1. Field of the Invention
This invention relates to a luminaire, and more particularly to a luminaire capable of increasing the view angle.
2. Description of the Related Art
Although LEDs (light emitting diodes) have the advantages of low power consumption and high efficiency, the view angle thereof is limited. As a result, when LEDs are employed in a luminaire (such as a bulb) to serve as light sources, the view angle of the luminaire is also limited.
The object of this invention is to provide a luminaire capable of increasing the view angle.
Accordingly, the luminaire of this invention includes a lamp holder, a lamp cover and a plurality of first light-emitting modules. The lamp holder has a top surface, and a plurality of protrusions protruding upwardly from the top surface. Each of the protrusions has an inclined surface. The lamp cover is connected to the lamp holder, and covers the top surface and the inclined surfaces of the protrusions. The first light-emitting modules are disposed on the inclined surfaces of the protrusions.
The luminaire of this invention has an effect in that, due to disposition of the first light-emitting modules on the inclined surfaces of the protrusions, the view angle of the luminaire can be increased. Furthermore, since the first light-emitting elements are disposed on the protrusions, heat can be dissipated easily from the first light-emitting modules.
These and other features and advantages of this invention will become apparent in the following detailed description of three preferred embodiments of this invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail in connection with the preferred embodiments, it should be noted that similar elements and structures are designated by like reference numerals throughout the entire disclosure.
Referring to
The lamp holder module 100a includes a lamp holder 1 and a lamp cover 4. The lamp holder 1 includes a holder body 11 and a plurality of protrusions 13. The holder body 11 has a top surface 111, an outer peripheral surface 112 extending downwardly from an outer periphery of the top surface 111, a central axis 103 extending uprightly through the top surface 111, and a plurality of heat-dissipating fins 15 formed on the outer peripheral surface 112. In this embodiment, the number of the protrusions 13 is but not limited to three. For example, the number of the protrusions 13 may be two, four, or five. The protrusions 13 are disposed around the central axis 103, and are angularly equidistant. That is, in this embodiment, any two adjacent protrusions 13 are spaced apart from each other by a radial angle (B) (see
In this embodiment, the protrusions 13 are made of metal, and extend upwardly from the holder body 11 and formed on the outer periphery of the top surface 111, as shown in
In this embodiment, the first light-emitting modules 2 are disposed respectively on the inclined surfaces 130 of the protrusions 13. Each of the first light-emitting modules 2 includes a first circuit board 21 disposed on the inclined surface 130 of the corresponding protrusion 13, and a first light-emitting element 22 disposed on the first circuit board 21. The second light-emitting module 3 includes a second circuit board 31 and a plurality of second light-emitting elements 32 disposed on the second circuit board 31. In this embodiment, each of the first and second light-emitting elements 22 is configured as an LED.
In this embodiment, the number of the second light-emitting elements 32 is three, and any two adjacent second light-emitting elements 32 are angularly equidistant. Each of the second light-emitting elements 32 is disposed between angular positions of two adjacent protrusions 13. In other words, the first light-emitting elements 22 are arranged alternately with the second light-emitting elements 32. As such, the optical axis of each of the first light-emitting elements 22 does not cross with the optical axes of any two adjacent second light-emitting elements 32. That is, the optical axis of each of the first light-emitting elements 22 and the optical axes of any two adjacent second light-emitting elements are staggered. In this embodiment, the second light-emitting elements 32 and the protrusions 13 are disposed around the central axis 103, in such a manner that the protrusions 13 are farther away from the central axis 103 than the second light-emitting elements 32. In this manner, the amount of lateral light transmitted out of the luminaire 100 is increased to thereby enlarge the view angle of the luminaire 100.
Ratio of the total luminous flux of the second light-emitting elements 32 disposed on the top surface 111 to that of the first light-emitting elements 22 disposed on the inclined surfaces 130 is 1:1. That is, the value of total lumens of the first light-emitting elements 22 is equal to that of the second light-emitting elements 32 to attain an optimal light distribution curve.
The lamp cover 4 is connected to the lamp holder 1, and covers the top surface 111 of the holder body 11 and the inclined surfaces 130. In this embodiment, the lamp cover 4 is in the form of a truncated hollow sphere, and has an open bottom end. The lamp cover 4 has a bottom edge 41 that is formed with a plurality of notches 42. The number of the notches 42 corresponds to that of the protrusions 13 of the holder body 11. The profile of each of the notches 42 is complementary to that of the corresponding protrusion 13. The lamp cover 4 has diffusing grains therein for reducing the hotspot effect, so that a substantial reduction in the lighting effect can be avoided.
The protrusions 13 are inserted into the notches 42, respectively, such that the top surface 111 of the holder body 11 and the inclined surfaces 130 of the protrusions 13 are covered by the lamp cover 4 and the back surfaces 131 of the protrusions 13 are exposed outwardly of the lamp holder 1 and the lamp cover 4.
Preferably, the lamp cover 4 has a maximum diameter at a height position thereof that is spaced apart from the top surface 111 of the lamp holder 1 by a distance that is between one half and one third of a distance between a top end of the lamp cover 4 and the top surface 111 of the lamp holder 1. That is, a portion of the lamp cover 4 having the maximum diameter is located between one half and one third of the height of the lamp cover 4. Also preferably, any point of a portion of the lamp cover 4 having the maximum diameter is at an angle smaller than 30 degrees with respect to an optical axis of the corresponding first light-emitting element 22 (i.e. the angle is within a range between 30° and −30° of the optical axis of the corresponding first light-emitting element 22) to maximize the view angle of the luminaire 100.
According to a test result, due to disposition of the first light-emitting modules 2 on the inclined surfaces 130 of the protrusions 13, as compared to a conventional luminaire provided with light-emitting modules on only a top surface of a lamp holder, the view angle is increased from 120 degrees to 155 degrees, and the temperature of LED chips of the light-emitting elements is reduced from 78 centigrade degrees centigrade to 72.8 degrees centigrade. To further improve the lighting efficiency of the luminaire 100, reflecting plates (not shown) can be disposed on the top surface 111 of the lamp holder 1.
As such, light is emitted from each of the second light-emitting elements 32 in an upward direction and from each of the first light-emitting modules 2 in an inclined direction, so that the view angle of the luminaire 100 is increased. Furthermore, since the first light-emitting elements 22 are arranged alternately with the second light-emitting elements 32, light interference occurring therebetween can be avoided. Further, the back surfaces 131 of the protrusions 13 are exposed outwardly of the lamp cover 4 to facilitate dissipation of heat from the first light-emitting modules 2.
With further reference to
In this embodiment, each of the first light-emitting modules 2′ includes a pair of upper and lower first light-emitting elements 22′, 22″ disposed on the inclined surface 130 of the corresponding protrusion 13′ and arranged one above the other. There are not any light-emitting modules disposed on the top surface 111 of the lamp holder 1′, and only one a second circuit board 5 is disposed on the same so as to establish an electrical connection among the first light-emitting modules 2′. The second circuit board 5 may be replaced with reflecting plates.
The lower first light-emitting elements 22″ are spaced apart from the top surface 111 of the lamp holder 1′ by a vertical distance of 6 mm. The upper first light-emitting elements 22′ are spaced apart from the top surface 111 of the lamp holder 1′ by a vertical distance of 13 mm. As such, the optical efficiency is higher than 80%. In other words, the second light-emitting module 3 (see
According to a test result, since each of the first light-emitting modules 2′ includes the pair of upper and lower first light-emitting elements 22′, 22″, as compared to the conventional luminaire having light-emitting modules on a top surface of a lamp holder, the view angle is increased from 120 degrees to 180 degrees, and the temperature of the LED chips of the light-emitting elements are reduced from 78 degrees centigrade to 73 degrees centigrade. Alternatively, the lamp holder module including the lamp holder 1′ and the lamp cover 4′ may be combined with the first and second light emitting modules 2, 3 of the first preferred embodiment to constitute a luminaire, which can achieve effects similar to those of the first preferred embodiment.
With further reference to
Preferably, the top surface 111 of the holder body 11 is formed with an annular groove 113 disposed around the protrusions 13 and permitting the bottom edge 41 of the lamp cover 4″ to be inserted therein. Alternatively, the lamp cover 4″ may be connected to the lamp holder 1″ in other similar manners. The connection between the lamp cover 4″ and the lamp holder 1″ may be applied to the first preferred embodiment to interconnect the lamp cover 4 and the lamp holder 1.
In the above preferred embodiments, since the first light-emitting modules 2, 2′ are disposed on the inclined surfaces 130 of the protrusions 13, 13′, heat dissipation area is increased and hot sources are dispersed so as to facilitate heat dissipation. Furthermore, in this manner, light contacts less interfaces, so that Fresnel loss is low. As a consequence, the optical efficiency is higher than 80%.
It should be noted that, the inclination angle of the inclined surfaces 130 of the protrusions 13, 13′ can be changed to adjust the view angle. That is, the view angle can be adjusted by changing the inclination angle of the inclined surfaces 130 or the positions of the first and second light-emitting modules 2, 2′, 3 relative to the lamp cover 4, 4′, 4″, thereby increasing the applicable range of the luminaire 100, 101, 102.
In view of the above, since the first light-emitting modules 2, 2′ are disposed on the inclined surfaces 130 of the protrusions 13, 13′, the view angle of the luminaire 100, 101, 102 can be increased considerably. Thus, the object of this invention is achieved. Furthermore, in the first and second preferred embodiments, due to exposure of the back surfaces 131 of the protrusions 13, 13′, heat can be dissipated easily from the protrusions 13, 13′.
With this invention thus explained, it is apparent that numerous modifications and variations can be made without departing from the scope and spirit of this invention. It is therefore intended that this invention be limited only as indicated by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0005182 | Jan 2011 | CN | national |
This application claims priority of U.S. provisional application No. 61/375,350, filed on Aug. 20, 2010, and Chinese Application No. 201110005182.8, filed on Jan. 6, 2011.
Number | Name | Date | Kind |
---|---|---|---|
20100254133 | Cheng | Oct 2010 | A1 |
20110026253 | Gill | Feb 2011 | A1 |
20110215696 | Tong et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
2005-208396 | Aug 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20120043878 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61375350 | Aug 2010 | US |