Luminaire associate

Information

  • Patent Grant
  • 9622323
  • Patent Number
    9,622,323
  • Date Filed
    Tuesday, November 18, 2014
    10 years ago
  • Date Issued
    Tuesday, April 11, 2017
    7 years ago
Abstract
A street lighting fixture and street lamp used in street lighting containing an accelerometer that is used to detect and characterize acceleration events on a street lighting fixture. The accelerometer readings may be combined with GPS technology to determine a relocation of the street lighting fixture.
Description
BACKGROUND

Area and street lighting is one of the most important elements of a city's infrastructure. For such extensive lighting installations it is desirable to know the locations of individual luminaires for maintenance and other purposes involving planning and billing. In many instances, maintenance and installation crews installing luminaires record the luminaire locations by their GPS coordinates. The GPS coordinates are often provided by GPS receivers carried by the installation crews as part of a crew's personal data assistant. It occasionally happens that luminaires are moved and their new location coordinates are not recorded. This introduces bookkeeping errors and increases the city's overhead in maintaining the lighting infrastructure. It may also result in incorrectly locating and therefore misinterpreting data provided by non-illumination functions that are associated with, and physically proximate to, the luminaire.


It is also desirable for infrastructure managers to know if and when a luminaire has received a substantial physical shock so that the luminaire may be examined for damage and also to have a record of the time and characterization of the event for summarizing the facts of the incident causing the physical shock.


A need therefore exists for a luminaire associate that will report and record physical shocks and their characteristics and also alert infrastructure management to its relocation.


SUMMARY

A device, method, and system for a street lighting fixture to assess an acceleration event impacting the street lighting fixture and further to determine if there has been a relocation of the street lighting fixture.





BRIEF DESCRIPTION OF THE DRAWINGS

One or more exemplary embodiments are set forth in the following detailed description and the drawings, in which:



FIG. 1 is a system diagram illustrating an exemplary outdoor lighting system according to one embodiment.



FIG. 2 is a partial sectional side elevation view illustrating an exemplary dimmable outdoor lighting fixture apparatus with a controller module according to one embodiment.



FIG. 3 is a schematic diagram illustrating further details of the controller module in the outdoor lighting fixture apparatus of FIG. 2.



FIG. 4 is another system diagram showing an exemplary outdoor lighting system with multiple a mesh network portions interconnected by a repeater with one portion bridged to a general purpose network system according to one embodiment.



FIG. 5A is a partial system drawings illustrating use of motion/occupancy sensor(s) with reporting of sensed conditions between outdoor lighting fixtures via a lighting system network for intelligent lighting control according to one embodiment.



FIG. 5B is another partial system drawings illustrating use of motion/occupancy sensor(s) with reporting of sensed conditions between outdoor lighting fixtures via a lighting system network for intelligent lighting control according to one embodiment.



FIG. 6 is a system diagram illustrating an exemplary outdoor lighting system including Power Line Carrier (PLC)-enabled outdoor lighting fixtures according to one embodiment.



FIG. 7 is an illustration identifying the segments of a lighting fixture according to one embodiment.



FIG. 8 is an illustration of a physical shock to a lighting fixture that caused an acceleration event according to one embodiment.



FIG. 9 is a graph representing the magnitude of horizontal acceleration plotted against time for an acceleration event according to one embodiment.



FIG. 10 is an illustration of a template fit to the magnitude of horizontal acceleration in the acceleration event depicted in FIG. 9.



FIG. 11 illustrates the connection of components comprised in the luminaire associate according to one embodiment.



FIG. 12 illustrates a communications session between a luminaire associate and a maintenance crew according to one embodiment.





DETAILED DESCRIPTION

Referring now to the drawings, like reference numerals are used in the figures to refer to like elements throughout, and the various features are not necessarily drawn to scale. The present disclosure relates to outdoor lighting systems and methods in which RF and/or PLC-enabled outdoor lighting fixtures form one or more networks for control and/or monitoring by a lighting control system of a general purpose network, with the control system able to obtain data from one or more utility meters by communications through a general purpose network and the lighting system network. The disclosed embodiments may be advantageously employed to facilitate utility meter reading without requiring manual reading of residential or commercial/industrial meters or localized wireless readings obtained from vehicles traversing local streets. Instead, utilities and other meter data consumers can obtain meter information via lighting control systems that control and/or monitor outdoor lighting fixtures via RF mesh networks and/or PLC-based local networks, with the lighting control system obtaining the meter data by communications through the general purpose network and the lighting system network. This usage of the outdoor lighting infrastructure as a conduit for utility meter information may thus save vast resources of utility companies in staffing manual meter reading operations and/or the expense of constructing and maintaining dedicated network infrastructures.


Referring initially to FIGS. 1-4, FIG. 1 depicts an exemplary outdoor lighting system 2 with RF-enabled outdoor lighting fixtures 100 forming an RF mesh network 10 for communication between some or all fixtures 100 proximate a roadway or street 20, where the mesh network 10 is formed via one or more individual RF communications connections or links 102 between fixtures 100 that are within range of one another. The links 102 may be continuous or discontinuous, with the network 10 being an ad-hoc self-healing network. The fixtures 100 in certain embodiments are individually addressable, such that each is capable of identifying a message and relaying received messages to other fixtures within the network 10, whereby two fixtures 100 can communication with one another through one or more intervening fixtures 100, even though they are not directly within RF range of each other. As shown in FIG. 4, moreover, the RF-enabled outdoor lighting fixtures 100 may establish RF mesh network connections 102 to form multiple mesh network portions with repeaters 400 bridging the portions. For example, FIG. 4 shows a first RF mesh network 10a and a second RF mesh network 10b, with a repeater 400 providing communications interfacing between the networks 10a, 10b. Moreover, one or more of the RF-enabled outdoor lighting fixtures 100 is operative to communicate by RF signaling with at least one RF-enabled utility meter 30, such as RF-enabled gas meters 30, water meters 30, electric power meters 30, for example.


The RF mesh network 10 is bridged with a lighting control system 202 of a general purpose network system 200 using any suitable bridging apparatus. In the examples of FIGS. 1-4, a bridging component 215 provides communications interfacing between the RF mesh network 10 and a general purpose network 210 of a network system 200. In certain embodiments, the bridging component is a modem, such as a pole-mounted Central Data Collection Point (CDCP) modem 215a operatively coupled to one of the fixtures 100 of the RF mesh network 10 to provide communications interfacing between the RF mesh network 10 and the general purpose network 210. In other embodiments, a pole-mounted Internet connection bridging component 215b provides an Internet connection to one of the RF-enabled outdoor lighting fixtures 100 of the RF mesh network 10 and interfaces communications between the networks 10 and 210.


The control system 202 is operative to obtain meter data 252 from one or more RF-enabled utility meters 30 by communications through the general purpose network 210 and the lighting system RF network 10. The control system 202 can then provide the meter data 252 to one or more meter data consumers 250, such as utility companies, municipalities, companies, etc. In operation, the lighting control system 202 is operatively coupled with the general purpose network 210 by any suitable network interconnections, direct and/or indirect, including wired and/or wireless interconnections for transferring signaling and/or messaging. The system 202 further operates to control or monitor at least one of the RF-enabled outdoor lighting fixtures 100, in addition to obtaining data from the RF-enabled utility meter(s) 30 via communications through the general purpose network 210, the bridging component 215, and the RF mesh network 10.


In certain embodiments, the RF mesh network 10 uses a ZigBee wireless protocol, although other suitable communications protocols can be used. Moreover, the fixtures 100 may be operative according to different protocols, for example, using a first protocol (e.g., ZigBee) to communicate with other fixtures in the mesh network 10, and may also employ a second protocol to communicate with utility meters 30. In certain embodiments, the lighting control system 202 can instruct one or more of the lighting fixtures 100 to switch to a second protocol for contacting one or more meters 30 to obtain readings or other data therefrom, after which the fixture 100 will revert to the first protocol to relay the obtained meter data 252 hack to the controller 202 via the RF mesh network 10, any intervening router(s) 400, the bridging component 215, and the general purpose network 210.


The wireless interface of the individual fixtures 100 may act as a router and retransmit received messages that are not destined for that particular fixture 100, thereby facilitating establishment and operation of the mesh network 10. Additionally, if a message is destined for the ballast control unit, the message may be relayed to the control module and the command therein used to control the dimmable ballasts and/or the light outputs. Other devices may be coupled with the mesh network 10 beyond the illustrated outdoor lighting fixtures 100, meters 30, repeaters 400, and bridging components 215, for example, external RF-enabled occupancy/motion sensors 140, external RF transmitters and/or receivers 130, and other like devices. For example, the mesh network 10 in certain embodiments may include a coordinator unit, such as a single coordinator per mesh network 10 (e.g., 1 for network portion 10a and another for portion 10b in FIG. 4). Upon initiating any network device, the fixture 100 registers with the coordinator unit using a unique id. In the case of the outdoor fixtures 100, registration may include messages notifying the coordinator unit of the capabilities of the fixture, for example, how many dimmable driver/ballasts 116 and light sources 114 and other fixture parameters, such as current dimming programs, profiles, or their control parameters, and/or diagnostic information.


The coordinator may coordinate the fixtures 100 with any other network devices and with one another. For example, the coordinator may send messages to the fixture 100 containing commands operative to control dimmable ballasts 116 and the light outputs thereof. The coordinator unit may act based upon internal stimuli, such as an internal clock or timer, or external stimuli, such as an event triggered by a network device or a user, for instance, based on commands received from the lighting control system 202. For example, a coordinator unit may instruct the fixture 100 to power on light outputs at a certain time or to power on light outputs in response to motion sensed by a motion sensor device 140. The coordinator may be a dedicated network device or can be integrated with another network device having additional functions. For example, a light fixture 100 or a bridging device 215, or a motion sensor 140 may act as the coordinator unit in addition to its above described functionality. Additionally, not every network device within the mesh network 10 need necessarily act as a router.


As shown in FIG. 1, the general purpose network system 200 may be a single or multiple network architecture providing a processing environment in which one or more aspects of the present disclosure may be practiced. The system 200 may include one or more processor-based lighting control systems 202 implemented in a networked computing environment. In the example of FIG. 1, a desktop computer 202a and a portable computer 202b are communicatively coupled with a network 210, each of which includes a graphical display 204 and one or more input devices, such as a keyboard 206, a mouse or other pointing device 208, microphones for speech commands, or other user input devices (not shown), where the portable computer 202b is coupled with the network 210 via a wireless transceiver 211. The network 210, in turn, may be communicatively connected with other networks, such as internet 216 providing operative access between the computers 202 and one or more of a network server 212, a network database 214, and/or an internet data store 218 and a further server 213. In this regard, one or both of the data stores 214, 218, and/or the servers 212, 213 or the computers 202 may store meter data 252 desired by a meter data consumer 250 to provide a unitary or distributed secure database, where such storage may also be used for lighting control data or other information related to outdoor lighting systems being operated and monitored by the lighting control system 202.


The presently disclosed systems and methods may be implemented in certain embodiments using one or more software program components operating or otherwise executed by a microprocessor or other processing element (e.g. microprocessor 220 in the processor-based system 202, microcontroller 125 in the lighting fixture control modules 120 as shown in FIG. 3, etc.). As best shown in FIG. 1, the processor-based lighting control system 202 can be implemented in whole or in part in a network server 212, in one or both of the computers 202, and/or in combination thereof. The control system 202 may include a microprocessor or other processing element 220, a communication interface 221 that operatively interconnects the processor-based system 202 with the network 210, as well as a memory 224, a graphical user interface 222 providing a graphic display 204 and one or more input devices such as the illustrated computer keyboard and/or mouse 206, 208. The memory 224 in this example may include data 229 and computer readable program code 225 with instructions executable by the processor 220 to implement the functionality described herein, where the system 202 may operate on a unitary data set, and/or the data may be implemented in distributed storage fashion with storage of portions in the processor-based system 202, the network server 212, and/or in one or more internet based data stores 213, 214, 218.


The system 202 may be operatively interconnected (e.g., via the network 210) with one or more bridging components 215, such as a wireless network via a Cellular CDPD modem or other wireless interface 215a or an internet connection 215b providing data exchange and other communication by and between one or more devices of the mesh network system 10 such as the light fixtures 100, and/or the meters 30 such that the processor-based lighting control system 202 receives data from and/or provides data to the devices 140, 100, 30. The processing element 220 in these embodiments may execute a program to implement a data and control center system to allow gathering of meter data 252 from one or more of the meters 30 that are communicatively coupled (continuously or intermittently) with the mesh network 10. A given meter 30 may be read using an RF connection between with one of the RF-enabled lighting fixtures 100 of the mesh network 10 as shown in FIG. 1 and/or using a powerline connection 604 (PLC-based) with one or more PLC-enabled fixtures 100 of an outdoor lighting network.



FIGS. 2 and 3 show further details of an exemplary outdoor lighting fixture apparatus 100 including a horizontal luminaire fixture assembly 110 with a fixture housing structure 111 having an inlet conduit 113 for receiving power wiring. The fixture housing 111 may be mounted to a building or to a pole or other support structure for a particular outdoor lighting application. One or more light sources 114 are supported in the fixture housing 111 via sockets 115, such as incandescent lamps, fluorescent lamps, high intensity discharge (HID) lamps, LEDs or arrays thereof, etc. The light source(s) 114 is driven by a ballast or driver 116, also supported in the housing 111. In certain embodiments a twist-lock receptacle 112 may be mounted to the top of the fixture housing 111 for connection of a controller module 120. The controller module 120 may include a photo sensor 121 operative to sense ambient light near the fixture assembly 110 for controlling turn on and turn off timing in certain embodiments. The twist-lock connector and the receptacle 112 provide electrical connection via wires 118a, 118b and 118c, with two input wires 119a and 119b routed into the housing 111 via the conduit 113, which may optionally be terminated at fuses 117. In one example, a first phase (line) wire 118a connects the power line from the first fuse 117 to a first receptacle terminal and a second phase wire 118b connects the power neutral to the second terminal, with the neutral also being connected from the second fuse 117 to the driver or ballast 116 via wire 119b. The power line is selectively switched by the controller module 120 and provided to the ballast or driver 116 via a switched line wire 118c, such that the ballast or driver 116 is selectively powered or unpowered by the operation of the controller 120 which may include a load rated relay contact 126 (FIG. 3) operative according to a switch control signal from the microcontroller 125 of the controller module 120 to selectively couple the incoming line connection 118a with the switched power line 118c. A dimming control signal may be introduced in certain embodiments from a dimming control/command component 122 to within the fixture housing 111 (FIG. 2) through a modification of the twist-lock socket 112, such as by including a fourth and/or fifth conductor to convey this signal to the dimming ballast or driver 116 within the housing 111.



FIG. 3 illustrates a controller module 120 that includes a dimming component (dimming command component) 122. The dimming component may be any suitable circuitry, hardware, processor-executed software or firmware, logic, etc., that operates to selectively provide dimming control values or signals to the ballast or driver 116 through the twist-lock receptacle 112 to cause the ballast or driver 116 to provide dimmable output from the light source(s) 114. The dimming component 122 is communicatively coupled to the microcontroller 125 that includes a transceiver 123 with an antenna 123a for RF communications according to one or more protocols with other RF devices 130 (e.g., external RF control devices), other RF-enabled fixtures 100, and/or with one or more RF-enabled utility meters 30. The microcontroller 125 also includes a communications interface 125a providing communications interfacing with an Internet connection bridging component 215b and/or with a CDPD modem bridging device 215a for ultimate connection with the lighting control system 202. In addition, the module 120 may include a Power Line Communication (PLC) transceiver 124 and a coupling capacitance C allowing the microcontroller 125 to communicate with other fixtures 100, meters 30, and/or a powerline bridge and router 615 via signaling connections 604 on one or both of the line power connections. Moreover, the module 120 may also include current and/or voltage measurement or sensing circuitry or components 128 and 129 for sensing input or switched power conditions for intelligent (e.g., feedback-type) dimming control.


The control module 120 in certain embodiments also includes a photo sensor 121 which senses ambient light proximate the fixture assembly 110 and provides a sensed light signal or value to the dimming component 122. The dimming component 122 selectively provides the dimming control value or values (e.g., 0-10V signal, messages, etc.) to the ballast or driver 116 in certain embodiments based at least in part on the sensed light signal or value. For example, the dimming component 122 may be programmed or otherwise configured to provide dimmed light via the dimming control value selection at dawn and/or dusk for reduced power consumption and for esthetic lighting, rather than the conventional full on/full off operation. In certain embodiments, moreover, the dimming component 122 may selectively dim the light output during certain times for energy conservation. For example, dimming unused roadways to a safe but efficient level in the middle of the night, with possible dimming control modification/override according to signals or values received from an occupancy/motion sensor 140 operatively coupled with the microcontroller 125. In certain embodiments, moreover, the dimming control component 122 may be implemented as one or more software components executed by the microcontroller 125.


In certain embodiments, the dimming component 122 is operative to selectively provide the dimming control value based at least in part on a received RF signal or value from an external RF device 130. For instance, an RF command signal can be sent to the controller module 120 wirelessly (and such signal can be sent to multiple controllers 120) for initiating dimmed, full on, full off, flashing operation, or combinations thereof by a control device 130 having an RF transmitter, thus allowing security personnel to control outdoor lighting operation. The dimming component 122 may thus provide the dimming control value(s) to control the light output according to one or more criteria, some of which may be externally actuated (e.g., via the PE sensor 121, motion sensor 140, and/or RF device 130 or combinations thereof) and some of which may be preprogrammed in the controller module 120.


Referring to FIGS. 2-5B, the system 2 may also include one or more occupancy/motion sensors 140 operatively coupled with one of the RF-enabled outdoor lighting fixtures 100 or otherwise coupled with the network 10. For instance, the controller module 120 may be operatively coupled with a motion sensor 140 (FIG. 2) to receive a wired or wireless signal (e.g., via transceiver and antenna1123, 123a). The signal from the motion sensor 140 may indicate motion or person/vehicle occupancy near fixture 110. The dimming component 122 may be operated to selectively provide the dimming control value based at least in part on a sensed motion light signal or value from the motion sensor 140. For example, the dimming component 122 may increase a dimmed power level (or go to full-on operation from a previously dimmed setting) when motion is sensed and continue this modified operation for a predetermined time or until a separate reset command is received at the controller 120. In other embodiments, the dimming control signal can be varied for output light flashing operation based at least in part on a received motion detection signal from the sensor 140.


In the example of FIGS. 5A and 5B, the outdoor lighting fixtures 100 may notify one another of a sensed occupancy, motion signal or message received from the sensor 140 via the RF mesh network 10. A remotely controlled fixture 100 may respond by bringing the luminaire to full brightness despite a current dimming setting, which may be particularly advantageous in security and safety critical applications in that it does not depend in any way on the health or current connectivity of the control system 202. For example, a sensor 140 associated with a given fixture 100 (or associated with a portion of a roadway 20 proximate a given fixture 100) can alert the fixture that a vehicle is approaching during a period of time with low expected traffic in which a dimming control scheme or profile is currently used. The notified fixture 100 can alert other fixtures 100 along the roadway for controlled overriding of the dimming control (e.g., to briefly turn their light outputs up to full lighting) while the associated portions of the roadway are occupied. As shown in the example of FIG. 5A, when a vehicle 500 approaches (and is sensed by) a first of four fixtures 100, the first fixture goes from off/dimming operation to an ON condition and notifies the next fixture 100 to do the same, while subsequent fixtures 100 remain in the off/dimmed condition. As the vehicle 500 continues down the roadway 20, signaling from a subsequent sensor 140 is relayed/reported through the mesh network 10 to cause a third fixture 100 to turn ON, while the first fixture 100 returns to the dimmed/off operation. This system thus facilitates the conservation of electric power while providing timely lighting as needed by intelligent usage of the sensors 140 and sharing of the sensed condition information within the network 10. The sensed condition(s) may be relayed to the lighting control system 202 in certain embodiments. The lighting control system 202 may be interconnected with security systems and relay sensed occupancy/motion conditions for appropriate responsive or remedial action.


Referring also to FIG. 6, the outdoor lighting system 2 may also or alternatively include Power Line Communication (PLC)-enabled outdoor lighting fixtures 100 forming a Lighting system network 610 that is bridged with the lighting control system 202 of the general purpose network system 200. In this example, the lighting control system 202 obtains data from PLC-enabled utility meters 30 by communications through the general purpose network 210 and the lighting system network 610. The PLC-enabled outdoor lighting fixtures 100 are operative to communicate by power line signaling with at least one PLC-enabled utility meter 30 via the PLC outdoor lighting network 610, with one or more bridging components 215 and/or a powerline bridge and router 615 providing communications interfacing between the lighting network 610 and the general purpose network 210. The lighting control system 202 may operate as described above to control or monitor one or more of the PLC-enabled fixtures 100. The lighting control system 202 may also operate to obtain meter data 252 from the PLC-enabled utility meter(s) 30 by communications through the general purpose network 210, the bridging component 215, 615, and the PLC outdoor lighting network 610. The outdoor lighting network 610 in certain embodiments includes at least one RF communications connections 102 between at least two of the outdoor lighting fixtures 100 as described above, and the RF-based and PLC-based operations can be used separately or in combination in various embodiments.


In certain embodiments, a modem bridging component 215a is coupled with one or more PLC-enabled outdoor lighting fixture 100 to provide communications interfacing between the lighting network 610 and the general purpose network 210. In certain embodiments, an Internet bridging component 215b provides an Internet connection to the PLC-enabled fixture 100 to interface communications between the PLC network 610 and the general purpose network 210. In certain embodiments, the bridging component is a powerline bridge and router 615 that provides communications interfacing between the PLC outdoor lighting network 610 and the general purpose network 210. Multiple bridging components can be used in the various implementations, along with repeaters 400 (e.g., FIG. 4 above) to connect segments of a PLC/RF network 610, 10. Moreover, the PLC-enabled devices 100, 140, 615, etc. may provide multiple protocol support, for instance, with one protocol used for communicating with fixtures 100 and another used for communicating with utility meters 30. The above described occupancy sensor functionality and usage may be employed via one or more occupancy or motion sensors 140 (e.g., RF, directly connected, and/or PLC-enabled) which are operatively coupled with one of the PLC-enabled outdoor lighting fixtures 100. The lighting fixture 100 may operate to notify another fixture 100 of a sensed occupancy or motion signal or message received from the sensor 140 via the PLC outdoor lighting network 610.


In one particular, embodiment, the lighting fixtures 100 are described by segmentation into parts as illustrated in FIG. 7. The lighting fixture 100 comprises a lamp or luminaire 710, supported by a luminaire associate 720 that comprises the electronic components, electrical circuitry, and mechanical couplings associated with the mounting and control of the luminaire 710. The luminaire associate 720 is mounted atop a pole 730 that also provides a conduit for the powerline 740 serving the luminaire associate 720 and the luminaire 710.


In this embodiment, the luminaire associate 720 will determine and record an acceleration event resulting from a physical shock to the luminaire associate 720. An acceleration event, as the term is used in this application, means acceleration induced by movement of the luminaire associate 720 incurred by the luminaire associate 720 experiencing a jerk or change in acceleration. Such acceleration events may include severe weather events such as earthquakes, airborne debris impacting the pole supporting the luminaire associate, projectiles, vandalism, explosions, or by a vehicle impacting the pole supporting the luminaire associate. FIG. 8 is an illustration of an errant vehicle 810 having run into pole 730 supporting luminaire associate 720. The reference compass point diagram 820 in FIG. 8 shows that the vehicle 810 was traveling in a southwestern direction when it impacted the pole 730. A two-axis accelerometer in the luminaire associate 720 are aligned such that the plane formed by the two axes is essentially parallel to the section of street below the luminaire associate. The two-axis accelerometer will sense that the jerk causing the shock to the luminaire associate 720 had a southwest direction.


For example the illustration in FIG. 9 represents the magnitude of the horizontal acceleration as periodically sampled by a computer and plotted against time. The sampling is done of two analog-to-digital electronic converters of two axes of a multi-axis accelerometer where the two axes are orthogonal to each other and form a plane essentially parallel to the section of street below the luminaire associate device. For this example, the accelerations reported by the two axes are denoted as AN and AE, respectively denoting the acceleration from the North direction and the acceleration from the East direction which in combination are referred herein as the horizontal acceleration. The magnitude of the horizontal acceleration is |accel|=√{square root over (AN2+AE2)}. A preset threshold |ΘA| is overlaid on the graph. If the magnitude of the horizontal acceleration exceeds the preset threshold, the start of an acceleration event is declared. When the horizontal acceleration drops below the preset threshold, the acceleration event is declared to be over. The direction angle of the jerk causing the acceleration event, {circumflex over (θ)}, is estimated by computing {circumflex over (θ)}=cos−1AN/AE at the time, tmax, of maximum horizontal acceleration, |accel|max.


The acceleration event may be summarized by detecting the beginning and ending of the acceleration event and then deriving a template that may be fitted to approximate the magnitude of the horizontal acceleration during the acceleration event. As an example, consider the illustration in FIG. 10. The |accel| of FIG. 9 is plotted with a dashed line 1020 and the template includes of two joined solid line segments 1010. The leftmost of the two joined solid line segments begins at the two-dimensional point with coordinates (start, |ΘA|) and terminates at the two-dimensional point (tmax, |accel|max). The rightmost of the two joined solid line segments begins at the two-dimensional point (tmax, |accel|max) and terminates at the two-dimensional point (end, |ΘA|). The summary of the acceleration event is its start time, its end time, and the defining elements of the template used to approximate the magnitude of the horizontal acceleration during the acceleration event.


In another embodiment, the lighting fixtures 100 are also described by segmentation into parts as illustrated in FIG. 7, the luminaire associate 720 may determine if it has been relocated. In this embodiment, an observation may be made upon installation of the luminaire associates location. The location installed luminaire associate 720 may be recorded within a lighting system's database to be at a reference geographical position, and this datum is also stored in a non-volatile computer memory in the luminaire associate 720. There is concern that for many large street lighting infrastructures, luminaire associates could be relocated by installation and maintenance crews without updating their newly located positions in the lighting system's database. The luminaire associate device may be designed to detect its spatial translation beyond a distance preset by an installer or operator. If there is a significant temporal and distance displacement of the luminaire associate 720 from its stored reference geographical position, this would indicate a physical relocation of the luminaire associate 720. Such a physical relocation may be detectable by electronically sampling and processing the multi-axis accelerometer data by doubly integrating the measured accelerations to estimate the total displacement distance of the luminaire associate from its stored reference geographical position. The integration interval may be chosen according to exclude false indications of significant distance displacement due to the integration of error drift signals in the accelerometer data. Another detection method may periodically or aperiodically compare a calculated GPS position against the reference geographical position stored within the luminaire associate. A further method is to use techniques that are well known in the art to fuse accelerometer and other available sensor data with GPS readings and make a determination that the luminaire associate has likely been relocated.


Fusing GPS data with other sensor data may require an estimate of the accuracy of the GPS data provided. Many of the luminaire associates may be located in urban canyons and incapable of generally viewing a constellation of GPS satellites that will ensure low geometric dilution of precision. For these cases it may be best to employ a GPS receiver that reports some of the components of the geometric dilution of precision including the Horizontal Dilution of Precision (HDOP) so that the data fusion algorithm will be able to properly weight the GPS data.


As an example of data fusion of GPS and accelerometer derived estimate, consider the estimated horizontal displacement derived from the accelerometer data is {right arrow over (d)}a and the variance of the estimated horizontal displacement derived from the accelerometer data is σa2. The estimated horizontal displacement derived from the GPS is {right arrow over (d)}g and that the variance of the horizontal measurement accuracy using the GPS is σg2 before geometric dilution of precision. The horizontal geometric dilution of precision, HDOP, is HDOP=√{square root over (σE2N2)} where σE2 and σN2 are, respectively, the variances of the dilution of precision components in the orthogonal North and East directions. The variance of the horizontal measurement estimate of the GPS, σG2, is thus σG2=HDOP2·σg2. An estimate of the true displacement's variance, σD2, may be derived by fusion through weighting the noise variances of the two estimators to produce σD2=1/(σa−2G−2). The fusion estimate of the horizontal displacement is then {right arrow over (D)}=σD2a2G−2{right arrow over (d)}g). This method of fusion would essentially discount the GPS estimate with respect to the accelerometer derived estimate if the GPS unit in the luminaire associate 720 were determined to have limited visibility to a GPS satellite constellation as may occur when the GPS unit is in an urban canyon.


Data fusion methods may also make use of data available from other sensors. Such other sensors may comprise inclinometers that measure angle of tilt and gyrometers (electronic gyroscopes) that measure angular velocity (rate of rotation). It is noted that electronic packages are commercially available that house a plurality of multi-axis sensors and host software to perform fusion upon the data from the plurality of housed sensors.


If an estimation determines that the luminaire associate has likely been relocated, then a datum indicating this may be set in non-volatile memory contained within the luminaire associate. For purposes of this application, the datum that indicates the likelihood that the luminaire associate has been relocated is referred to as the luminaire associate relocation datum or LARD.


The luminaire associate 720 may comprise the components illustrated and connected as shown in FIG. 11. The luminaire associate powerline 740 is connected to a rechargeable energy storage device 1110 and its associated recharging circuitry 1110. The rechargeable energy device may be a rechargeable battery or ultracapacitor. A power supply switch 1120 is connected to both the luminaire associate powerline 740 and the rechargeable energy storage device 1110. The power supply switch 1120 may supply power to the power distribution circuit, 1130. The power supply switch 1120 may also inform the power distribution circuit, 1130, if the luminaire associate powerline 740 is energized. If the luminaire associate powerline 740 is energized, then the power distribution circuit 1130 may distribute power to a GPS receiver 1140, a multiple-axis accelerometer with electronic analog-to-digital converters 1150, and/or a computer 1160. If the luminaire associate powerline 740 is not energized, then the power distribution circuit 1130 does not distribute power to the GPS receiver 1140, the multiple-axis accelerometer with electronic analog-to-digital converter 1150, and/or the computer 1160 unless power is received from another source. In an embodiment, the power distribution circuit 1130, comprises a tilt switch or level monitor switch that can detect if the luminaire associate 720 is undergoing motion such as tilting or level changes which are likely to result from the luminaire associate's removal from its support pole 730 and its subsequent relocation. In this case, the power distribution circuit 1130 may supply power to the GPS receiver 1140, the multiple-axis accelerometer with electronic analog-to-digital converter 1150, and/or the computer 1160 for a duration preset by installation or maintenance personnel. The power distribution circuit 1130 may inform the computer 1160 that a tilt or level change has been detected that meets or exceeds preset amount and that it likely results from the luminaire associate's removal from its support pole 730. Subsequent data provided by the GPS receiver 1140 and the multiple-axes accelerometer may be fused, using sensor fusion techniques well known in the art, to provide an estimate of whether the luminaire associate 720 has been displaced beyond a distance preset by an installer or operator and the LARD is set.


An embodiment is illustrated in FIG. 12 for detecting if the LARD is set. The luminaire associate 720 may turn on a low power wireless message transceiver and broadcast a signal 1230 indicating that the LARD is set. The low power wireless message transceiver may be fitted with an antenna whose pattern is oriented to radiate mainly towards the street below and immediately around the luminaire pole 730. As a maintenance crew in vehicle 1210 nears the pole 730, a monitoring receiver carried by the maintenance crew may be employed to detect the signal 1230 and respond to the luminaire associate 720 with signal 1220 informing the luminaire associate 720 of its new reference geographical location. The luminaire associate will then replace the its former reference geographical location with the new reference geographical location, reset the LARD, and cease broadcasting the signal 1230.


The above examples are merely illustrative of several possible embodiments of the various aspects of the present disclosure, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, systems, circuits, and the like), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component, such as hardware, software, or combinations thereof, which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the illustrated implementations of the disclosure. In addition, although a particular feature of the disclosure may have been illustrated and/or described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, references to singular components or items are intended, unless otherwise specified, to encompass two or more such components or items. Also, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”. The invention has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.

Claims
  • 1. A luminaire associate device for use with a luminaire in a street lighting system comprising: a luminaire associate powerline that delivers power to the luminaire associate;an energy storage device having a recharging circuitry operatively connected to the luminaire associate powerline;a power supply switch connected to the luminaire associate powerline and the energy storage device;a power distribution circuit connected to the power supply switch comprising a tilt switch or level monitor switch;a GPS receiver powered by the power supply switch;a multiple-axis accelerometer with analog-to-digital electronic converters powered from the power supply switch; anda computer connected to the power supply switch, the GPS receiver, and the multiple-axis accelerometer.
  • 2. The device of claim 1 further comprising at least one item in a group comprising an electronic gyroscope, a geomagnetic sensor, and an inclinometer.
  • 3. The device of claim 1 wherein at least two of the axes of the multiple-axis accelerometer are aligned in the luminaire associate so that the plane formed by the at least two of the axes is essentially parallel to the section of street below the luminaire associate device.
  • 4. The device of claim 1 further comprising a wireless message transceiver.
  • 5. The device of claim 1 further comprising a powerline communication (PLC) transmitter.
  • 6. The device of claim 5 where the PLC transmitter is a modified geometric harmonic modulation transmitter coupled to the luminaire powerline through a transient protection device.
  • 7. A method for determining an acceleration event of a luminaire associate mounted on a street light having a power source, a lamp pole, the street light, a GPS receiver and the luminaire associate comprising the steps of: sensing movement of the luminaire associate through a multiple-axis accelerometer within the street light, wherein the multiple-axis accelerometer has two axes forming a plane essentially parallel to a ground plane upon which the street light sits;recording a time and a date for sensed movement if the sensed movement exceeds a predetermined threshold;calculating a magnitude of a horizontal acceleration from data reported by the sensing through the multiple-axis accelerometer;determining a start of the acceleration event as the time and the date the magnitude of the horizontal acceleration if the magnitude exceeds the preset threshold;determining an end of the acceleration event as the time and the date the magnitude of the horizontal acceleration drops below the preset threshold;recording the horizontal acceleration data reported by each of the multiple-axis accelerometer's two axes at the time of the maximum value of the magnitude of the horizontal acceleration during the sensed movement.
  • 8. The method of claim 7 further comprising a step estimating the direction of the sensed movement to the luminaire associate by electronically calculating the angle of the sensed movement using the horizontal acceleration data recorded by each of the multiple-axis accelerometer's two axes at the time of the maximum value of the magnitude of the horizontal acceleration during the acceleration event.
  • 9. The method of claim 8 further comprising a step of transmitting the maximum value of the magnitude of the horizontal acceleration during the sensed movement and the direction of the sensed movement received by the luminaire associate.
  • 10. The method of claim 7 further comprising the steps of: fitting a template to approximate the magnitude of the horizontal acceleration during the sensed movement; andtransmitting the defining elements of the template used to approximate the magnitude of the horizontal acceleration during the sensed movement.
Parent Case Info

This application is a non-provisional of and claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/907,069, 61/907,078, 61/907,090, 61/907,114, 61/907,133, 61/907,150, 61/907,168, 61/907,188 and 61/907,210 filed on Nov. 21, 2013, the entire contents of which are incorporated herein by reference.

US Referenced Citations (190)
Number Name Date Kind
4704610 Smith et al. Nov 1987 A
4878754 Homma et al. Nov 1989 A
5014052 Obeck May 1991 A
5028129 Smith Jul 1991 A
5199044 Takeuchi et al. Mar 1993 A
5243185 Blackwood Sep 1993 A
5345232 Robertson Sep 1994 A
5519692 Hershey et al. May 1996 A
5519725 Hershey et al. May 1996 A
5526357 Jandrell Jun 1996 A
5557261 Barbour Sep 1996 A
5563728 Allen et al. Oct 1996 A
5563906 Hershey et al. Oct 1996 A
5568507 Hershey et al. Oct 1996 A
5568508 Hershey Oct 1996 A
5568509 Hershey et al. Oct 1996 A
5568522 Hershey et al. Oct 1996 A
5682100 Rossi et al. Oct 1997 A
5761238 Ross et al. Jun 1998 A
5822099 Takamatsu Oct 1998 A
5844949 Hershey et al. Dec 1998 A
5852243 Chang et al. Dec 1998 A
5903594 Saulnier et al. May 1999 A
6011508 Perreault et al. Jan 2000 A
6101214 Hershey et al. Aug 2000 A
6122084 Britz et al. Sep 2000 A
6288632 Hoctor et al. Sep 2001 B1
6308134 Croyle Oct 2001 B1
6346875 Puckette et al. Feb 2002 B1
6424250 Puckette, IV et al. Jul 2002 B1
6430210 McGrath et al. Aug 2002 B1
6433976 Phillips Aug 2002 B1
6459998 Hoffman Oct 2002 B1
6504634 Chan et al. Jan 2003 B1
6522243 Saulnier et al. Feb 2003 B1
6659715 Kuesters et al. Dec 2003 B2
6693556 Jones et al. Feb 2004 B1
6717660 Bernardo Apr 2004 B1
6943668 Gaus, Jr. et al. Sep 2005 B2
7175082 Hoshina Feb 2007 B2
7248149 Bachelder et al. Jul 2007 B2
7294977 Eusterbrock et al. Nov 2007 B1
7418346 Breed et al. Aug 2008 B2
7460787 Damink et al. Dec 2008 B2
7529594 Walters May 2009 B2
7580705 Kumar Aug 2009 B2
7629899 Breed Dec 2009 B2
7646330 Karr Jan 2010 B2
7817063 Hawkins et al. Oct 2010 B2
7834555 Cleland et al. Nov 2010 B2
7855376 Cantin et al. Dec 2010 B2
7876864 Conrad et al. Jan 2011 B2
7899621 Breed et al. Mar 2011 B2
7912645 Breed et al. Mar 2011 B2
7983685 Silverstrim et al. Jul 2011 B2
7983836 Breed Jul 2011 B2
8092032 Pearse Jan 2012 B2
8138690 Chemel et al. Mar 2012 B2
8140276 Walters et al. Mar 2012 B2
8227995 Damink et al. Jul 2012 B2
8232745 Chemel et al. Jul 2012 B2
8244260 Silverstrim et al. Aug 2012 B2
8260537 Breed Sep 2012 B2
8274373 Nysen Sep 2012 B2
8339069 Chemel et al. Dec 2012 B2
8368321 Chemel et al. Feb 2013 B2
8373362 Chemel et al. Feb 2013 B2
8384312 Tsai Feb 2013 B2
8436748 Mimeault et al. May 2013 B2
8441214 Anderson May 2013 B2
8442403 Weaver May 2013 B2
8442785 Walters et al. May 2013 B2
8456325 Sikora Jun 2013 B1
8475002 Maxik et al. Jul 2013 B2
8641241 Farmer Feb 2014 B2
8840569 Flaction Sep 2014 B2
8842009 Jones Sep 2014 B2
8947296 Raz et al. Feb 2015 B2
9192026 Marquardt et al. Nov 2015 B2
9192029 Marquardt et al. Nov 2015 B2
20020141882 Ingistov et al. Oct 2002 A1
20050017647 Huang Jan 2005 A1
20050047864 Yamada et al. Mar 2005 A1
20050104745 Bachelder et al. May 2005 A1
20050187701 Baney Aug 2005 A1
20070063875 Hoffberg Mar 2007 A1
20070085699 Walters Apr 2007 A1
20070201540 Berkman Aug 2007 A1
20070222581 Hawkins Sep 2007 A1
20070229250 Recker et al. Oct 2007 A1
20080037241 Von Der Brelie Feb 2008 A1
20080072766 Kobylarz Mar 2008 A1
20080122642 Radtke et al. May 2008 A1
20080150757 Hutchison Jun 2008 A1
20080238720 Lee Oct 2008 A1
20090002982 Hu et al. Jan 2009 A1
20090033504 Tsai Feb 2009 A1
20090034258 Tsai et al. Feb 2009 A1
20090066540 Marinakis et al. Mar 2009 A1
20090120299 Rahn et al. May 2009 A1
20090128328 Fan May 2009 A1
20090158739 Messmer Jun 2009 A1
20090164174 Bears Jun 2009 A1
20090167508 Fadell Jul 2009 A1
20090214198 Takahashi et al. Aug 2009 A1
20090268453 Pearse Oct 2009 A1
20090297156 Nakagawa et al. Dec 2009 A1
20100013608 Petrisor Jan 2010 A1
20100029268 Myer Feb 2010 A1
20100115093 Rice May 2010 A1
20100295473 Chemel et al. Nov 2010 A1
20100295474 Chemel et al. Nov 2010 A1
20100295475 Chemel et al. Nov 2010 A1
20100295482 Chemel et al. Nov 2010 A1
20100295943 Cha et al. Nov 2010 A1
20100296285 Chemel et al. Nov 2010 A1
20100301768 Chemel et al. Dec 2010 A1
20100301770 Chemel et al. Dec 2010 A1
20100301771 Chemel et al. Dec 2010 A1
20100301773 Chemel et al. Dec 2010 A1
20100301774 Chemel et al. Dec 2010 A1
20100301834 Chemel et al. Dec 2010 A1
20100302779 Chemel et al. Dec 2010 A1
20100308736 Hung et al. Dec 2010 A1
20100309209 Hodgins Dec 2010 A1
20110001436 Chemel et al. Jan 2011 A1
20110001438 Chemel et al. Jan 2011 A1
20110001626 Yip et al. Jan 2011 A1
20110043035 Yamada et al. Feb 2011 A1
20110069960 Knapp et al. Mar 2011 A1
20110095867 Ahmad Apr 2011 A1
20110115384 Chatelus May 2011 A1
20110140950 Andersson Jun 2011 A1
20110156900 Toda Jun 2011 A1
20110215736 Horbst Sep 2011 A1
20110227584 Beck Sep 2011 A1
20120053888 Staehlin et al. Mar 2012 A1
20120062123 Jarrell et al. Mar 2012 A1
20120086560 Ilyes Apr 2012 A1
20120086561 Ilyes Apr 2012 A1
20120126721 Kuenzler et al. May 2012 A1
20120136485 Weber et al. May 2012 A1
20120140748 Carruthers Jun 2012 A1
20120154239 Bar-Sade et al. Jun 2012 A1
20120163826 Schenk et al. Jun 2012 A1
20120209505 Breed et al. Aug 2012 A1
20120218101 Ford Aug 2012 A1
20120230696 Pederson Sep 2012 A1
20120245880 Nabrotzky Sep 2012 A1
20120256777 Smith et al. Oct 2012 A1
20120262304 Cripps Oct 2012 A1
20120280825 Sakakihara Nov 2012 A1
20120286673 Holland et al. Nov 2012 A1
20120299721 Jones Nov 2012 A1
20120299755 Jones Nov 2012 A1
20120308239 Sheth et al. Dec 2012 A1
20120309293 Kummetz et al. Dec 2012 A1
20120321321 Riesebosch Dec 2012 A1
20120323474 Breed et al. Dec 2012 A1
20130044488 Hreish Feb 2013 A1
20130057158 Josefowicz Mar 2013 A1
20130063281 Malaska Mar 2013 A1
20130076523 Kwan Mar 2013 A1
20130101003 Vedantham et al. Apr 2013 A1
20130140995 Jones Jun 2013 A1
20130144490 Lord et al. Jun 2013 A1
20130169468 Johnson et al. Jul 2013 A1
20130172012 Zudrell-Koch Jul 2013 A1
20130181609 Agrawal Jul 2013 A1
20130181636 Agrawal Jul 2013 A1
20130214697 Archenhold Aug 2013 A1
20130221858 Silberstein Aug 2013 A1
20130229116 Van Zeijl et al. Sep 2013 A1
20130257284 VanWagoner et al. Oct 2013 A1
20130293117 Verfuerth Nov 2013 A1
20130330172 Scipio et al. Dec 2013 A1
20130346229 Martin Dec 2013 A1
20140055439 Lee et al. Feb 2014 A1
20140085055 Lee Mar 2014 A1
20140124007 Scipio et al. May 2014 A1
20140125250 Wilbur May 2014 A1
20140175982 Yao et al. Jun 2014 A1
20140191858 Morgan Jul 2014 A1
20150023668 Spaulding et al. Jan 2015 A1
20150173159 Lin Jun 2015 A1
20150319825 Destine Nov 2015 A1
20150339919 Barnett Nov 2015 A1
20160094088 Bjorn Mar 2016 A1
20160095182 Bjorn Mar 2016 A1
20160113092 Hartman Apr 2016 A1
Foreign Referenced Citations (18)
Number Date Country
1437270 Jul 2004 EP
2131630 Dec 2009 EP
2521426 Nov 2012 EP
2403357 Dec 2004 GB
05205193 Aug 1993 JP
2005248607 Sep 2005 JP
2009025209 Feb 2009 JP
2009103497 May 2009 JP
1020060008967 Jan 2006 KR
1020060102552 Sep 2006 KR
100986279 Oct 2010 KR
2005029437 Mar 2005 WO
2009148466 Dec 2009 WO
2010079388 Jul 2010 WO
2011142516 Nov 2011 WO
2012090142 Jul 2012 WO
2012140152 Oct 2012 WO
2013160791 Oct 2013 WO
Non-Patent Literature Citations (42)
Entry
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/066927 dated Feb. 27, 2015.
Atlas, “Optical Extinction by Rainfall”, Journal of Meteorology, Volume No. 10, pp. 486-488, Dec. 1953.
Noe et al., “Global Positioning System, A Navigation Algorithm for the Low-Cost GPS Receiver”, The Institute of Navigation, Volume No. 1, pp. 166-172, 1980.
Proakis, “Spread Spectrum Signals for Digital Communication,” in Digital Communications, for an overview of DS theory, pp. 1-27, 1983.
Hershey et al., “Random and Pseudorandom Sequences,” Data Transportation and Protection, pp. 259-310, 1986.
“Millimeter Wave Propagation: Spectrum Management Implications” published by the FCC as Bulletin No. 70, Jul. 1997.
Pang et al., “LED Traffic Light as a Communications Device”, Proceedings of the International Conference on Intelligent Transportation Systems, pp. 788-793, 1999.
Mimbela et al., “A Summary of Vehicle Detection and Surveillance Technologies Used in Intelligent Transportation Systems”, Southwest Technology Development Institute, pp. 1-211, Nov. 30, 2000.
Bullimore, “Controlling Traffic With Radio”, IEEE Review, Volume No. 47, Issue No. 1, pp. 40-44, Jan. 2001.
Chao-Qun et al., “Application of Low-voltage Power Line Communication in a City Street Lamp Long-distance Intelligent Monitoring System”, Research and Developments, 2006.
Cho et al., “Street Lighting Control Based on LonWorks Power Line Communication”, Power Line Communications and Its Applications, pp. 396-398, Apr. 2008.
Awan et al., “Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation”, Journal of Communications, Volume No. 4, Issue No. 8, pp. 533-545, Sep. 2009.
“Monitoring and Evaluation Protocol for the Field Performance of LED Street Lighting Technologies”, Light Savers Accelerating Advanced Outdoor Lighting, Prepared by Toronto Atmospheric Fund in Partnership with Ontario Municipal Street Lighting Focus Group and Ontario Power Authority, pp. 1-32, 2011.
Qian et. al., “Based on PLC and GPRS, ZigBee street lamp wireless control system”, Electronic Design Engineering, Volume No. 20, Issue No. 3, Feb. 2012.
Stevens et al., “White Paper—The Benefits of 60 GHz Unlicensed Wireless Communications” as captured by Wayback machine, SUB10 systems.com, pp. 1-10, May 7, 2012.
“Wireless Control and Communication System for LED Luminaires and Other Devices”, San Francisco Public Utilities Commission Power Enterprise, pp. 1-15, Jun. 7, 2012.
Zotos et al., “Case study of a dimmable outdoor lighting system with intelligent management and remote control”, Telecommunications and Multimedia (TEMU), 2012 International Conference on, pp. 43-48, Jul. 30-Aug. 1, 2012.
Caillet et al., “LonMark, the open Smart Streetlight Platform”, Lonmark International, pp. 1-16, Feb. 2013.
After Newtown: A new use for a weapons-detecting radar?, University of Michigan, Apr. 1, 2013.
Lee et al., “Distributed dimming control for LED lighting”, Optics Express, Volume No. 21, Issue No. S6, pp. 1-16, Nov. 2013.
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066954 dated Feb. 26, 2015.
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066922 dated Feb. 26, 2015.
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066957 dated Mar. 5, 2015.
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066917 dated Mar. 5, 2015.
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/066337 dated Mar. 6, 2015.
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066948 dated Mar. 9, 2015.
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/US2014/066942 dated Mar. 20, 2015.
Hartman et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,982.
Hartman et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,954.
Hartman et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,408.
Hartman et al., filed Sep. 12, 2014, U.S. Appl. No. 14/484,300.
Hartman et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,486.
Hartman et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,916.
Barnett et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,256.
Hartman et al., filed Nov. 18, 2014, U.S. Appl. No. 14/546,856.
Sarah Rich, Light Monitoring System Keeps Glendale Ariz. Out of the Dark, Government Technology, Oct. 24, 2011.
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/484,300 on Dec. 4, 2015.
Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,256 on Dec. 30, 2015.
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,982 on Feb. 1, 2016.
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,954 on Apr. 20, 2016.
US Non-Final Office Action issued in connection with related U.S. Appl. No. 14/546,916 on May 11, 2016.
Final Office Action issued in connection with related U.S. Appl. No. 14/546,256 on Jun. 2, 2016.
Related Publications (1)
Number Date Country
20160113092 A1 Apr 2016 US
Provisional Applications (9)
Number Date Country
61907090 Nov 2013 US
61907078 Nov 2013 US
61907069 Nov 2013 US
61907114 Nov 2013 US
61907133 Nov 2013 US
61907150 Nov 2013 US
61907168 Nov 2013 US
61907188 Nov 2013 US
61907210 Nov 2013 US