The present invention generally relates to lubrication systems for gas turbine engines, and more particularly relates to lubrication systems with nozzle blockage detection systems in gas turbine engines.
Lubrication is an important aspect of maintaining machinery in proper operating condition. Machine elements such as bearings, journals, shafts, and joints require lubrication between moving surfaces to decrease friction, prevent contamination, reduce wear and dissipate heat. In some cases, improper lubrication has the potential to result in premature component wear. Accordingly, gas turbine engines include lubrication systems to maintain a flow of a suitable lubricant through the engine, including in the turbines or gearboxes. In most lubrication systems, a supply pump feeds the lubricant from a reservoir through a supply conduit to a nozzle device that sprays the lubricant onto the elements to be lubricated, and a return pump directs lubricant collected in a sump back into the reservoir to repeat the flow circuit.
Over time and particularly at high temperature operation, some of the lubricant may undergo a coking process in which solids are formed and deposited in the lubrication system. At times, coking may result in blockages in the nozzles, which if unaddressed, may impede lubricant from properly flowing through the system. Typically, this issue is evaluated according to a maintenance schedule when the engine is offline. Generally, conventional systems do not have a mechanism for detecting nozzle blockage during operation.
Accordingly, it is desirable to provide a lubrication system with a nozzle blockage detection system that indicates potential blockage issues within the lubrication system, particularly during operation of the associated engine. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
In accordance with an exemplary embodiment, a lubrication system is provided for delivering a lubricant to a plurality of nozzles. The lubrication system includes a reservoir for the lubricant; a pump fluidly coupled to the reservoir and configured to remove a flow of the lubricant from the reservoir; a lubrication sensor positioned between the pump and the plurality of nozzles and configured to detect a blockage in the plurality of nozzles and to generate a blockage signal when the blockage is detected; and an indicator coupled to the lubrication sensor and configured to generate a warning based on the blockage signal from the lubrication sensor.
In accordance with another exemplary embodiment, a shuttle valve for a lubrication system is provided. The shuttle valve includes a housing defining a cavity; a shuttle positioned within the cavity in a first position or a second position, the shuttle dividing the cavity into a first cavity section, a second cavity section, and a third cavity section; an inlet fluidly coupled to the first cavity section; an outlet fluidly coupled to the third cavity section; a flow passage extending between the first cavity section and the third cavity section such that lubrication in the lubrication system is directed through the inlet, through the first cavity section, through the flow passage, through the third cavity section, and through the outlet; and a first port fluidly coupled to the first cavity section when the shuttle is in the first position and to the second cavity section when the shuttle is in the second position.
The present invention will hereinafter be described in conjunction with the following drawing figures in which like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Thus, any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. All of the embodiments described herein are exemplary embodiments provided to enable persons skilled in the art to make or use the invention and not to limit the scope of the invention which is defined by the claims. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description.
Broadly, exemplary embodiments discussed herein are directed to a lubrication system for delivering lubricant through nozzles of a gas turbine engine. The lubrication system includes a nozzle blockage detection system that provides a warning to an operator in the event of a nozzle blockage. Particularly, the nozzle blockage detection system includes a shuttle valve with a shuttle that translates between a first position and a second position. In the first position, a sensor is in fluid communication with the pressurized lubricant flowing through the shuttle valve. Upon a pressure increase downstream of the shuttle valve, such as during a nozzle blockage, the shuttle translates into the second position in which the sensor is no longer in fluid communication with the pressurized lubricant. In such a situation, the drop in pressure activates the sensor to initiate the operator warning. The nozzle blockage detection system may further include a high pressure sensor that activates a chip detector to initiate the operator warning.
As schematically shown in
The reservoir 110 holds a quantity of lubricant for use within the lubrication system 100. A typical lubricant is oil, but other lubricants may be used. The supply pump 114 removes the lubricant from the reservoir through a conduit 112 and provides the lubricant under pressure through a conduit 116 to the shuttle valve 140. In one exemplary embodiment, the supply pump 114 may provide the lubricant to the shuttle valve 140 at a pressure of about 90 psi.
As is discussed in greater detail below, the shuttle valve 140 includes a housing 142 with an inlet 160, an outlet 162, a first port 164, and a second port 166. The shuttle valve 140 further includes a cavity 144 and a shuttle 150 positioned to translate within the cavity 144.
The shuttle 150 is formed by a first piston 152 and a second piston 154 arranged on a piston rod 156. As is schematically shown in
The housing 142 has at least two seats 146 and 148 within the cavity 144 that define the two primary positions for the shuttle 150 to translate within the cavity 144. In a first position, the second piston 154 contacts the second seat 148, and in a second position, the first piston 152 contacts the first seat 146. In the view of
As noted above, the shuttle valve 140 receives lubricant in the cavity 144 through the inlet 160. The lubricant flows through the first cavity section 170, through the flow passage 158 defined in the shuttle 150, through the third cavity section 174, and out of the shuttle valve 140 via outlet 162. As such, the first cavity section 170, flow passage 158, and third cavity section 174 form part of the primary or main flow path of the lubricant through the lubrication system 100. As described in greater detail below, the second cavity section 172 forms part of a secondary flow path via conduit 134.
Additionally, since the downstream width 126 of the cavity 144 is greater than the upstream width 120, the pressure of the lubricant flowing out of the shuttle valve 140 is less than the pressure provided by the supply pump 114 such that the shuttle valve 140 at least partially acts as a check valve or orifice, in addition to the functions described below. An exemplary pressure at the outlet 162 may be, for example, about 30 psi.
Lubricant from the shuttle valve 140 flows through conduit 136 to the nozzle assembly 180. The nozzle assembly 180 generally includes one or more nozzles 181-186 that produce a stream or spray of lubricant to designated portions of the engine 200. Although six nozzles 181-186 are illustrated, any number of nozzles 181-186 may be provided.
The lubricant flows through the engine 200 and is collected in the sump 190. The return pump 194 removes the lubricant from the sump 190 through conduit 192 and subsequently returns the lubricant through conduit 196 to the reservoir 110 to repeat the circuit. Although not shown, the lubrication system 100 may include additional components, such as filters, heat exchangers, controllers, sensors, pumps, valves, vents, and the like.
At times, one or more of the nozzles 181-186 may become blocked by debris or coking. Coking typically occurs when the lubricant solidifies due to elevated temperatures in the engine 200, and the solids tend to lodge in the smaller passageways of the nozzles 181-186, thereby blocking or otherwise impeding the flow of lubricant to the engine 200. As introduced above, the nozzle blockage detection system 130 functions to detect such blockages and provide an alert or warning for an operator.
As noted above, the shuttle valve 140 is in the first position in
As noted above, in one exemplary embodiment, the sensor 176 is a low pressure lubrication sensor. In other words, the sensor 176 has an inactive condition when the pressure in the conduit 132 is greater than a predetermined threshold and an active condition when the pressure in the conduit 132 reaches or drops below the predetermined threshold. The predetermined threshold may be, for example, 5 psi, 10 psi, 15 psi, or any suitable, relatively low pressure. Generally, when the conduit 132 is fluidly coupled to the first cavity section 170, the pressure at the sensor 176 is well above the predetermined threshold and the sensor 176 is inactive. The sensor 176 may be any type of low pressure sensor, including absolute, gauge, vacuum, differential, and seal, and may be further categorized as capacitive, electromagnetic, optical or the like.
In the event of a blockage in one of the nozzles 181-186, the pressure in the nozzle assembly 180, and thus the conduit 136, starts to rise. As a result, pressure in the third cavity section 174 of the shuttle valve 140 correspondingly increases and acts on the adjoining face of the second piston 154. Upon reaching a predetermined pressure increase, the pressure in the third cavity section 174 forces the shuttle 150 (e.g., the first piston 152, the second piston 154, and the piston rod 156) to translate in an upstream direction to a second position, as will be described with reference to
It should be noted that, even in the second position, the lubricant in the shuttle valve 140 still flows through the first cavity section 170, the flow passage 158, and the third cavity section 174 such that lubricant is still delivered to the nozzle assembly 180. In one exemplary embodiment, the hydraulic resistance of the shuttle 150 is the same in the first position as in the second position. As such, in addition to providing a warning about possible nozzle blockages, the nozzle blockage detection system 130 enables the lubrication system 100 to maintain operation during a blockage condition.
In addition to or in lieu of the shuttle valve 140 and low pressure sensor 176, the chip detector 104 and high pressure sensor 102 may function to initiate an operator warning via the indicator 178. As such, the chip detector 104 and high pressure sensor 102 may be a redundant warning mechanism. In other embodiments, the chip detector 104 and high pressure sensor 102 or the shuttle valve and low pressure sensor 176 may be omitted.
In the depicted embodiment, the chip detector 104 is positioned downstream of the shuttle valve 140, although in other embodiments, the chip detector 104 may be have other arrangements. The chip detector 104 is a lubrication sensor that determines the amount of debris (or “chips”) flowing through the lubrication system 100. The amount of debris may be a health indicator for the turbine 200 or the lubrication system 100. As such, the chip detector 104 may be an existing lubrication sensor with functions otherwise independent of the nozzle blockage detection system 130. In one exemplary embodiment, the chip detector 104 includes electrical contacts on each side of the lubrication flow path (e.g., on either side of conduit 136), and as a piece of debris touches both contacts, an electrical circuit is completed and recorded. If the amount of debris reaches a predetermined amount, the chip detector 104 provides a debris warning to the operator or health management system.
In addition to being activated by debris, the chip detector 104 may also be activated by the high pressure sensor 102. The high pressure sensor 102 may be arranged upstream of the nozzle assembly 180 (e.g., at conduit 136) and designed to generate a signal for the chip detector 104 when the pressure upstream of the nozzle assembly 180 reaches a predetermined level that indicates a nozzle blockage may be occurring. The high pressure sensor 102 may be any type of pressure sensor, including absolute, gauge, vacuum, differential, and seal, and may be further categorized as capacitive, electromagnetic, optical or the like.
When the predetermined pressure is reached, the high pressure sensor 102 may provide a continuity signal to the chip detector 104 similar to that of debris such that the chip detector 104 is activated. In turn, the chip detector 104 provides a signal to the indicator 178 to function as an operator warning. In some exemplary embodiments, the warning from the indicator 178 may be relatively generic to indicate an issue in the lubrication system 100, and in other embodiments, the indicator 178 may distinguish between a chip or debris warning, a low pressure warning, and a nozzle blockage warning.
As also noted above, the widths 124 and 126 of the pistons 152 and 154 generally correspond to the widths 120 and 122 of the cavity 144. A seal 602 is provided on an annular groove 612 in the first piston 152 to create a generally fluid-tight interface within the cavity 144 between the shuttle 150 and the housing 142. Similarly, a seal 604 is provided on an annular groove 614 in the second piston 154 to create a generally fluid-tight interface within the cavity 144 between the shuttle 150 and the housing 142. As shown, the grooves 612 and 614 may be axially outwardly facing on circumferential surface of the shuttle 150. In one exemplary embodiment, the seals 602 and 604 may be, for example, O-rings, although any suitable seal device may be used. The seals 602 and 604 enable the separation of cavity sections 170, 172, and 174. The seals 602 and 604 engage the housing 142 and function to restrict and resist movement according to a static friction force. As discussed above, during a blockage event, the pressures in the third cavity section 174 may overcome the static friction to translate the shuttle 150 into the second position. In the depicted embodiment, the seals 602 and 604 function to resist movement, although in other embodiments, springs or other resilient mechanisms may be used to bias the shuttle 150 in the first position.
Accordingly, a lubrication system with a nozzle blockage detection system is provided. The nozzle blockage detection system provides a mechanism for detecting nozzle blockages that generates a warning or indication for the operator. Additionally, the nozzle blockage detection system operates in a manner that does not interrupt the flow of lubricant to the nozzle assembly even during such a blockage situation. The nozzle blockage detection system provides these functions without extensive redesign of the lubrication system. In some embodiments, the lubrication sensors that make up the nozzle blockage detection systems may be existing sensors that perform other functions, such as detecting low pressure situations or debris. This also enables a reduction in the cost of the nozzle blockage detection system and the retrofit of existing lubrication systems.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2188463 | Mercier | Jan 1940 | A |
2395941 | Rockwell | Mar 1946 | A |
3045419 | Addie et al. | Jul 1962 | A |
4470428 | Bishop et al. | Sep 1984 | A |
4545401 | Karpis | Oct 1985 | A |
4705217 | Hartley et al. | Nov 1987 | A |
4758131 | Gurney | Jul 1988 | A |
5038893 | Willner et al. | Aug 1991 | A |
5121599 | Snyder et al. | Jun 1992 | A |
5311905 | De Santis | May 1994 | A |
5320196 | Mouton | Jun 1994 | A |
5427151 | Pauley | Jun 1995 | A |
5482138 | Mori et al. | Jan 1996 | A |
5487447 | Martinez Velazquez | Jan 1996 | A |
5701795 | Friedrichsen | Dec 1997 | A |
5964318 | Boyle et al. | Oct 1999 | A |
6008724 | Thompson | Dec 1999 | A |
6244385 | Tsubata et al. | Jun 2001 | B1 |
6578669 | Kast et al. | Jun 2003 | B2 |
6745610 | Takeuchi | Jun 2004 | B2 |
6746610 | Manz et al. | Jun 2004 | B2 |
6857444 | Davis | Feb 2005 | B2 |
6886324 | Handshuh et al. | May 2005 | B1 |
6991065 | Leslie et al. | Jan 2006 | B2 |
7000734 | Nawamoto et al. | Feb 2006 | B2 |
7017712 | Rake et al. | Mar 2006 | B1 |
7163086 | Care et al. | Jan 2007 | B2 |
7367427 | Gaines et al. | May 2008 | B2 |
7426884 | Thiry et al. | Sep 2008 | B2 |
7506724 | Delaloye | Mar 2009 | B2 |
7566320 | Duchon et al. | Jul 2009 | B2 |
7640723 | Alexander | Jan 2010 | B2 |
8230974 | Parnin | Jul 2012 | B2 |
20020157901 | Kast et al. | Oct 2002 | A1 |
20030219345 | Sugita et al. | Nov 2003 | A1 |
20030230274 | Williams et al. | Dec 2003 | A1 |
20040031647 | Leslie et al. | Feb 2004 | A1 |
20040079411 | Davis | Apr 2004 | A1 |
20040140161 | Clancy et al. | Jul 2004 | A1 |
20050241880 | Nawamoto et al. | Nov 2005 | A1 |
20060081419 | Care et al. | Apr 2006 | A1 |
20070137936 | Akechi et al. | Jun 2007 | A1 |
20080116010 | Portlock et al. | May 2008 | A1 |
20080203735 | Leslie | Aug 2008 | A1 |
20080264542 | Hawkins et al. | Oct 2008 | A1 |
20090299535 | Delaloye | Dec 2009 | A1 |
20100025158 | Allam | Feb 2010 | A1 |
20100147403 | Bresnahan | Jun 2010 | A1 |
20100213010 | Cornet et al. | Aug 2010 | A1 |
20120007009 | Yie | Jan 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130008745 A1 | Jan 2013 | US |