The present disclosure relates generally to prosthetic devices, and in particular, to articulated endoprosthetic devices, such as those suitable for implantation into the intervertebral space between adjacent vertebrae of the spinal column.
In the treatment of diseases, injuries or malformations affecting spinal motion segments, and especially those affecting disc tissue, it has long been known to remove some or all of a degenerated, ruptured or otherwise failing disc. Currently, the standard treatment remains disectomy followed by vertebral fusion. While this approach may alleviate a patient's present symptoms, accelerated degeneration of adjacent discs is a frequent consequence of the increased motion and forces induced by fusion.
Therefore, what is needed is an artificial intervertebral prosthetic device, which includes wear-resistant articulating surfaces that provide bio-mechanical action mimicking the movement of the natural intervertebral disc, as well as a shock-absorbing body, in order to reduce deterioration of the adjacent discs.
In one embodiment, a prosthetic device for insertion into an intervertebral space is provided. The device includes a first endplate component for engaging a first vertebral body, a second endplate component for engaging a second vertebral body, and an articulating central body component extending between the first and second endplate components. The articulating central body component includes a mechanical compression component. In some embodiments, the mechanical compression component is a wave spring washer.
In some embodiments, the prosthetic device includes an alignment key and an alignment groove member extending from an inner surface of one of the end caps to mate with the corresponding alignment key and groove member extending from an inner surface of the other end cap.
In some embodiments, the prosthetic device includes retaining posts disposed on the inner surfaces of the endplate components that extend through central openings of the articulating central body component.
In another embodiment, a system for replacing an intervertebral disc is provided. The system includes a first endplate component for engaging a first vertebral body, a second endplate component for engaging a second vertebral body, and an articulating central body component interposed between the first and second endplate components. The articulating central body component includes a mechanical compression component. The articulating central body component provides motion between the first endplate component and the second endplate component.
In another embodiment, a surgical method is provided. The surgical method includes providing a first endplate component for engaging a first vertebral body, providing a second endplate component for engaging a second vertebral body, providing an articulating central body having a mechanical compression component, and inserting the articulating central body component between the first endplate component and the second endplate component. The articulating central body component includes a first end cap component that articulates with the first endplate component and a second end cap component that articulates with the second endplate component.
a is a cross sectional side view of an exploded intervertebral disc prosthesis according to one embodiment of the present disclosure.
b is a cross sectional side view of an assembled intervertebral disc prosthesis of
c is a cross sectional top view of the intervertebral disc prosthesis of
The present invention relates generally to prosthetic devices, and more particularly, to a functional endoprosthetic device. For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments, or examples, illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the disclosure as described herein are contemplated as would normally occur to one skilled in the art to which this disclosure relates. As such, individual features of separately described embodiments can be combined to form additional embodiments.
Referring first to
Referring now to
Referring now to
Although the endplate components 22, 24 of the intervertebral disc prosthesis 20 may be formed from a variety of materials, in one embodiment of the disclosure, the endplate components 22, 24 are formed of a cobalt-chrome metallic alloy. However, in alternative embodiments of the disclosure, the endplate components 22, 24 may be formed of other materials such as titanium or stainless steel, ceramic, or a polymeric material such as polyethylene, or any other biocompatible material that would be apparent to one of ordinary skill in the art. Furthermore, the interior surfaces 30, 32 of the endplate components 22, 24 may be treated to make them smooth, increase their lubricity, or both. For example, the interior surfaces 30, 32 may be polished, coated, or comprise inserts of material different from the remainder of the endplate components 22, 24, in order to provide a smooth, wear-resistant surface and decrease the likelihood of generating wear debris during articulation.
The endplate components 22, 24 each include an exterior surface 28, 34, respectively, that may be positioned in direct contact with vertebral bone and are preferably coated with a bone-growth promoting substance, such as, for example, a hydroxyapatite coating formed of calcium phosphate. Additionally, the exterior surfaces 28, 34 of the endplate components 22, 24, respectively, may be roughened prior to being coated with the bone-growth promoting substance to further enhance bone on-growth. Such surface roughening may be accomplished by way of, for example, acid etching, knurling, application of a bead coating, or other methods of roughening that would be apparent to one of ordinary skill in the art.
The articulating central body 26 may include end cap components 36, 38 having articulating surfaces 40, 42 and interior surfaces 56, 58, respectively, as shown in
Although, the end cap components 36, 38 of the articulating central body 26 may be formed from a variety materials, in one embodiment of the disclosure, the end cap components 36, 38 are formed of a cobalt-chrome metallic alloy. However, in alternative embodiments of the disclosure, the end cap components 36, 38 may be formed of other materials such as titanium or stainless steel, ceramic, or a polymeric material such as polyethylene, or any other biocompatible material that would be apparent to one of ordinary skill in the art. Furthermore, the end cap components 36, 38 may be preferably shaped to provide smooth and wear-resistant articulating surfaces 40, 42 for contact with the corresponding endplate components 22, 24.
The articulating surfaces 40, 42 of the end cap components 36, 38 may be modified, treated, coated or lined to enhance the wear resistant and articulation properties of the articulating central body 26. These wear resistant and articulation properties may be provided by cobalt-chromium alloys, titanium alloys, nickel titanium alloys, and/or stainless steel alloys. Ceramic materials such as aluminum oxide or alumina, zirconium oxide or zirconia, compact of particulate diamond, and/or pyrolytic carbon may be suitable. Polymer materials may also be used including any member of the PAEK family such as PEEK, carbon-reinforced PAEK, or PEKK; polysulfone; polyetherimide; polyimide; UHMWPE; and/or cross-linked UHMWPE. Polyolefin rubbers, polyurethanes, copolymers of silicone and polyurethane, and hydrogels may also provide wear resistance and articulation properties. Wear resistant characteristics may also or alternatively be provided to the articulating surfaces 40, 42 by modifications such as cross-linking and metal ion implantation.
The mechanical compression component 50 may be retained in the recess compartment 44 of the articulating central body 26 by securing the mechanical compression component 50 to one of the interior surfaces 56, 58 of the end cap components 36, 38, respectively. For example, the securing means may be provided by screws, clamps, or any other type of securing pins (not shown).
Although the embodiments of
Referring to
Referring now to
In some embodiments, the intervertebral disc prosthesis 20 may further provide a shock-absorbing function under compressive loads that are parallel to the rotational axis R. The shock-absorbing function may be provided by a mechanical spring configuration such as the ones shown in
More specifically, with respect to one embodiment, the mechanical compression component 50 may comprise a wave spring washer 100, as shown in
In another embodiment, the mechanical compression component 50 may alternatively comprise a ring-shaped leaf spring washer 110, as shown in
In another embodiment, the mechanical compression component 50 may alternatively comprise a leaf spring washer 120, as shown in
Now referring to
Although the alignment keys 260, 264 and corresponding alignment grooves 262, 266 are illustrated as being rectangular in cross section, other geometries have been contemplated, such as, for example, triangular, cylindrical or other shapes with a plurality of sides.
Now referring to
The present disclosure has been described relative to several preferred embodiments. Improvements or modifications that become apparent to persons of ordinary skill in the art after reading this disclosure are deemed within the spirit and scope of the application. For example, different shapes and sizes of the endoprosthetic device accordingly are contemplated.
Accordingly, it is understood that several modifications, changes, and substitutions are intended in the foregoing disclosure and, in some instances, some features of the disclosure will be employed without a corresponding use of other features. For example, the alignment key and corresponding alignment groove feature may be used in conjunction with the retaining element of the endplate components. It is also understood that all spatial references, such as “inner,” “outer,” “upper,” “lower,” are for illustrative purposes only and can be varied within the scope of the disclosure. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the disclosure.
This is a continuation-in-part to U.S. Ser. No. 10/600,052 titled Wear-Resistant Endoprosthetic Devices, filed on Jun. 20, 2003, assigned to the same entity as the present patent, and herein incorporated by reference as if reproduced in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4309777 | Patil | Jan 1982 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4932969 | Frey et al. | Jun 1990 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5123926 | Pisharodi | Jun 1992 | A |
5320644 | Baumgartner | Jun 1994 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5458642 | Beer et al. | Oct 1995 | A |
5674294 | Bainville et al. | Oct 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5893889 | Harrington | Apr 1999 | A |
5928284 | Mehdizadeh | Jul 1999 | A |
6231609 | Mehdizadeh | May 2001 | B1 |
6290726 | Pope et al. | Sep 2001 | B1 |
6395034 | Suddaby | May 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6468310 | Ralph et al. | Oct 2002 | B1 |
6527804 | Gauchet et al. | Mar 2003 | B1 |
6533817 | Norton et al. | Mar 2003 | B1 |
6579321 | Gordon et al. | Jun 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6602291 | Ray et al. | Aug 2003 | B1 |
6607558 | Kuras | Aug 2003 | B2 |
6610092 | Ralph et al. | Aug 2003 | B2 |
6610093 | Pisharodi | Aug 2003 | B1 |
6626943 | Eberlein et al. | Sep 2003 | B2 |
6656224 | Middleton | Dec 2003 | B2 |
6666890 | Michelson | Dec 2003 | B2 |
6673113 | Ralph et al. | Jan 2004 | B2 |
6682562 | Viart et al. | Jan 2004 | B2 |
6712853 | Kuslich | Mar 2004 | B2 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723127 | Ralph et al. | Apr 2004 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
7025787 | Bryan et al. | Apr 2006 | B2 |
7066958 | Ferree | Jun 2006 | B2 |
7250060 | Trieu | Jul 2007 | B2 |
20030074076 | Ferree et al. | Apr 2003 | A1 |
20030187506 | Ross et al. | Oct 2003 | A1 |
20040002761 | Rogers et al. | Jan 2004 | A1 |
20040002762 | Hawkins | Jan 2004 | A1 |
20040024460 | Ferree | Feb 2004 | A1 |
20040024461 | Ferree | Feb 2004 | A1 |
20040030391 | Ferree | Feb 2004 | A1 |
20040044410 | Ferree et al. | Mar 2004 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050038515 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10600052 | Jun 2003 | US |
Child | 10938043 | US |