The invention relates to a luminaire comprising
at least one electrical contact for accommodating at least one light source;
a set of lamellae held by lamellae holding means which are arranged adjacent and/or opposite a light exit window, the set of lamellae comprising a plurality of lamellae in an inclined position with respect to the light emission window, the set of lamellae extending at least partially alongside the light emission window;
each lamella having a front surface facing towards a respective light source, said front surface being designed to partially intercept light and direct the intercepted light via the light emission window to the exterior, and to partially transmit light and allow light originating from said respective light source to propagate further alongside the light emission window.
The invention further relates to a louver.
Such a luminaire is known from KR2009083546. The known luminaire has a high-brightness LED illumination module as the light source to obtain uniform luminance of the plurality of reflecting lamellae. The lamellae holding means is embodied as a concave reflector for gathering the light and is installed in the longitudinal direction as an inner side of a housing. The lamellae are provided in a row in an inclined orientation alongside a longitudinal direction of the luminaire inside a space enclosed by the housing. Especially for luminaries having high brightness light sources, said uniform luminance is difficult to obtain. In the known luminaire said uniform luminance is obtained by an increased size of each lamella more remote from the light source, thus enabling each lamella to intercept part of the light of the diverging light beam that has passed lamellae closer to the light source. A first part of the light emitted by the light source impinges on the reflective surface of the adjacent lamella and is reflected to the exterior through the light emission window. A second part of the light emitted by the light source propagates alongside said adjacent lamella and partially impinges on the next lamella and partially propagates to yet another lamella. It is a disadvantage of the known luminaire that the lamellae are mutually different, as their dimensions increase with increasing distance from the light source lamellae. This has the disadvantage that the luminaire is relatively expensive because relatively much material is required for its construction and because the lamellae have no (same) standard size. It is another disadvantage of the known luminaire that it is relatively bulky, resulting in the additional disadvantage that the known luminaire is relatively difficult to build into false ceilings where only relatively little space is available.
It is an object of the invention to counteract at least one of the disadvantages of the known luminaire. To this end the luminaire of the type described in the opening paragraph is characterized in that the set of lamellae is provided with light converging means. Light emitting diodes (LEDs) as high brightness light sources are very interesting as LEDs are getting cheaper and more efficient over time. This has enabled LEDs to be used in general lighting, e.g. as light source for a downlight or office luminaries. Yet other high brightness light sources, for example one or more lasers, compact HID lamps or high efficiency incandescent halogen lamps, are also suitable for use in the inventive luminaire. However, the invention will be discussed with LEDs as the light source.
One of the disadvantages of high brightness light sources is that they easily result in non-uniform luminance, while for office applications a light source with a uniform lower brightness is required. One already known way to deal with this is to spread the LEDs inside the luminaire and use remote phosphor or a diffuser to reduce the brightness. The disadvantage however is that this requires the LEDs to be spread out in the luminaire. It is advantageous to keep the LEDs reasonably close together, as this reduces PCB costs and allows the use of standard LED modules, while it is still possible to make a low brightness source. The advantage of this is that the costs can be lowered by using standard available LED modules, thereby also making the system modular. In the luminaire according to the invention the LEDS can be kept close together, using a high brightness light source emitting a relatively collimated beam of light and using semi-transparent or structured lamellae together with a converging means to redirect and redistribute the light and hence reduce the brightness. In the luminaire of the invention, the light source, for example one or more LEDs with collimator(s), illuminates the set of lamellae that are at an inclined position with respect to the light emission window and the main direction of the (collimated) light beam, for example at an angle α of (about) 45 degrees. Each of the lamellae reflects part of the light downwards through the light emission window to the exterior and transmits the rest of the light. This can for example be achieved by making them semi-transparent, or by making the lamellae fully reflective and simultaneously provide them with at least one through hole, or the lamellae are transmissive and partly covered by a reflective coating. Preferably, the last lamella, i.e. the lamella most remote from its respective light source, is fully reflective; thus it is attained that substantially all the light from the light source is issued to the exterior. By using this lamellae structure the brightness of the source is lowered by the division between the different lamellae. A further brightness reduction can be achieved if the lamellae are semi-diffusely translucent, diffusely translucent and/or reflective; preferably this causes a limited, controlled beam broadening (rather than Lamebrain scattering) and is only applied to the light that is reflected, not to the light that is transmitted. This controlled beam broadening can be achieved by making the lamellae from reflective material with holes, which reflective material is slightly diffusing. The converging means provided to the set of lamellae prevents the light beam from diverging too much and hence obviates the need for lamellae that become too large to intercept and reflect the rays of the light beam downwards. It is thus made possible to provide the luminaire with lamellae that all have about the same magnitude, i.e. have mutual dimensions (or size) that do not differ more than 20%, or even differ less than 10% or 5%, or the dimensions could be the same, thus minimizing costs and simplify manufacturing. Experiments showed that for example at 2 meters below the luminaire a good uniform distribution of the light is obtained, and in the intensity plot it is shown that the light is indeed collimated.
In an embodiment the converging means are placed in between the lamellae, i.e. in an interdigitated configuration, thus preventing the light rays propagating along the light emission window from mutually spreading at too wide an angle. Preferably each converging means is equally spaced from its neighboring lamellae, thus providing the luminaire with a pleasant appearance. The converging means can be a reflective element, for example one or a plurality of elongated, concave, paraboloidally curved reflectors, or a refractive element, for example one or a plurality of normal lenses or Fresnel lenses. Fresnel lenses are easy-to-manufacture, light-weight flat lenses which require only little material, thus offering the advantage of material savings in the manufacture of the luminaire. It is convenient for the luminaire to comprise a housing.
As a further embodiment, it is also possible to combine the mirror and lens functions into a single element. Here, the element can have, e.g. on the front surface, semi-diffusely reflecting patches while the back surface has a Fresnel lens structure. Thus, a relatively simple, light-weight and compact lamellae structure is enabled.
The direction of the beam issued by the luminaire can be adjusted by tilting the lamellae. Preferably each lamella is tiltable independently of other lamellae with respect to the light emission window in an angle range of α, for example, 35° to 55°, thus enabling further control of beam shape and beam direction of light issuing from the luminaire. The beam width and beam shape may be further adjusted by replacing the lamellae with lamellae that have different (e.g. asymmetric) scattering properties, or by shifting lamellae with respect to each other, such that (most of the) light hits a different region on the lamella with different scattering properties, for example by aligning or de-aligning the perforation patterns of neighboring lamellae.
Instead of essentially elongated linear luminaries with a set of substantially flat lamellae, use can be made of square, hexagonal, or circularly symmetric luminaries with annular lamellae structures. In these embodiments the LEDs can be positioned at the outer circle (outer wall) of the luminaire and/or alternatively and more preferably in the inner circle (centre) of the luminaire. In the circularly symmetric system with the LEDs in the center, the lamellae at a larger radius will generally produce a more collimated beam, for geometrical optics reasons. This effect may be compensated by varying the diffusion properties of the lamellae as a function of the radius. Alternatively, the effect may be used to control the beam width or beam shape: by varying the transmission properties, for example in that the transmissibility of the lamellae decreases with increasing distance from the respective light source, for example by adjusting the perforation patterns, i.e. by mechanically opening or closing holes in a reflecting lamella, the light may be shifted from the center to the outside of the circle, thereby increasing the degree of collimation. Of course, these ways of controlling the beam width or shape or luminance appearance of the lamellae applies as well to square or elongated luminaries, for example rectangular or elliptic luminaries.
In an embodiment the luminaire is characterized in that the lamellae holding means is chosen from the group consisting of a (tension) wire, a (removable) rim, a housing, a (parabolic) reflector. This enables the luminaire to consist of only the electrical contact, and a set of lamellae kept in place by wires under tension, or by a rigid rim to which optionally the light source, and/or a (parabolic) reflector and/or a housing can be added. The advantage is that the luminaire is light and transparent and that, by removing the rim or loosening the tension on the wires, the lamellae can be folded or stacked together, which makes the luminaire foldable and/or very compact for transportation. Another advantage of such “foldable” luminaries without fixed back reflector/housing is that the number of lamellae or the spacing may be varied, such that a luminaire of variable size may be achieved.
Various alternative embodiments are possible, for example the use of LEDs of any color, or diffuse or semi-diffuse reflectance of the lamellae, or some kind of remote phosphor system, for example a phosphor layer on the front surface of the lamellae, using blue or UV LEDs as the excitation radiation. The phosphor layer, upon being radiated by the UV or blue radiation from the light source, (partially) converts said radiation into longer wavelength radiation, resulting, for example, in white light to be issued by the luminaire.
In embodiments in which the luminaire comprises a housing, the main reflector and the housing may be separate parts, but alternatively may be integrally formed as one part, for example in that the main reflector simultaneously acts as housing.
The invention further relates to a louver suitable for being provided in the luminaire according to the invention, which louver comprises, in one integral unit, the set of lamellae and converging means, said set of lamellae and converging means having all the characteristics of the lamellae and converging means as described above.
The invention now will be further elucidated by means of the schematic drawings in which,
In
In
The invention has mainly been described hereinabove with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, embodiments other than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
10155314 | Mar 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/050801 | 2/25/2011 | WO | 00 | 9/1/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/107914 | 9/9/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5005931 | Mori | Apr 1991 | A |
5988841 | Simon | Nov 1999 | A |
20070024191 | Chen et al. | Feb 2007 | A1 |
20080112153 | Iwasaki et al. | May 2008 | A1 |
20080151551 | Yang et al. | Jun 2008 | A1 |
20090141490 | Tsai | Jun 2009 | A1 |
20090273735 | Yeh | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
1965194 | May 2007 | CN |
0733850 | Sep 1996 | EP |
2229291 | Sep 1990 | GB |
2001243821 | Sep 2001 | JP |
2005259474 | Sep 2005 | JP |
2006222030 | Aug 2006 | JP |
2008243409 | Oct 2008 | JP |
2009088054 | Apr 2009 | JP |
2010001604 | Jan 2010 | JP |
2009083546 | Aug 2009 | KR |
03038336 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20120327653 A1 | Dec 2012 | US |