein may be used in combination with separate insulating sheets. As used herein, an “insulating sheet” is a sheet of solid material intended to thermally insulate a workpiece from the working surfaces of dies in a forging apparatus. For example, an insulating sheet may be positioned between a solid lubricant sheet and a workpiece surface, and/or an insulating sheet may be positioned between a solid lubricant sheet and a die surface. In addition, an insulating sheet may be sandwiched between two solid lubricant sheets, and the sandwiched sheets positioned between a workpiece and a die in a forging apparatus.
Although various configurations of solid lubricant sheets and insulating sheets in relation to workpieces and dies in a forging apparatus are described and illustrated herein, embodiments of the disclosed processes are not limited to the explicitly disclosed configurations. As such, various other configurations of solid lubricant sheets and insulating sheets in relation to workpieces and dies are contemplated by the present disclosure. Likewise, while various techniques and combinations of techniques for positioning solid lubricant sheets and/or insulating sheets are disclosed herein (such as, for example, laying, draping, wrapping, adhering, and the like), the disclosed processes are not limited to the explicitly disclosed positioning techniques and combinations of positioning techniques. For example, various other combinations of laying, draping, wrapping, adhering, and the like may be used to apply and position solid lubricant sheets and/or insulating sheets in relation to workpieces and dies, before and/or after a workpiece is positioned in a forging apparatus.
Insulating sheets may be flexible and capable of being positioned in cavities and over contours and non-planar surfaces of forging dies and/or workpieces. In various non-limiting embodiments, the insulating sheets may comprise woven or non-woven ceramic fiber blankets, mats, papers, felts, and the like. The insulating sheet may consist of ceramic fibers (such as, for example, metal oxide fibers) and residual impurities, and contain no binders or organic additives. For example, suitable insulating sheets may comprise blends of predominantly alumina and silica fibers and lesser amounts of other oxides. Ceramic fiber insulating sheets suitable for the processes disclosed herein include, for example, the various Fiberfrax® materials available from Unifrax, Niagara Falls, N.Y., USA.
In various non-limiting embodiments, sandwich structures comprising multiple solid lubricant sheets may be positioned between a workpiece and a die in a forging apparatus. For example, a sandwich structure comprising two or more layers of solid lubricant sheet may be positioned between a workpiece and a die in a forging apparatus. The sandwich structures may also comprise one or more insulating sheets. In addition, multiple solid lubricant sheets may be applied to cover larger areas. For example, two or more solid lubricant sheets may be applied to dies and/or workpieces to cover more surface area than individual solid lubricant sheets can cover. In this manner, two or more solid lubricant sheets may be applied to a die and/or a workpiece in an overlapping or non-overlapping fashion.
The lubrication processes disclosed herein may be applied to cold, warm, and hot forging operations at any temperature. For example, a solid lubricant sheet may be positioned between a workpiece and a die in a forging apparatus wherein the forging occurs at ambient temperatures. Alternatively, workpieces and/or dies may be heated before or after the positioning of a solid lubricant sheet between the workpieces and dies. In various non-limiting embodiments, a die in a forging apparatus may be heated either before or after a solid lubricant sheet is applied to the die. A workpiece may be heated, for example, in a furnace either before or after a solid lubricant sheet is applied to the workpiece.
In various non-limiting embodiments, a workpiece may be plastically deformed while the workpiece is at a temperature greater than 1000° F. (538° C.), wherein the solid lubricant sheet maintains lubricity at the temperature. In various non-limiting embodiments, a workpiece may be plastically deformed while the workpiece is at a temperature in the range of 1000° F. to 2000° F. (538° C. to 1093° C.), or any sub-range therein, such as, for example, 1000° F. to 1600° F. (538° C. to 871° C.) or 1200° F. to 1500° F. (649° C. to 815° C.), wherein the solid lubricant sheet maintains lubricity at the temperature.
The processes disclosed herein provide a robust method for forge lubrication. In various non-limiting embodiments, solid lubricant sheets may deposit a solid lubricant coating on the dies during an initial forging operation. The deposited solid lubricant coatings may survive the initial forging operation and one or more subsequent forging operations. The surviving solid lubricant coatings on the dies maintain lubricity and may provide effective forge lubrication over one or more additional forging operations on the same workpiece and/or different workpieces without the need to apply additional solid lubricant sheets.
In various non-limiting embodiments, a solid lubricant sheet may be positioned between a workpiece and a die before a first forging operation to deposit a solid lubricant coating on the die, and additional solid lubricant sheets may be applied after a predetermined number of forging operations. In this manner, a duty cycle for an application of solid lubricant sheets may be established in terms of the number of forging operations that may be performed without additional applications of solid lubricant sheets while maintaining acceptable lubricity and forge lubrication. Additional solid lubricant sheets may then be applied after each duty cycle. In various non-limiting embodiments, the initial solid lubricant sheets may be relatively thick to deposit an initial solid lubricant coating on the dies, and the subsequently applied solid lubricant sheets may be relatively thin to maintain the deposited solid lubricant coating.
The processes disclosed herein are applicable to the forging of various metallic materials, such as, for example, titanium, titanium alloys, zirconium, and zirconium alloys. In addition, the processes disclosed herein are applicable to the forging of inter-metallic materials, non-metallic deformable materials, and multi-component systems, such as, for example, metal encapsulated ceramics. The processes disclosed herein are applicable to the forging of various types of workpieces, such as, for example, ingots, billets, bars, plates, tubes, sintered pre-forms, and the like. The processes disclosed herein are also applicable to the net-shape and near-net-shape forging of formed or nearly formed articles.
In various non-limiting embodiments, the lubrication processes disclosed herein may be characterized by shear friction factors (m) of less than or equal to 0.50, less than or equal to 0.45, less than or equal to 0.40, less than or equal to 0.35, less than or equal to 0.30, less than or equal to 0.25, less than or equal to 0.20, less than or equal to 0.15, or less than or equal to 0.10. In various non-limiting embodiments, the lubrication processes disclosed herein may be characterized by shear friction factors in the range of 0.05 to 0.50 or any sub-range therein, such as, for example, 0.09 to 0.15. As such, the lubrication processes disclosed herein substantially decrease friction between dies and workpieces in forging operations.
In various non-limiting embodiments, the lubrication processes disclosed herein may decrease or eliminate the incidence of die locking, sticking, and/or galling of the workpieces in forging operations. Liquid or particulate lubricants are not readily applied when also using insulating sheets in forging operations, but the disclosed lubrication processes allow for the simultaneous use of insulating sheets, which substantially decreases heat losses from workpieces to dies. Liquid or particulate lubricants also tend to thin out over the surfaces of dies and workpieces and disperse after each forging operation, but solid lubricant sheets may create a stable barrier between dies and workpieces in forging operations. Solid-state lubricants, such as, for example, graphite, molybdenum disulfide, tungsten disulfide, and boron nitride, are also generally chemically inert and non-abrasive with respect to metallic dies and workpieces under forging conditions.
Further, when liquid lubricants such as molten glass lubricants are applied to die surfaces, the lubricants can flow and deform under the influence of gravity before the workpiece is positioned in the forging apparatus, which can adversely affect the spatial uniformity and thickness of the lubricant layer. Molten glass lubricants may be particularly problematic in closed-die forging operations, such as, for example, net-shape and near-net-shape forging, where the molten glass can flow and deform under the influence of gravity and pool in die cavities, thereby undesirably changing the contours of the die and the resulting forged workpiece. Forge lubrication processes employing solid lubricant sheets according to various embodiments disclosed herein do not suffer from these disadvantages.
The illustrative and non-limiting examples that follow are intended to further describe various non-limiting and non-exhaustive embodiments without restricting the scope of the embodiments. Persons having ordinary skill in the art will appreciate that variations of the examples are possible within the scope of the invention as defined by the claims.
Ring compression testing was used to evaluate the lubricity of solid graphite sheets and their effectiveness as a lubricant for open die press forging of Ti-6Al-4V alloy (ASTM Grade 5). Ring compression testing is generally described, for example, in Atlan et al., Metal Forming: Fundamentals and Applications, Ch. 6. Friction in Metal Forming, ASM: 1993, which is incorporated by reference herein. Lubricity, quantified as the shear friction factor (m) of a system, is measured using a ring compression test in which a flat ring-shaped specimen is compressed to a predetermined reduction in height. The change in the inner and outer diameter of the compressed ring is dependent upon the friction at the die/specimen interface.
The general set-up of a ring compression test is shown in
The change in the inner diameter of a compressed ring, measured between the apex of the inner bulge of the barreling, is compared to values for the inner diameter predicted using various shear friction factors. The correlations between compressed inner diameter and shear friction factor may be determined, for example, using computational finite element methods (FEM) simulating the metal flow in ring compression with barreling for predetermined materials under predetermined forging conditions. In this manner, the shear friction factor may be determined for a ring compression test that characterizes the friction, and by extension, the lubricity of the tested system.
Rings of Ti-6Al-4V alloy (ASTM Grade 5) having an inner diameter of 1.25″, an outer diameter of 2.50″, and a height of 1.00″ (
The rings were compressed (1) between 400-600° F. dies with no lubricant, (2) between 400-600° F. dies with a glass lubricant (ATP300 glass frit available from Advanced Technical Products, Cincinnati, Ohio, USA), (3) between 1500° F. dies with no lubricant, (4) between 1500° F. dies with glass lubricant, and (5) between 400-600° F. dies with solid lubricant sheets (Grade B graphite sheet (>98% graphite by weight) available from DAR Industrial Products, Inc., West Conshohocken, Pa., USA). The glass lubricant, when used, was applied to the top surface of the lower die and the top surface of the ring by placing and smoothing a layer of glass frit before heating the ring to forge temperature in a furnace. The solid lubricant sheets, when used, were positioned between the lower die and the bottom surface of the ring, and on the top surface of the ring. The compressed inner diameters and corresponding shear friction factors are reported in Table 1 below.
The inner diameters of the rings compressed under conditions 1 and 2 decreased by 62.4%, and the inner diameter of the ring compressed under condition 3 decreased by 59.2%. This indicates very high friction between the rings and the dies. For this system, shear friction factors greater than 0.6 are difficult to determine accurately using the ring compression test because the correlation between shear friction factor and inner diameter approaches an asymptote beyond about m=0.6. However, the significant decreases in the inner diameters of the rings compressed under conditions 1-3 indicates that 0.6 is the lowest possible shear friction factor for these conditions, and it is likely that the actual shear friction factors are greater than 0.6.
The inner diameters of the rings compressed under conditions 4 and 5 increased, which indicates significantly reduced friction corresponding to shear friction factors of about 0.1. The solid lubricant sheets provided lubrication that was comparable to or better than the lubrication provided by glass lubricants. The high lubricity (m=0.1) at high temperatures was unexpected and surprising because the lubricity of graphite is known to significantly decrease at elevated temperatures. Generally, the friction coefficient (μ) of graphite begins to rapidly increase above about 700° F. As such, it was expected that the shear friction factor (m) of solid graphite sheets would be significantly greater than 0.1 between cold dies and rings at a temperature in the range 1200-1500° F.
The effectiveness of the solid lubricant sheets is also significant because glass lubricants may have a number of drawbacks when used in forging operations. For example, glass lubricants must be in a molten state and have a sufficiently low viscosity to provide lubrication between solid surfaces. As such, glass lubricants may not provide effective lubricity at forging temperatures below 1500° F., or when in contact with cold dies. Certain methods for lowering the vitrification temperature of glasses employ toxic metals, such as lead. Glass lubricants containing toxic metals may be considered unsuitable as forging lubricants. Glass lubricant must also be sprayed onto a workpiece using specialized equipment before heating of the workpiece for forging. Glass lubricants must maintain a molten state throughout a forging operation, which limits the thicknesses of glass lubricant coatings that may be deposited onto workpieces before forging.
Further, the high temperature molten glasses interfere with the transport and handling of workpieces. For example, the grips used to hold and manipulate hot workpieces while being transported from heating furnaces or lubricant application equipment to forging apparatuses often slip on high temperature glass lubricated workpieces. Further, glass lubricants may solidify on cooling articles after forging, and the brittle solidified glass may be stressed and the solid glass may forcefully fracture and spall off of forged articles in pieces. In addition, residual glass lubricant that solidifies on cooling articles after forging must be removed by mechanical methods that may reduce forging yields and may produce contaminated scrap materials.
Solid lubricant sheets overcome the above problems with glass lubricants. Solid lubricant sheets maintain a solid state throughout forging operations and may be applied before or after heating of dies and/or workpieces. Solid lubricant sheets do not require any specialized application or handling techniques, and may be positioned by hand, which allows for a more controlled and/or targeted application. Residual solid-state lubricants may be readily removed using furnace heating and/or washing procedures. Solid lubricant sheets can be applied directly to dies before workpieces are placed in forging apparatuses. Solid lubricant sheets can be applied directly to workpieces after placement in forging apparatuses. In addition, solid lubricant sheets may be flexible and/or ductile and, therefore, are significantly less likely to spall off from cooling articles after forging.
A cylindrical billet of Ti-6Al-4V alloy (ASTM Grade 5) was press forged in a 1000 ton open-die press forge equipped with V-shaped dies, with and without solid lubricant sheets. The billet was heated in a furnace to 1300° F. The dies of the press forge were preheated with a torch to 400-600° F. The billet was removed from the furnace with a manipulator and placed on the lower V-shaped die. Due to manipulator restrictions, the billet was placed off-center relative to the V-shaped contour of the lower die. For the forging operations using solid lubricant sheets, Grade HGB graphite sheet (99% graphite by weight, available from HP Materials Solutions, Inc, Woodland Hills, Calif., USA) was positioned on the lower die just before the billet was positioned on the die. A second solid lubricant sheet was positioned over the top surface of the billet. As such, the solid lubricant sheet was positioned between the billet and both the lower die and the upper die in the press forge.
During press forging of the billet without lubricant, it was observed that the billet die-locked to the lower die until the force produced by pressing overcame the friction, at which point the billet would rapidly accelerate into the V-shaped contour of the lower die, producing a loud sound and shaking the entire press forge. During press forging of the billet with a solid lubricant sheet, a self-centering action was observed in which the billet smoothly moved into the V-shaped contour of the lower die without any die-locking, rapid acceleration, loud sounds, or shaking of the press forge.
The initial solid graphite sheet deposited a solid graphite coating on the lower die during the initial forging operation. The deposited graphite coating survived the initial pressing operation and multiple subsequent pressing operations. The deposited graphite coating maintained lubricity and provided effective forge lubrication over multiple pressing operations on different portions of the billet without the need to apply additional solid graphite sheets. A single initial solid graphite sheet prevented die-locking for subsequent pressing operations.
The present disclosure has been written with reference to various exemplary, illustrative, non-limiting, and non-exhaustive embodiments. However, it will be recognized by persons having ordinary skill in the art that various substitutions, modifications, or combinations of any of the disclosed embodiments (or portions thereof) may be made without departing from the scope of the invention. Thus, it is contemplated and understood that the present disclosure embraces additional embodiments not expressly set forth herein. Such embodiments may be obtained, for example, by combining, modifying, or reorganizing any of the disclosed steps, components, elements, features, aspects, characteristics, limitations, and the like, of the embodiments described herein. In this manner, Applicants reserve the right to amend the claims during prosecution to add features as variously described herein.
This patent application is a continuation-in-part of prior co-pending U.S. patent application Ser. No. 12/814,591, filed on Jun. 14, 2010, and claims the benefit of the filing date of U.S. patent application Ser. No. 12/814,571 in accordance with 35 U.S.C. §120. The content of U.S. patent application Ser. No. 12/814,591 is incorporated-by-reference herein in its entirety.
This invention was made with United States government support under Advanced Technology Program Award No. 70NANB7H7038, awarded by the National Institute of Standards and Technology (NIST), United States Department of Commerce. The United States government may have certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
899827 | Cutter | Sep 1908 | A |
2191478 | Hopkins | Feb 1940 | A |
2295702 | Wissler | Sep 1942 | A |
3001059 | Jones | Sep 1961 | A |
3021594 | Clatot et al. | Feb 1962 | A |
3122828 | Havel | Mar 1964 | A |
3339271 | Durfee et al. | Sep 1967 | A |
3431597 | Nowak et al. | Mar 1969 | A |
3493713 | Johnson | Feb 1970 | A |
3617685 | Brill-Edwards et al. | Nov 1971 | A |
3693419 | De Pierre et al. | Sep 1972 | A |
3814212 | Latos | Jun 1974 | A |
3863325 | Gurganus et al. | Feb 1975 | A |
3869393 | Booker | Mar 1975 | A |
3959543 | Ellis | May 1976 | A |
3992202 | Dulis et al. | Nov 1976 | A |
4055975 | Serfozo et al. | Nov 1977 | A |
4060250 | Davis et al. | Nov 1977 | A |
4217318 | Anderson | Aug 1980 | A |
4544523 | McCollough et al. | Oct 1985 | A |
4728448 | Sliney | Mar 1988 | A |
4744504 | Turner | May 1988 | A |
4843856 | Bhowal et al. | Jul 1989 | A |
4935198 | Tornberg | Jun 1990 | A |
4961991 | Howard | Oct 1990 | A |
5052464 | Natori | Oct 1991 | A |
5259965 | Kishi et al. | Nov 1993 | A |
5263349 | Felix et al. | Nov 1993 | A |
5298095 | Russo et al. | Mar 1994 | A |
5302414 | Alkhimov et al. | Apr 1994 | A |
5348446 | Lee et al. | Sep 1994 | A |
5374323 | Kuhlman et al. | Dec 1994 | A |
5525779 | Santella et al. | Jun 1996 | A |
5665180 | Seetharaman et al. | Sep 1997 | A |
5743121 | Miller | Apr 1998 | A |
5783530 | Foster et al. | Jul 1998 | A |
5788142 | Bigay et al. | Aug 1998 | A |
5902762 | Mercuri et al. | May 1999 | A |
5908670 | Dunkerley et al. | Jun 1999 | A |
5951792 | Balbach | Sep 1999 | A |
5989487 | Yoo et al. | Nov 1999 | A |
6006564 | Frisby et al. | Dec 1999 | A |
6120624 | Vogt et al. | Sep 2000 | A |
6154959 | Goodwater et al. | Dec 2000 | A |
6269669 | Matsubara et al. | Aug 2001 | B1 |
6309591 | Yoo et al. | Oct 2001 | B1 |
6312022 | Brophy et al. | Nov 2001 | B1 |
6329079 | Meyer | Dec 2001 | B1 |
6330818 | Jain | Dec 2001 | B1 |
6418795 | Im et al. | Jul 2002 | B2 |
6484790 | Myers et al. | Nov 2002 | B1 |
6547952 | Staerzl | Apr 2003 | B1 |
6623690 | Rizzo et al. | Sep 2003 | B1 |
6753504 | Keller et al. | Jun 2004 | B2 |
6773824 | Rizzo et al. | Aug 2004 | B2 |
6774346 | Clothier | Aug 2004 | B2 |
6865917 | Golovashchenko | Mar 2005 | B2 |
6933058 | Darolia et al. | Aug 2005 | B2 |
7000306 | Rice et al. | Feb 2006 | B2 |
7108483 | Segletes et al. | Sep 2006 | B2 |
7114548 | Forbes Jones | Oct 2006 | B2 |
7172820 | Darolia et al. | Feb 2007 | B2 |
7208116 | Manning et al. | Apr 2007 | B2 |
7257981 | Natsui et al. | Aug 2007 | B2 |
7264888 | Darolia et al. | Sep 2007 | B2 |
7288328 | Darolia et al. | Oct 2007 | B2 |
7316057 | Seth | Jan 2008 | B2 |
7357958 | Darolia et al. | Apr 2008 | B2 |
7516526 | Rice et al. | Apr 2009 | B2 |
7618684 | Nesbitt | Nov 2009 | B2 |
7722330 | Seth | May 2010 | B2 |
7770427 | Nakahara et al. | Aug 2010 | B2 |
7927085 | Hall et al. | Apr 2011 | B2 |
8230899 | Minisandram | Jul 2012 | B2 |
8303289 | Goller et al. | Nov 2012 | B2 |
8327681 | Davidson et al. | Dec 2012 | B2 |
8376726 | Goller et al. | Feb 2013 | B2 |
8545994 | Facchini et al. | Oct 2013 | B2 |
8567226 | Morales | Oct 2013 | B2 |
20020019321 | Balliett | Feb 2002 | A1 |
20040079453 | Groh et al. | Apr 2004 | A1 |
20040105774 | Del Corso et al. | Jun 2004 | A1 |
20050044800 | Hall et al. | Mar 2005 | A1 |
20050273994 | Bergstrom et al. | Dec 2005 | A1 |
20060137424 | Browne | Jun 2006 | A1 |
20060239852 | Shipton et al. | Oct 2006 | A1 |
20110195270 | De Souza et al. | Aug 2011 | A1 |
20110302978 | Oppenheimer et al. | Dec 2011 | A1 |
20120183708 | Minisandram | Jul 2012 | A1 |
20120279678 | Minisandram | Nov 2012 | A1 |
20130142686 | Lipetzky | Jun 2013 | A1 |
20140246165 | Minisandram | Sep 2014 | A1 |
20140260478 | Forbes Jones et al. | Sep 2014 | A1 |
20140271337 | Banik et al. | Sep 2014 | A1 |
20140290321 | Minisandram | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
101517112 | Aug 2009 | CN |
386515 | Feb 1990 | EP |
0767028 | Apr 1997 | EP |
0969114 | Jan 2000 | EP |
1197570 | Apr 2002 | EP |
2286942 | Feb 2011 | EP |
664013 | Dec 1952 | GB |
1202080 | Aug 1970 | GB |
1207675 | Oct 1970 | GB |
2190319 | Nov 1987 | GB |
2262540 | Jun 1993 | GB |
52-114524 | Sep 1977 | JP |
53-108842 | Sep 1978 | JP |
54-52656 | Apr 1979 | JP |
56109128 | Aug 1981 | JP |
S57-209736 | Dec 1982 | JP |
61-255757 | Nov 1986 | JP |
61-269929 | Nov 1986 | JP |
1-271021 | Oct 1989 | JP |
H01-274319 | Nov 1989 | JP |
H02-104435 | Apr 1990 | JP |
H02-107795 | Apr 1990 | JP |
H03-174938 | Jul 1991 | JP |
4-118133 | Apr 1992 | JP |
6-63743 | Mar 1994 | JP |
11-10222 | Jan 1999 | JP |
2009-66661 | Jul 1999 | JP |
11-320073 | Nov 1999 | JP |
2000-288674 | Oct 2000 | JP |
2000-312905 | Nov 2000 | JP |
2003-239025 | Aug 2003 | JP |
2003-260535 | Sep 2003 | JP |
2005-40810 | Feb 2005 | JP |
2010-519 | Jan 2010 | JP |
2133652 | Jul 1999 | RU |
2145981 | Feb 2000 | RU |
2275997 | May 2006 | RU |
435288 | Jul 1974 | SU |
1540977 | Feb 1990 | SU |
1761364 | Sep 1992 | SU |
WO 9413849 | Jun 1994 | WO |
WO 9535396 | Dec 1995 | WO |
WO 9805463 | Feb 1998 | WO |
WO-9902743 | Jan 1999 | WO |
WO 0112381 | Feb 2001 | WO |
WO 0227067 | Apr 2002 | WO |
Entry |
---|
Atlan et al., Metal Forming: Fundamentals and Applications, Ch. 6. Friction in Metal Forming, ASM: 1993. |
Donachie et al., Superalloys: A Technical Guide, Melting and Conversion, pp. 56-77, ASM International, 2002. |
Paton et al., ESS LM as a way for heavy ingot manufacturing, LMPC, 2007. |
ASTM E2465—06 (2006): Standard Test Method for Analysis of Ni-Base Alloys by X-ray Fluorescence Spectrometry. |
ASTM E1019—08 (2008): Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. |
Santella, An overview of the welding of Ni3Al and Fe3Al alloys, ASME and ASM Materials Conference, Dec. 31, 1996. |
Levin et al., Robotic weld overlay coatings for erosion control, Quarterly Technical Progress Report for U.S. DOE Grant No. DE-FG22-92PS92542, Lehigh University, Energy Research Center, Apr. 25, 1995. |
Maziasz et al., Overview of the development of FeAl intermetallic alloys, Proceedings of the 2d International Conference on Heat-Resistant Materials, Sep. 1, 1995. |
Ito et al., Blast erosion properties of overlay weld metal, Welding International, 5:3, 1991, pp. 192-197. |
Horn et al., Auftragschweigungen mit Hastelloy alloy B-42 (Overlay welding with Hastelloy B-42), Materials and Corrosion, 43:8, 1992, pp. 381-387. |
Tillack, Weld fabrication of nickel-containing materials, Practical handbook of stainless steels & nickel alloys, Lamb ed., CASTI Publishing Inc., ASM International, Aug. 1999, pp. 325-370. |
U.S. Appl. No. 13/833,043, filed Mar. 15, 2013. |
U.S. Appl. No. 14/278,134, filed May 15, 2014. |
Insulating Method Improves Superalloy Forging, Baosteel Technical Research, Apr. 23, 2012, vol. 5, No. 4, 2 pages. |
ITC-100, ITC-200, ITC-213 Ceramic Coatings, BCS International Technical Ceramics Coatings, http://budgetcastingsupply.com/ITC.php, Feb. 2013, 3 pages. |
ITC-100 Base Coat, ITC-296A Top Coat, Coatings, http://budgetcastingsupply.com/ITC-Wool, 2013. |
Carbon Steel, E-Z LOK, AISI 12L14 Steel, cold drawn, 19-38 mm round, Aug. 5, 2013, http://www.ezlok.comfTechnicalInfo/MPCarbonSteel.html, 1 page. |
Alloy 309/309S, Specification Sheet: Alloy 309, Sandmeyer Steel Company, Aug. 5, 2013, http://www.sandmeyersteel.com/309-309S.html, 4 pages. |
Shivpuri, R. and S. Kini, Lubricants and Their Applications in Forging, ASM Handbook, vol. 14A, Metalworking: Bulk Forming, Semiatin, S.L., ed., 2005, ASM International, Ohio, US, p. 84. |
Schey et al., Laboratory Testing of Glass Lubricants, Lubrication Engineering/Tribology and Lubrication Technology, Society of Tribologists and Lubrication Engineers, US, vol. 30, No. 10, Oct. 1, 1974, pp. 489-497. |
McGraw Hill Encyclopedia of Science and Technology, 1992, McGraw Hill Inc., vol. 11, pp. 32-33. |
Chesney, Peter, A New Spray Coating Process for Manufacture of Stainless Steel Clad Construction Steel with Resistance to Corrosion by De-icing Salts & Seawater, Spray Forming International, Cayce, South Carolina, USA, Thermal Spray 2003: Advancing the Science and Applying the Technology, ASM International, 2003, 5 pages. |
Anchor Industrial Sales, Inc. Product Data Sheets, Style #412 Fiberglass cloth, Style #412IB Fiberglass Mats, 2008, 2 pages. |
“A New Nickel Superalloy”, Machine Design, Hayes International Inc., published by Penton Publishing, Mar. 23, 2006, p. 41. |
Crucible Compaction Metals P/M Low Carbon Astroloy, Supersolvus, printed from http://www/matweb.com/search/datasheet—print.aspx?matguid=e1bac255c1964e19a43b29 . . . On Aug. 17, 2011, 2 pages. |
Gayda, John, “NASA/TM-2001-210814 High Temperature Fatigue Crack Growth Behavior of Alloy 10”, Glenn Research Center, Cleveland, Ohio, National Aeronautics and Space Administration, Apr. 2001, 7 pages. |
Advanced Solutions for Higher Performance and Longer Life, ATI Powder Metals Applications, printed from hftp://www.alleghenytechnologies.com/atipowder/applications/default.asp on Sep. 22, 2011, 4 pages. |
Wlodek et al., “The Structure of Rene' 88 DT”, Superalloys 1996, Eds. Kissinger et al., The Minerals, Metals & Materials Society, 1996, pp. 129-136. |
Zielinska et al., “Thermal properties of cast nickel based superalloys”, Archives of Materials Science and Engineering, vol. 44, Issue 1, Jul. 2010, pp. 35-38. |
Rockwell Hardness Testing, Materials Evaluation and Engineering, Inc., 2009, 2 pages. |
Belfort, M.G. and V.E. Patton, “Equipment for arc and slag welding and weld deposition”, Moscow, High School, 1974. |
Steel Handbook, 3rd Edition, Bar Steel/Steel Tube/Rolling Common Equipment, Edited by Iron and Steel Inst. of Japan, Jun. 27, 2010. |
Number | Date | Country | |
---|---|---|---|
20110302979 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12814591 | Jun 2010 | US |
Child | 13027327 | US |