The present disclosure is directed generally to a mounting structure to assist in the mounting of a luminaire to a structure such as a ceiling or a canopy. More particularly the present disclosure is directed to a mounting bracket to hold a luminaire in an aperture of the structure to allow alternate or supplemental attachment of the luminaire to the structure.
There is a need for a luminaire and mounting structure of the type described herein. More particularly, there is a need for a mounting bracket to allow quick installation of a luminaire to a structure such as a ceiling or canopy by a single person who can then allow the bracket to hold the luminaire while the person relocates to the other side of the structure to provide alternate or supplemental attachment hardware.
A luminaire is disclosed comprising a housing defining a front side and a rear side, a circuit board mounted to the housing front side, a column extending from the housing rear side to an end and defining an axis, an aperture defined in the column end to permit wiring to extending through the column end, and a bracket secured to the column, the bracket comprising a body and two wings extending from the body, at least a portion of each wing extending along the column and away from the column. The body of the bracket may extend across the end of the column. The wings may comprise a first leg extending from the body and a second leg extending from the first leg and at an angle to the first leg causing the second leg to extend away from the column. The luminaire may also have a seal between bracket body and the column end to limit the ingress of water into the luminaire. The luminaire have a seal between bracket body and the column end to limit ingress of air into the luminaire, except for through the breathing tube. The wings may be flexible. The wings may be flexible such that as the column is inserted through an aperture defined by a structure, the wings are flexed inward from their relaxed configuration toward the column by the aperture edge until the wings clear the structure and return to their original configuration. Once the wings return to their relaxed configuration, they may extend beyond the perimeter of the aperture defined by the structure to permit the bracket to hold the luminaire to the structure. The first leg may extend away from the body at an angle to the column such that a distal end of the first leg is farther from the column than a proximate end of the first leg. The seal may comprise a body defining one or more apertures to permit the passage of wiring. The end of the column may define at least two wings, each wing extending radially outward from a center of the column to a radial end of the wing, each wing comprising a boss extending axially upward between the center of the column and the radial end of the wing and defining a land between the column center and the boss; the body of the bracket extending across at least a portion each land, and a seal between the land and the bracket to limit the ingress of water into the luminaire.
A mounting bracket for mounting to a luminaire is disclosed, the bracket comprising a body, and two wings extending from the body, at least a portion of each wing extending along the column and away from the column. The body of the bracket may be for extending across an end of a column of the luminaire. The bracket may facilitate a seal between bracket body and the column end to limit the ingress of water or air into the luminaire. The wings may comprise a first leg extending from the body and a second leg extending from the first leg and at an angle to the first leg. The wings may be flexible. The wings may be flexible such that as the column is inserted through an aperture defined by a structure, the wings are flexed inward from their relaxed configuration toward the column by the aperture edge until the wings clear the structure and return to their relaxed configuration. Once the wings return to their relaxed configuration, they may extend beyond the perimeter of the aperture defined by the structure to prevent the column from being withdrawn from the aperture. The first leg may extend away from the body at an angle to the column such that a distal end of the first leg is farther from the column than a proximate end of the first leg.
A luminaire is disclosed comprising a column, and a bracket secured to the column, the bracket comprising a body secured to an end of the column, and two wings extending from the body, at least one of the wings extending along the column and away from the column. The body of the bracket may extend across the end of the column. The luminaire may also have a seal between bracket body and the column end to limit the ingress of water into the luminaire. The wings may comprise a first leg extending from the body and a second leg extending from the first leg and at an angle to the first leg causing the second leg to extend away from the column. The wings may be flexible such that as the column is inserted through an aperture defined by a structure, the wings are flexed inward from their relaxed configuration toward the column by the aperture edge until the wings clear the structure and return to their relaxed configuration. The first leg may extend away from the body at an angle to the column such that a distal end of the first leg is farther from the column than a proximate end of the first leg. An end of the column may define at least two wings, each wing extending radially outward from a center of the column to a radial end of the wing, each wing comprising a boss extending axially upward between the center of the column and the radial end of the wing and defining a land between the column center and the boss, the body of the bracket extending across at least a portion each land, and a seal between the land and the bracket to limit the ingress of water into the luminaire.
Aspects and embodiments of the present disclosure may be more fully understood from the following description when read together with the accompanying drawings, which are to be regarded as illustrative in nature, and not as limiting. The drawings are not necessarily to scale, emphasis instead being placed on the principles of the disclosure. In the drawings:
The embodiments depicted in the drawing are merely illustrative. Variations of the embodiments shown in the drawings, including embodiments described herein, but not depicted in the drawings, may be envisioned and practiced within the scope of the present disclosure.
Aspects and embodiments of the present disclosure provide a luminaire mounting bracket and elements thereof. A mounting bracket according to the present disclosure can be used for new installations or to replace existing luminaires. Use of such a mounting bracket provides a simple manner of quickly attaching a luminaire to a mounting structure, such as a ceiling or a canopy, and the ability to apply further mounting hardware to secure the luminaire to the structure without holding the luminaire. Installation can be accomplished by a single person by inserting the luminaire through an aperture in the structure from the underside and then relocating to the top of the structure to complete installation without worry that the luminaire will drop from the structure.
While the preferred embodiment uses light emitting diodes (“LEDs”) as light sources, other light sources may be used in addition to LEDs or instead of LEDs within the scope of the present disclosure. By way of example only, other light sources such as plasma light sources may be used. Further, the term “LEDs” is intended to refer to all types of light emitting diodes including organic light emitting diodes or “OLEDs”.
While the luminaire depicted in the Figures is generally applicable to any application that would benefit from indoor or outdoor area lighting, it is well-suited, in one example, for application to canopies and the like such as those used at petroleum refill stations. In other applications, luminaires and mounting structures disclosed herein are applicable to soffits or ceilings.
The overall shape of the luminaire 100 is depicted as substantially square with rounded corners, but other shapes are contemplated as operating within the scope of this disclosure. By way of example only, rectangular, circular and triangular are all contemplated. Because the overall shape of the luminaire 100 is dictated in the depicted embodiment by the shape of the housing 102 and the lens frame 114, the shape of the housing 102 and lens frame 114 are likewise contemplated as have these exemplary shapes or others.
The housing 102 comprises a plate 116, a perimeter 118 and a wall 120 between the face 116 and the perimeter 118. The perimeter 118 extends about the perimeter of the housing and thus takes the shape of the housing, which in the depicted embodiment, is square with rounded corners, as discussed above. The perimeter 118 defines a front face 118a and a rear face 118b. The front face 118a of the perimeter 118 extends from an inner edge 118c to an outer edge 118d which defines the outermost perimeter of the housing 102. The perimeter inner edge 118c defines the downward most facing portion of the housing 102. The front face 118a of the perimeter 118 extends from the perimeter inner edge 118c to the perimeter outer edge 118d forming a curvilinear front face 118a. In the depicted embodiment, the curvilinear front face 118a initially extends outward form the inner edge 118c in straight horizontal manner, and then curves upward with an ever-increasing radius of curvature to the perimeter outer edge 118d. Other curvilinear shapes are contemplated as falling within this disclosure. By way of example only, the front face could extend horizontally to a 90° edge, which then extends upward to the outer edge.
References herein to upward and downward orientation are with reference to the depicted embodiments in which the luminaire 100 is mounted to the underside of a flat structure (such as a ceiling or a canopy) and are for purposes of conveying a description of the elements of the disclosure, but are in no way intended to be limiting. In application, upward can be reoriented downward and downward can be reoriented upward.
The housing perimeter 118 preferably defines one or more locator grooves 122 extending from the perimeter front face upward into the perimeter with a locator groove wall 122a to a locator groove base 122b that is flat in the depicted embodiments, but can vary, extending horizontally. The locators grooves 122 receive locator bosses 140 on the lens frame 114 to assist in properly locating the lens frame 114 on the housing 102 and, separately, to accommodate a boss from the lens frame 114 which can receive a mounting screw 134 from the groove base 122b, which will remain hidden from sight to persons viewing the bottom of the luminaire 100, in the depicted embodiment.
In the depicted embodiment, the luminaire 100 defines two locator grooves 122 on each of the four sides defining the square shape of the luminaire 100. Greater or fewer locator grooves 122 are contemplated. For example, if the locator grooves 122 are used purely for locating the lens frame 114 on the housing 102, then one, or two would suffice. Alternatively, an embodiment of the luminaire 100 is contemplated with no locator grooves 122. If, however, the locator grooves 122 are used to accommodate a boss to facilitate mounting the housing 102 to the lens frame 114 by screw, or the like, then the number and location of the locator grooves 112 will be dictated by the size and weight of the lens frame 114 in order to properly secure the lens frame 114 to the housing 102 with sufficient sealing there between, if desired, as discussed below.
The housing plate 116 extends across the housing to fill in the area surrounded by the housing perimeter 118. The housing wall 120 extends downward from the housing plate 116 just inward of the housing perimeter 118 to a distal end 120a and about the entire housing plate 116 as depicted in
The housing plate 116 has a front face 116a and a rear face 116b. The housing plate front face 116a is substantially flat, extending across and filling in the perimeter 118, with the exception of a plurality of mounting holes 124 defined therein and a spacer boss 126 surrounding and extending each mounting hole 124 out beyond the housing plate front face 116a. Each spacer boss 126 comprises a cylindrical wall extending downward from the housing plate front face 116a to a distal end 126a and configured so that an inner wall of the spacer boss 126 continues the inner wall of the corresponding mounting hole 124 so that the spacer boss 126 effectively extends the depth of the mounting hole 124 to a depth B. In the depicted embodiment, the spacer boss distal end 126a sits approximately even with a front face 104a of the PCB (as depicted in
In an alternative embodiment, no spacer bosses 126 are employed. However, the spacer bosses 126 provide two advantages. First, the spacer bosses 126 reduce assembly time by allowing screws 108 to be driven into the mounting holes 124 without regard for when they reach the PCB 104. Without the spacer bosses 126, advancing the screws 108 would be conducted with concern about advancing them too far or with too much power, either of which might damage the PCB 104. The spacer bosses 126 obviate that concern by allowing the screws 108 to be advanced to the spacer boss distal end 126a as quickly and efficiently as possible. This ease of securing the screws 108 to the housing 102 without damaging the PCB 108 is further advanced by using screws 108 of a pliable material such as, by way of example only, nylon. Use of such pliable screws 108 will allow the screws 108 to be advanced without regard for exactly when advancement need stop. That is, over advancing the screws 108 will not “strip” the mounting holes 124 or damage the screws 108 to an extent such to prevent them from holding the PCB 104 to the housing 102. Instead, by using screws 108 of a pliable material, over advancing the screws will slightly deform the threads of the screws 108, but not so much as to prevent the pliable threads of the screws 108 from grasping the inside of the mounting holes 124.
Moreover, in the depicted embodiment, the inner wall of the mounting holes 124 is straight (i.e. is not threaded). This further limits production costs by removing the need to tap the mounting holes 124 or create a complicated mold having reliable threads in the mounting hole 124. Additionally, using straight mounting holes 124 actually allows shallower mounting holes 124 because the use of a typically tap to create the threads in a mounting hole requires a certain depth in order to facilitate the tapping. Using straight holes eliminates the need to be able to tap the mounting holes 124, thus allowing shorter mounting holes 124 than could otherwise be used. In one exemplary embodiment, the depth B of the mounting holes 124 is 0.125 inches. Furthermore, by using the spacer bosses 126 to extend the wall of the mounting hole 124 out to the face of the PCB 104, the depth of the mounting hole 124 is moved into the luminaire 100, reducing the distance that the mounting hole 124 need extend toward the housing plate rear face 116b, thus allowing a thinner overall luminaire 100. Moreover, using pliable screws 108 in straight mounting holes 124 further reduces, or eliminates, the likelihood of damaging the screws 108 by over advancement.
The second advantage provided by the spacer bosses 126 is their inherent ability to reduce tolerances in the stack of elements (housing 102, PCB 104, screws 108, lens 110 and lens frame 114) contributing to the over all height of the luminaire 100, and thus its low-profile. As discussed in greater detail below, tight stack of these element contributes to the low-profile. The ability to advance the screws 108 against the spacer bosses 126 without exception so as to limit the tolerances necessary and contribute to an overall low profile. The additional cost of these spacer bosses is negligible in an embodiment where the housing is cast from a material (e.g. aluminum).
The housing plate rear face 116b is also substantially flat, with the exception of a matrix of interconnecting walls 128 extending from the rear face 116b a short distance off that face. This matrix 128 increases the overall rigidity of the plate 116 and thus the housing 102. The matrix 128 also provides additional surface area on the rear of the housing 102 to increase the ability of the housing to dissipate heat when any of the matrix 128 is exposed to ambient air. The matrix 128 also assists in providing surface contact with structure to which the housing is mounted when that structure has surface irregularities (i.e. is not flat). This surface contact can also be helpful in directing heat away from the luminaire 100 in installations such as a petroleum refill station canopy which is constructed of sheet metal and much of the sheet metal, except where contacted by the housing, is exposed to ambient air to facilitate transferring to the surrounding air, some of the heat generated by the light sources or utilities for powering the light sources.
The matrix 128 may optionally include bosses 130 at the bottom of the mounting holes 124. These bosses 130 provide additional thickness to account for molding irregularities.
In the depicted embodiment, the housing perimeter rear face 118b follows the curvature of the housing perimeter front face 118a for the most part. A cross-section of one embodiment is depicted in
As discussed above, one or more of the locator groove bases 122b define a screw aperture 132 to accommodate a screw 134 to extend through the housing 102 and into the lens frame 114 to secure the lens frame 114 to the housing 102. In the depicted embodiment, the screw 134 enters from the housing and extends into the lens frame 114 so as to not be visible from the front side of the luminaire 100. A cross-section of this embodiment is depicted in
In order to minimize the number of screws 134 necessary for assembly and minimize the corresponding assembly steps, one or more fins 136 may extend across the housing perimeter rear face 118b to fill in the back side of the housing perimeter 118 curvature and provide the housing perimeter 188 with added structural rigidity. In the depicted embodiment, each side of the square housing comprises a single such fin 136 between the two screws 134 and one such fin 136 at each rounded corner of the housing perimeter 118. A cross-section of this embodiment is depicted in
The lens frame 114 defines a front face 114a and a rear face 114b and comprises a lens frame perimeter 136 at the outermost perimeter of the lens frame 136 and a trough 138 defined by an inner trough wall 138a and outer trough wall 138b. The contour of rear face 114b of the lens frame perimeter 136 follows the contour of the housing perimeter front face 118a, extending to a distal end 136a that lies in approximately the same horizontal plane as the housing perimeter outer edge 118d. References herein to a “horizontal” plane are by way of describing relationships between elements and portions of elements in the disclosed luminaire 100 and the term “horizontal” is used because the luminaire 100 is described as being mounted to a ceiling or the like. Use of the term “horizontal” is not limiting on the luminaire 100 as it could be rotated to be mounted in any orientation. By extending the lens frame perimeter distal edge 136a to the housing perimeter outer edge 118d, the lens frame can cover the housing perimeter 118 from view to provide the luminaire 100 a simple and elegant aesthetic look as seen in
A base 138c of the lens frame trough 138 continues to extend inward from the lens frame perimeter 136 horizontally and seamlessly from the lens frame perimeter 136. Other embodiments are contemplated. The lens frame trough inner trough wall 138a then extends vertically to define the lens frame innermost perimeter which defines a lens frame aperture 142 through which light emitted by the light sources 106 passes to leave the luminaire 100.
Gasket 112 is located about the perimeter of the trough outer wall 138b (depicted in
The trough inner wall 138a extends upward a distance A (
As depicted in
The PCB 104 comprises a PCB front face 104a populated with LEDs 106 and a PCB rear face 104b. The PCB rear face 104b is pressed into contact with the housing 102 by the screw 108 to create sufficient contact between the PCB 104 and the housing 102 to allow the housing 102 to act as a heat sink, taking away heat generated by the LEDs 106 and associated circuitry.
With the exception of the LEDs 106, the PCB front face 104a is covered with a reflective coating or covering. In one exemplary embodiment, the PCB front face 104a is covered with a white adhesive paper adhered to the PCB front face 104a. In another embodiment, the PCB front face 104a is covered with a sheet of reflective aluminum (not depicted). The reflective coating or covering covers the PCB from view while, at the same time, redirecting light off of the PCB front face 104a rather than absorbing it. Many luminaires, especially those using LEDs, place reflectors or optics near the light sources to redirect light emitted from the light sources to travel out of the luminaire. When using this reflective coating or covering discussed above, the luminaire of the present disclosure does not use any such reflectors or optics. The absence of reflectors and optics allows the distance between the PCB 104 and the lens 110 to be set as low as desired, bounded only by the need to secure the PCB 104 to the housing 102. In this manner, the absence of any reflectors or optics further contributes to a thin (i.e. low-profile) luminaire 100.
In order to further reduce the overall height of the luminaire 100, the light sources are LEDs 106 comprised of 0.25 Watt LEDs rather than larger, more powerful LEDs. Historically, one challenge of using LEDs for area lighting has been that LEDs have traditionally emitted insufficient light to replace more conventional light sources such as incandescent or fluorescent. This deficiency has traditionally been overcome by the use of a matrix of LEDs. However, as the acceptance of LEDs for area lighting has become more accepted, technologies have been driven to increase the lumen output LEDs. As the technologies have advanced in this manner, conventional thinking in the LED lighting industry has been to use the biggest and brightest LEDs available for area lighting. The luminaire 100 of the present disclosure takes advantage of the advances in technology, but bucks traditional thinking by using a larger number of smaller, low output LEDs 106 as opposed to a larger number of larger, higher lumen output LEDs. The use of these smaller, low output LEDs 106 provides the luminaire 100 two advantages.
First, many manufacturers currently manufacture and sell 1 Watt LEDs. For example, Nichia sells the NS9W383 1 Watt LED. This 1 Watt LED has a height of approximately 0.108 inches. Instead of using these, or other, 1 Watt LEDs, the LEDs 106 used by the luminaire 100 are 0.25 Watt LEDs. In one exemplary embodiment the LEDs 106 are Nichia NS2W757A LEDs. More LEDs 106 are required to provide the luminaire 100 the same lumen output than would be necessary if the 1 Watt LEDs were used. However, the 0.25 Watt LEDs 106 reduce the height of the LEDs by 0.086 inches, allowing further reduction in the overall height of the luminaire 100.
In one embodiment of the disclosed luminaire depicted in
Second, it has been found that the larger number of lower Watt and lumen LEDs 106 provide a more even light distribution that is more pleasant to the eye. This more even glow can be expressed as a ratio of the lumens (L) per LED 106 to the pitch (P) of the LEDs 106. In the embodiments disclosed in the preceding paragraph, each of the 460 LEDs are spaced at a pitch P of 0.625 inches. When these LEDs are driven at 530 mA they produce approximately 37 lumens each for a ratio of 59.2 lumens/inch. When these same LEDs are driven at 650 mA they produce approximately 44 lumens each for a ratio of 70.4 lumens/inch. Other lumen outputs per chip and pitches are acceptable. It has been found that a P/L ratio of between approximately 59.2 lumens/inch and approximately 70.4 lumens/inch provide a combined even glow when the 0.25 Watt LEDs are illuminated. This ratio is contemplated as applicable to LEDs of other small wattage.
The accumulation of the above discussed advantages of the disclosed luminaire 100 result in an overall thin (i.e. low profile) luminaire 100. With the height E between the rear of the housing 102 and the housing plate front face 116a (0.193 inches in one exemplary embodiment) minimized to the thickness of a plate necessary for molding the mounting holes 124 in the housing plate front face 116a and the matrix 128 on the housing place rear face 116b, the height E can be less than 0.2 inches and it has been found that a height of 0.193 inches is optimal. Furthermore, use of pliable screws 108, with straight mounting holes 124, spacer bosses 126, thin LEDs 106 and a lens frame trough 138 having an inner trough wall 138a working in conjunction with the screws 108 to precisely control the height of the lens 110 with respect to the PCB 104 and the lowermost extremity of the lens frame aperture 142 creates a high precision, low tolerance stack of parts that facilitate a precisely thin luminaire 100 that eliminates the need for reflectors or optics thus further reducing the thickness of the luminaire 100. The height F between the housing plate front face 116a and the lowermost extremity of the lens frame aperture 142 (0.510 inches in one embodiment) is thus minimized and in conjunction with the minimized height E, provides an overall low profile, highly efficient luminaire 100. In the exemplary embodiment of height E being 0.193 inches and height F being 0.510 inches, the total height of the luminaire is only approximately 0.703 inches and is facilitated by one or more of the above discussed features.
The low height F, minus the low height C of the PCB 104 provides a very low height between the base of the LEDs 106 and the lowermost extremity of the lens frame aperture 142 through which light rays emitted from the LEDs 106 escape the luminaire 100. This resulting low height allows most of the lumens emitted from the LEDs 106 to escape the luminaire 100 without need for reflectors or optics. In the example identified above using 460 Nichia 0.25 Watt NS2W757A LEDs driven at 650 mA to emit a total of 20,240 lumens, it has been found that of the 20,240 emitted lumens, 20,195 escaped the luminaire 100 in this configuration.
In one embodiment of the disclosed luminaire, a driver column 146 extends upward from the rear of the housing plate 116. The driver column 146 may be integral with the housing plate 146 or not integral. In the depicted embodiment, the driver column 146 is integrally cast as part of housing 102. The driver column 146 comprises four wings 148 extending radially from a central axis of the driver column 146. The driver column 148 could comprise greater or fewer wings 148; three in one exemplary embodiment. Each wing 148 extends upward from the housing plate 116, having opposing lateral walls 148a and a circumferential wall 148b at the circumferential perimeter of the driver column 146. In the exemplary depicted embodiment, the circumferential wall 148b extends approximately tangential to the circumference of the driver column 146 and the opposing lateral walls 148a extend approximately perpendicular to the circumferential wall 148b inward generally toward the central axis of the driver column 146. The entire driver column 146, including the wings 148, are depicted as hollow, which is a result of the cost savings available by producing the housing 102, including the driver column 146 as an integral, unitary casting. Other embodiments are contemplated, however. For example, the wings could be solid and/or secured to the housing in an alternative embodiment.
Each wing 148 defines a mounting boss 150 at its top 152 for receiving fixing hardware for mounting a driver box 200 to be associated with the luminaire 100 during installation. In the depicted embodiment, the mounting boss defines a screw hole 154 for receiving a screw, but other fixing hardware is contemplated in the alternative. The mounting boss 152 is limited to the outer portion of each wing 148, leaving a recessed land 156 defined by the four mounting bosses 152.
An aperture 158 is defined at the center of the driver column 146 through the land 156 to allow utilities to pass from the luminaire 100 to the driver box 200. For example, wiring 160 to provide power to the light sources passes through the aperture 158 to deliver power from a driver located in the driver box 200 to the light sources.
In an exemplary embodiment, the aperture 158 is designed to allow air to pass therethrough, even when the wires 160 are present. Air expands and contracts as it is heated and cooled, respectively. As discussed above, the seal created by gasket 112 seals the air in the portions of the luminaire 100 inward of the gasket from the ambient environment. Thus sealed, the expansion and contraction of this sealed air would create air pressure above or below the ambient air pressure unless that sealed air was somehow vented. If the air pressure of this sealed air were to fall below the ambient air pressure, then the luminaire 100 would tend to try to draw air outside the luminaire, along with any dirt, moisture, etc. into the luminaire. Over time, this could tend to break down the seal created by the gasket 112. Allowing air to pass through the driver column aperture 158 allows the luminaire 100 to breath and prevents the luminaire 100 from trying to draw moisture across the seal created by the gasket 112.
In one particular exemplary embodiment of the luminaire 100, a breathing tube 162 is run through the aperture 158 along with the wiring 160 and a sealant 164 fills the remainder of the aperture 158 so that no moisture, air, dirt, etc. can pass through the aperture unless through the breathing tube 162. In one embodiment, the sealant 164 is the same urethane adhesive discussed above. In another embodiment, the sealant 164 is an elastomer. Other sealants 164 are contemplated. In yet another exemplary embodiment, a cylindrical gland 166 having a sealant 164 therein is screwed into threads formed in the aperture 158 and the breathing tube 162 and wiring 160 are run through the sealant 164, which forms a tight seal around the breathing tube 162 and wiring 160 to prevent ingress of any dirt, moisture, air, etc. into the luminaire 100. The gland 166 could be a commercially available liquid tight fitting for individual conductors such as a Conta-Clip brand model PG9, in one example. Other embodiments are contemplated. Regardless of how the sealant 164 is provided, the breathing tube 162 is run into the driver box 200 to prevent rain water, dirt, etc. from entering the breathing tube 162 and running down into the luminaire 100.
The driver box 200 comprises a box having a bottom wall 200a and perimeter walls 200b creating an upwardly open box. The driver box 200 is closed by a cover plate 202 having a central plate 202a and downwardly depending edges 202b along each side of the central plate 202a to direct water, snow, etc. downward past the opening to the driver box 200. In one exemplary embodiment, the central plate 202a extends outward beyond each wall 200b of the driver box to further prevent water, snow, etc. from entering the driver box. The driver box comprises mounting hardware to facilitate securing the cover plate 202 to the driver box 200. In one embodiment, the driver box 200 comprises driver box ears 200c extending from one or more driver box walls 200a and defining a hole therein to receive a screw for securing the cover plate 202 to the driver box 200. In the depicted embodiment, driver box ears 200c extend from two opposing ones of the driver box walls 200a. By extending the driver box ears 200c, and thus the hole in the cover plate 202 to accommodate the screws, outward beyond the driver box walls 200a, any rain, snow, etc. falling through the hole in the driver box cover plate 202 will fall outside of the driver box 200 rather than into the driver box 200. In one possible embodiment, the driver box ears 200c do not extend as high as the driver box walls 200a, but fall just short thereof. This prevents any water that may fall through the screw holes in cover plate 202 from traveling across the driver box ears 200c and into the driver box. Alternatively, the driver box ears 200c may extend as high as the driver box walls 200a, but have a groove extending across the driver box ears 200c between the screw holes and the driver box wall 200a.
A stem 204 extends downward from the driver box bottom wall 202a. In the exemplary depicted embodiment, the stem 204 is integrally cast with the driver box 200, but other options are contemplated. The stem 204 is configured to slide over the driver column 146 of the luminaire and accommodate the driver column 146 within the stem 204. In one embodiment, the stem comprises a wall 204a having an inner surface defining an opening 204b to receive the driver column 146. A top 204c of the opening 204b may be defined by the driver box bottom wall 202a (as in the depicted embodiment) or by a separate top 204c. The opening top 204c can be shaped to complement all or portions of the top of the driver column 146 so that the driver box 200 will sit securely on the driver column 146. The stem opening top 204c defines a utilities aperture 204d to accommodate the wiring 160 and the breathing tube 162 and gland 166, where present, allowing them to enter the driver box 200. The breathing tube 162 need only enter the driver box 200 and be protected from the elements by the driver box 200 and cover plate 202. The wiring 160 enters the driver box 200 through the utilities aperture 204d and is connected to a driver (not depicted) for providing power to the light sources. One or more hardware apertures 204e are defined in the top 204c and configured to allow screws or the like to pass through and secure into a corresponding one of the screw holes 154 on the driver column 146 to secure the driver box 200 to the driver column 146 and, thus, the luminaire 100.
In one embodiment, the stem wall 204a defines a lower edge 204f and a groove 206 about the entirety of the lower edge 204f. The groove 206 accommodates a gasket 208. In the depicted embodiment, the stem wall 204a is cylindrical and the groove 208 and corresponding gasket 208 are circular. Other embodiments are contemplated.
During installation to a structure 210, the housing 102 is elevated to the structure and the driver column 146 passed through an aperture 210a in the structure. The structure 210 could be, by way of example only, a ceiling or a canopy for a petroleum refill station. The structure aperture 210a could be a pre-existing aperture left over from a previously installed luminaire or it could be a newly constructed aperture. The gasket 208 rests in the groove 206 defined by the stem wall lower edge 204f and becomes compressed when brought into contact with the structure and the stem 204 tightly secured to the driver column 146. When in this compressed state, the gasket 208 forms a seal around the structure aperture 210a to prevent material above the structure (e.g. dirt, water, etc.) from getting to the structure aperture 210a. The ability of the gasket 208 to prevent material from getting to the structure aperture 210a in this manner is predicated on the gasket 208 and the groove 206, in which is resides, being larger than the structure aperture 210a. In one exemplary embodiment, the stem wall 204a is sized to allow the gasket 208 to circumscribe at least a 4 inch diameter structure aperture 210a, which is commonly left behind by pre-existing luminaires. Other dimensions are also contemplated. While this size stem is larger than necessary for some applications, it has also been found that the large size of the stem also assists in providing stability of the structure 210 when the structure is somewhat flexible, such as in a sheet metal canopy as is often found at a petroleum refill station.
The stem 204 is preferably of a height to elevate the driver box 200, or portions thereof, above the height where water, snow, etc. may be allowed to accumulate. For example, a sheet metal canopy a petroleum refill station will often accumulate some water and/or snow during precipitation before that water is directed off the canopy. The height of the stem is preferably designed so that the driver box 200 is above the height to which water and/or snow are likely to accumulate. In this embodiment, the driver within the driver box 200 is more likely to be kept dry than if the stem places the driver box 200 below that height.
A mounting apparatus 300 is depicted in
The mounting structure 302 comprises four walls 302a forming a rectangular box, square in the depicted embodiment. The mounting structure 302 further comprises a face plate 304 extending between the four walls 302a slightly above their lower distal ends 302b. The face plate 304 lies generally horizontal and defines a face plate aperture 306. The face plate 304 can be separate from the walls 302a or extend integrally from the walls 302 as depicted in
The mounting apparatus 300 comprises a mounting plate 308 mounted to the back of a luminaire, such as luminaire 100. The mounting plate 308 optionally defines a mounting plate aperture 308a to allow portions of the luminaire to project through. In the depicted example, the driver column 146 of the previously described luminaire 100 is allowed to project through the mounting plate 308 due to the aperture 308a. Flanges 308b extend upward from each edge of the mounting plate 308 a short distance to contact, or come close to contacting, the mounting structure 302 when installed. A hinge flange 308c extends from a first of the flanges 308b and comprises an extending portion 308c′ and wings 308c″ extending from opposing sides of the extending portion 308″. The extending portion 308c′ does not extend to the ends of the first of the flanges 308b, but instead leaves clearance on both ends. The wings 308c″ extend beyond the ends of the first of the flanges 308b and beyond the edges of the corresponding aperture 306 of the mounting structure face plate 304. In this configuration, the luminaire (such as luminaire 100) may hang from the mounting structure 302 by the wings 308c″ and may rotate about those wings 308c″. The clearance left on both ends of the extending portion 308c′ provides clearance between the extending portion and the edges of the corresponding aperture 306 during rotation. During installation, this structure allows an installer to connect the wiring of the luminaire to the power source in the mounting structure 302. The mounting plate 308 can be mounted to the luminaire by screws or other hardware.
A catch 310 optionally extends from the mounting plate 308 adjacent to a second of the flanges 308b extending from the mounting plate 308 on a side opposite to the first of the flanges 308b from which the hinge flange 308c extends. The catch 310 comprises a stem 310a and a hook 310b extending from the flange. In the depicted embodiment, stem 310a is mounted to the mounting plate 308 and extend upward to a stem distal end 310c, while the hook 310b extends downward from the stem distal end 310c angled toward the face plate 302 and extending to a hook distal end 310d that lies outside of the face plate aperture 306 such that when the luminaire 100 is rotated downward from the mounting structure 302, the hook catches the face plate 304 and prevents the luminaire 100 from rotating further. A person seeking to rotate the luminaire 100 further may bend the stem 310a inward a distance sufficient to allow the hook distal end 301d to pass the face plate 304. When rotating the luminaire 100 into the mounting structure, the angle of the hook 310b causes the stem 310a to deflect inward as the hook 310b slides past the face plate 304, allowing the hook 310b to pass the face plate 304 and spring back to an unbiased position after passing the face plate 304. While the mounting apparatus 300 is beneficial without the optional catch 310, the catch 310 is preferable for the above discussed benefits. Other embodiments of a catch are also contemplated.
One or more lock wings 312 are optionally mounted to one lock screw 314 each, which extends vertically through the luminaire 100 and the mounting plate 308 at a location adjacent to the second of the flanges 308b extending from the mounting plate 308 on a side opposite to the first of the flanges 308b from which the hinge flange 308c extends. In the depicted embodiment, the mounting apparatus 300 comprises two lock wings 312, each mounted to one lock screw 314. Each lock screw 314 comprises a head 314a located at the face of the luminaire 100, making the head 314a accessible when the mounting apparatus 300 is in the closed position depicted in
Each lock wing 312 comprises a lock arm 312a and a stop arm 312b connected by a bridge member 312c. In the depicted embodiment, the lock wing 312 is constructed of sheet metal bent into a U-shaped configuration in which the lock arm 312a constitutes one leg of the U, the stop arm 312b constitutes the other leg of the U and the bridge member 312c constitutes the base of the U. In the depicted embodiment, an optional strengthening flange 312d extends along and perpendicular to the lock arm 312a to provide structural rigidity to the lock arm 312. Each of the lock arm 312a and the stop arm 312b define a screw aperture 312e for allowing the screw shaft 314b to pass through. Optionally, one or both of the screw apertures 312e is threaded so that the lock wing 312 can be threaded onto the screw shaft 314b. Alternatively, or in addition, the lock wing 312 can be mounted to the screw shaft 314b by other means, such as, by way of example only, adhesive.
Each lock wing 312 is mounted on the screw shaft 314b at a distance from the screw head 314a that will locate the lock arm 312a slightly above the mounting structure face plate 304. In this configuration, each lock wing 312 can be rotated about the central axis of its corresponding screw 314 by rotating the screw head 314a of the corresponding screw 314. Rotating the lock wing 312 can bring the lock arm 312a over the mounting structure face plate 304 or over the aperture 306 defined in the mounting structure face plate 304. When the lock arm 312a is over the mounting structure face plate 304, the lock arm 312a prevents the luminaire 100 from rotating about the wings 308c″ of the hinge flange 308c, thus keeping the luminaire 100 secure to the mounting structure 302. However, when the lock arm 312a is over the aperture 306 defined in the mounting structure face plate 304, the luminaire 100 may freely rotate about the wings 308c″ of the hinge flange 308c, thus allowing access to the luminaire 100 or removal of the luminaire 100 from the mounting structure 100 (with the above described manipulation of the optional catch 310, if present). In this configuration, locking and unlocking the luminaire 100 to the mounting structure 302 requires only a ninety degree) (90°) rotation of the screw head 314a. The stop arm 312b assists a person seeking to lock the luminaire 100 to the mounting structure 302 by contacting the adjacent mounting plate flange 308b before the lock arm 312a has rotated too far. In this manner, the stop arm 312b stops rotation of the lock wing 312 at the appropriate location so that it does not continue rotation and end up over the face plate aperture 306. In the embodiment in which one or more of the screw apertures 312e of the lock wing 312 are threaded to the screw shaft 314b, the stop arm 312b prevents rotation of the lock wing 312 and continued advancement of the screw 314 would draw the lock wing 312 closer to the screw head 314a drawing the luminaire 100 closer to the mounting structure face plate 304, allowing a person to tighten the luminaire 100 up against the mounting structure face plate 304, or leave an gap there between at the option of the person.
Optionally, the driver and/or other utilities can be mounted to the mounting plate 308. In the depicted exemplary embodiment, the mounting plate 308 comprises a driver flange 308d extending upward from the mounting plate and the utilities are attached thereto. By extending the driver flange 308d upward of the mounting plate, the driver is separated from the luminaire housing to remove the heat of the utilities from the housing. The driver flange 308d may also act as a heat dissipation fin to dispel heat from the luminaire housing into the mounting apparatus 300.
As depicted in
In one embodiment, the bracket 400 is comprised of formed sheet metal. Other constructions are also contemplated. For example, the bracket could be formed from molded plastic.
The bracket body 404 is generally rectangular extending from end 404a to opposing end 404a. An aperture 404b extends through the middle of the body 404 and corresponds to the aperture 158 of the column 146 such that wiring 160, etc. extending from the aperture 158 in the column 146 may extend through the body aperture 404b when the body aperture 404b is located over the column 146. The body 404 extends laterally outward around the aperture 404b (in an arcuate formation in the depicted embodiment) in order to provide extra strength to the body 404 to compensate for the material lost to form the aperture 404b. The body 404 also comprises two fixing apertures 404c through which fixing hardware such as screws or the like (not depicted) may be inserted into a corresponding hole in the column 146 to facilitate securing the bracket 400 to the column 146.
The first leg 408 of each wing 406 extends downward from the body 404 at an angle A (as shown) with the distal end 408b angled outward slightly from the column an amount sufficient to permit the necessary inward flex discussed below. Each second leg 410 extends from the corresponding first leg 408 at an angle B (as shown) increasing the outward angle over that of the first leg 408 such that the second leg 408 is angled away from the column a greater amount than the first leg 408. In one embodiment, angle A is 95° and angle B is 140° such that the first leg 408 will form an angle of 5° with a vertical side of the column 146 and the second leg 410 will form an angle of 35° with a vertical side of the column 146. However, the bracket can perform its function with angle A in the range of 92° to 98° and angle B in the range of 137° to 143°, especially, although not exclusively, when the bracket 400 is constructed, for example, of 18 gauge T301 ½ hard stainless steel and the first leg 408 is 2.148 inches long and the second leg 410 is 1.202 inches long. Other lengths, angles, materials and gauges are contemplated.
The length of the body 404 is preferably constructed to be approximately the width of the column 146. In this configuration, the body 404 can be secured to the top of the column 146 and the wings 406 extend downward along the length of the column 146. In the depicted configuration, the body 404 is aligned along two opposing wings 148 of the column 146 such the body 404 rests on the wing tops 152 of the two opposing wings 148. The bracket wings 406 then extend downward along the circumferential walls of the column wings 148. In this configuration, the land 156 of the column wing 148 forms a void between the top of the column wing 148 and the bracket body 404.
The bracket wings 406 extend slightly outward from the column 146, the magnitude of which depends on angle A. As depicted in
The under curls 412 extend from the corresponding wing ends 410b and curl inward under the wing 406 from which it extends. In one embodiment, the under curl 412 curls inward and up to form an angle of 25° with the second leg 410. This inward and up curl creates a rounded surface that contacts the structure 210 when the end of the wing 410 encounters the structure 210 rather than a cut end of the wing 406. The curl under 412 prevents such an end from encountering the structure 210. Due to the manufacturing processes from which the bracket 400 is formed, such a cut end could comprise a sharp edge or a corner that might catch on the structure 210 as the legs spring outward after clearing the aperture 210a in the structure 210 or at other times when it may be desirable to have the bracket 400 slide over the structure 210. The rounded surface created by the under curls 412 allows the bracket ends to slide over the structure 210 rather than catch on it.
The mounting bracket 400 provides a simple manner of attaching a luminaire with a column, such as the luminaire 100, to the structure 210. Further mounting hardware may then be, although is not necessarily, applied to further secure the luminaire 100 to the structure 210 without need for an installer holding the luminaire 100. Rather, installation can then be accomplished by a single person inserting the luminaire 100 and bracket 400 through the structure aperture 210a, as described above, from the underside of the structure 210 and then relocating to the top of the structure to complete installation with the additional hardware, if necessary, without worry that the luminaire 100 will drop from the structure 210.
One exemplary embodiment of the grommet 402′ is depicted in
In the depicted embodiment, the column 146 comprises, as discussed above, four wings 148, each extending at 90° from the adjacent two wings 148. At least two opposing wings 148 of the four wings 148 define a land 156 from the center of the column 146 and along those wings 148 until a mounting boss 150 raises up from the land 156 at an outer end of those wings 148. The mounting bosses 150 extend upward and rise above the lands 156. Applying the grommet 402′ to this particular column 146, the grommet 402′ extends across the lands 156 of the two opposing wings 148 filling the space between the mounting bosses 150 of the two opposing wings. The sealing boss 402′g of the grommet 402′ contacts the center of the column 146 and the wings 402′b of the grommet 402′ extend outward along the wing land 156 of the column 146. The bracket 400 is sits over the end of the column 146 and the length of the bracket 400 is aligned along the length of the grommet 402′ such that the bracket body 404 is placed over the grommet body 402′a and both grommet wings 402′b. The bracket fixing apertures 404c align with fixing apertures 402′i in the grommet wings 402′b. Hardware (not depicted) securing the bracket 400 to the column 146 extends through the bracket fixing apertures 404c and the grommet fixing apertures 402′b into the column wing 148 in the land 156, compressing the grommet against the column to form a seal there between and between the bracket 400 and the grommet 402′. The thickness of the grommet is sized in conjunction with the height of the column mounting boss 150 over the column land 156 so that sufficient compression of the grommet 402′ will occur when the bracket 400 is mounted to the column 146, as described, to seal out elements such as rain and snow.
The LEDs of this exemplary embodiment can be of any kind, color (e.g., emitting any color or white light or mixture of colors and white light as the intended lighting arrangement requires) and luminance capacity or intensity, preferably in the visible spectrum. Color selection can be made as the intended lighting arrangement requires. In accordance with the present disclosure, LEDs can comprise any semiconductor configuration and material or combination (alloy) that produce the intended array of color or colors. The LEDs can have a refractive optic built-in with the LED or placed over the LED, or no refractive optic; and can alternatively, or also, have a surrounding reflector, e.g., that re-directs low-angle and mid-angle LED light outwardly. In one suitable embodiment, the LEDs are white LEDs each comprising a gallium nitride (GaN)-based light emitting semiconductor device coupled to a coating containing one or more phosphors. The GaN-based semiconductor device can emit light in the blue and/or ultraviolet range, and excites the phosphor coating to produce longer wavelength light. The combined light output can approximate a white light output. For example, a GaN-based semiconductor device generating blue light can be combined with a yellow phosphor to produce white light. Alternatively, a GaN-based semiconductor device generating ultraviolet light can be combined with red, green, and blue phosphors in a ratio and arrangement that produces white light (or another desired color). In yet another suitable embodiment, colored LEDs are used, such are phosphide-based semiconductor devices emitting red or green light, in which case the LED assembly produces light of the corresponding color. In still yet another suitable embodiment, the LED light board may include red, green, and blue LEDs distributed on the printed circuit board in a selected pattern to produce light of a selected color using a red-green-blue (RGB) color composition arrangement. In this latter exemplary embodiment, the LED light board can be configured to emit a selectable color by selective operation of the red, green, and blue LEDs at selected optical intensities. Clusters of different kinds and colors of LED is also contemplated to obtain the benefits of blending their output.
While certain embodiments have been described herein, it will be understood by one skilled in the art that the methods, systems, and apparatus of the present disclosure may be embodied in other specific forms without departing from the spirit thereof. For example, while aspects and embodiments herein have been described in the context of certain applications, the present disclosure is not limited to such.
Accordingly, the embodiments described herein, and as claimed in the attached claims, are to be considered in all respects as illustrative of the present disclosure and not restrictive.