Many foods and beverage bottles have a large mouth and are sealed with a metal or composite closure. For example, sauces have traditionally been packaged in glass containers with an all metal closure. Other food products, such as jelly and beverages have been packaged in blow molded plastic bottles and sealed with composite closures. The food or beverage contents of large mouth, blow molded plastic bottles are often filled in a process in which the contents are at an elevated temperature at the time of filling, often over 180 degrees F., referred to as “hot-fill.” A closure is applied while the contents are hot to hermetically seal the container. The term “large mouth” as used in this disclosure is any container mouth having a closure size greater than 48 mm.
Composite closures typically include a metal disk for sealing the mouth of the container and a plastic skirt, which fits over the disk, for engaging the threads of the bottle. Composite closures are typically used for hot fill applications with plastic bottles because the metal disk provides a robust seal and good heat transfer among other benefits.
Single piece, all-metal closures are commercially available in several types. An all-metal, unitary screw-on closure has threads preformed in the skirt that correspond to the bottle threads. A ROPP (roll on pilfer proof) closure has threads formed during application of the closure to the bottle. Crown Cork & Seal, Inc. manufacturers an all-metal, 2-piece lugged closure under the trade name Orbit™. Another type of all-metal, unitary closure is a one-piece lugged closure having lugs formed on the bottom of the skirt to engage threads on a bottle neck.
Typically, lug closures are used only with either glass bottles or with plastic bottles in which the lug closure is applied as part of a cold filling process (that is, neither the contents nor the bottle is at an elevated temperature during filling). But lug closures are not often used with conventional hot-filled plastic bottles without crystallized neck finishes because of a particular problem. The hot-fill contents raise the temperature of the neck and finish of the bottle, which diminishes the hoop strength of the finish. Because lug closures only contact the finish at the lugs, the force of applying the lug closure to the finish distorts the shape of the finish. Because four lug closures are typical for closure sizes less than 77 mm, the problem is known as “squaring,” even though the term “squaring” is used herein for distortion by closures having other quantities of lugs. When the container cools, the squaring is set. The problem is especially prevalent in bottles having either a blow molded or injection molded finish when neither are crystallized as part of the container manufacturing process.
The present invention includes a lug closure that, in a preferred embodiment, has lugs that are flexible and shaped such that they have less tendency to dig into the container thread and can diminish a horizontal force pushing inward toward the axis of the container. In this regard, the lug taper angle is generally greater than that of conventional metal closures (except for flexible lugs on some closures used for glass containers). And the lug taper angle roughly matches or is close to the thread pitch angle.
Moreover, the container thread profile is designed to enhance flatness of the lug contact surface relative to the thread engagement face to minimize the inward force on the container. And the thread may have an angle-flat finish with a relatively flat thread engagement face on which the closure comes to its final position once tightened. The closure can have deep and narrow compound channel that can trap the container finish and maintain a round seal surface.
In some embodiments, a lug closure includes a central top panel, an annular channel outboard of the top panel, a downwardly extending skirt outboard of the channel, the skirt terminating at an inward curl that defines a curl height, and lugs formed in the curl. Each one of the lugs includes a body that extends radially inwardly from the skirt. The body includes a leading edge that merges into a leading portion of the curl. The leading edge tapers in thickness from the curl height to a minimum lug thickness and forms a leading edge vertical taper angle from horizontal between 6 and 15 degrees. A trailing edge merges into a trailing portion of the curl and the trailing edge tapers in thickness from the curl height to the minimum lug thickness.
In some embodiments, a package for food or beverage contents includes a wide mouth plastic (PET, polypropylene) hot Tillable container. The container has a finish including threads and at least an upper portion of the threads define a thread pitch angle. The package further includes a lug closure comprising a central top panel, an annular channel outboard of the top panel, a downwardly extending skirt outboard of the channel that terminates at an inward curl that defines a curl height, and lugs formed in the curl. Each one of the lugs includes a body that extends radially inwardly from the skirt. The body includes a leading edge that merges into a leading portion of the curl. The leading edge tapers in thickness from the curl height to a minimum lug thickness. The leading edge taper is within eight degrees of the thread pitch angle of the finish. A trailing edge merges into a trailing portion of the curl and tapers in thickness from the curl height to the minimum lug thickness.
Top panel 20 includes an optional, tamper-evident button 22 that is surrounded by an approximately planar panel portion 24. Channel 30 is outboard of panel portion 24 and includes an inner shoulder 32 and a top panel wall 34. Conventional plastisol gasket or like sealant (not shown in the figures) is intended to be used in channel 30. Channel 30 in
Skirt 50 includes a skirt wall 52 that depends downwardly from an outboard side of channel top wall 34, preferably with a radius in the transition between channel top wall 34 and skirt wall 52. Skirt 52 is a conventional length and terminates at its lower end in a curl 54. Curl 54 has a height H1, which preferably is conventional, measured in a vertical orientation as shown in
Referring to
For each lug 60, lug leading surface 70a is the leading edge when the closure is twisted onto right hand threads. Lug leading surface forms a leading edge taper angle A1 from horizontal of no more than about 25 degrees, preferably no more than 20 degrees, more preferably no more than about 15 degrees, more preferably between 6 and 15 degrees, and preferably about 10 degrees. The lower limit on the leading edge taper angle is the practical geometric and manufacturing limit on forming a lug that has sufficient radial dimension, and preferably is approximately three degrees. The leading edge taper angle A1 may or may not be straight.
Lug trailing surface 70b preferably has a lug trailing edge taper angle that is the same as leading edge taper angle A1, such that lug 60 is symmetrical about a vertical, radial plane bisecting lug 60 at tip 68. Alternatively, the trailing edge taper angle may be less than the leading edge taper angle such that tip 68 is offset from the center. As shown for example in
As shown in
Skirt 50B includes a skirt wall 52B that depends downwardly from an outboard side of step 36B, preferably with a radius in the transition between step 36B and skirt wall 52B. Skirt 52B is a conventional length and terminates at its lower end in a curl 54 and five equidistant lugs 60. Curl 54 and lugs 60 are as described above with respect to
As shown in
Skirt 50C includes a skirt wall 52C that depends downwardly from an outboard side of step 34C, preferably with a radius in the transition between step 34C and skirt wall 52C. Skirt 52C is a conventional length and terminates at its lower end in a curl 54 and five equidistant lugs 60. Curl 54 and lugs 60 are as described above.
As shown in
Bottle 110 preferably is a blow molded bottle formed of a polyester, such as polyethylene terephthalate, but may be formed of other plastics, such as polypropylene and the like. The closures described above are beneficial when used with hot Tillable container, especially with containers blown and trimmed finish because blow-trim finishes are prone to squaring. The present invention however is not limited to blow-trim finishes. The bottle material for hot-Tillable bottles typically have an intrinsic viscosity 0.76-0.84.
As best shown in
Upper thread taper angle A2 shown in the figures is 50 degrees. The present invention encompasses any angle A2 that can work with lower thread taper angle A3 according to conventional plastic thread practice in the bottle and closure field. Preferably angle A2 is between 40 degrees and 60 degrees.
Lower thread angle A3 is defined by the lower thread surface 144 for the lugs during application of the closure. Angle A3 preferably no more than 25 degrees, preferably is between 5 and 22 degrees, more preferably between 5 and 20 degrees, and in the embodiment shown, approximately 15 degrees. Alternatively, and as indicated schematically by the dashed line 149 of
Upon application of any of the closures 10, 10A, 10B, and 10C to the finish of bottle 110, a user applies a clockwise rotation to the closure until the upper surface of one or more lugs 60 engage the uppermost end tip of the thread 140 and then engage the contact surface or lower thread surface 144. Because the configuration of lug 60 is relatively flexible compared with prior art lugs, lug 60 should tend to deflect more than prior art closures and will have less tendency to dig in or deform the surface of threads 140. And lugs 60 should create lower horizontal force pushing inward toward the axis of the container that would tend to exacerbate the squaring problem when the finish is at elevated temperate. Further the lower taper angle A3 of the thread profile creates a flatter surface than many conventional bottle threads, which also diminishes the inward force on the container.
A leading edge vertical taper angle A5 (shown in relation to end 82a) reflects the decrease in vertical height from curl leading portion 80a of curl 54 to tip 68. Vertical taper angle A5 may be configured to roughly match the thread pitch angle A4 to enhance the above benefits. Preferably vertical taper angle A5 is within 0.5° of thread pitch angle A4, more preferably with 0.4° and preferably within 0.1°. In this regard, according to another means for describing the structure, vertical taper angle A5 and thread pitch angle A4 may be each preferably no more than 25 degrees, preferably between 5 degrees and 15 degrees, and more preferably approximately 10 degrees.
The angle-flat portion would also diminish inward radial forces during application.
Upon further application of closure 10, 10A, 10B, and 10C onto the finish of bottle 110, after sufficient clockwise rotation, rim 160 of bottle 110 is driven (relatively) upward into or relative to channel 30 such that the inner rim 164 of 162 embeds into the gasket such that the gasket is supported by closure shoulder 32, 32A, 32B, and 32C (and step 36B of closure 10B may also contact an outer portion of rim 160) as needed to resist or diminish the squaring or like deformation force of lugs 60 and to at least partially correct or diminish out of roundness of the finish, creating a more robust seal and package.
The present invention has been described using several illustrations. The present invention is not intended to be limited to the structures illustrated above. The invention is intended to get the full scope as expressly defined in the claims. For merely one example, all of the embodiments employ five lugs, even though the present invention encompasses closures and packages having more or fewer than five lugs unless expressly stated in the claims. The closure shown is a standard 63 mm closure. The inventors surmise that a closure larger than a 43 mm, size, such as at least 48, at least 58 mm, or at least 63 mm closures may be employ the structure and function described herein.
This application is a continuation of U.S. patent application Ser. No. 15/504,418, filed Feb. 16, 2017, which is the National Stage Application of International Patent Application No. PCT/US2015/046107, filed Aug. 20, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/039,689 filed Aug. 20, 2014, the disclosures of which is hereby incorporated by reference as if set forth in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3465908 | Acton et al. | Sep 1969 | A |
3788508 | Vercillo | Jan 1974 | A |
10676250 | Sims et al. | Jun 2020 | B2 |
20070144999 | King | Jun 2007 | A1 |
20120118899 | Wurster et al. | May 2012 | A1 |
20140263339 | Bates et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
102008007301 | Aug 2009 | DE |
445744 | Apr 1936 | GB |
453101 | Sep 1936 | GB |
2006081943 | Aug 2006 | WO |
2009115377 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20200290780 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62039689 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15504418 | US | |
Child | 16890237 | US |