1. Field
This application relates to luminaires, and more particularly, to luminaires with a pre-assembled light engine and lens.
2. Background Technology
Typical luminaires generally include an optical tray and LED boards that are mechanically attached to a housing of the luminaire. To install these luminaires, a lower lens of the luminaire is removed, the housing is mounted at a desired location, electrical connections to the luminaire are made, the optical tray is attached to the housing, and then the lower lens is attached to the housing. There is a need for luminaires that reduce the number of installation steps and thus facilitate ease of installation.
Described herein is a luminaire and a method of assembling the luminaire. In one aspect, the luminaire can comprise a housing and a light engine. In some aspects, the light engine is detachably secured to the housing and comprises a lens and an optical tray.
In a further aspect, the method of assembling the luminaire comprises the steps of: (a) pre-assembling a light engine by detachably securing an optical tray to a lens; and (b) detachably securing the light engine to a housing.
Various implementations described in the present disclosure can include additional systems, methods, features, and advantages, which can not necessarily be expressly disclosed herein but will be apparent to one of ordinary skill in the art upon examination of the following detailed description and accompanying drawings. It is intended that all such systems, methods, features, and advantages be included within the present disclosure and protected by the accompanying claims.
The features and components of the following figures are illustrated to emphasize the general principles of the present disclosure. Corresponding features and components throughout the figures can be designated by matching reference characters for the sake of consistency and clarity.
The present invention can be understood more readily by reference to the following detailed description, examples, drawings, and claims, and their previous and following description. However, before the present devices, systems, and/or methods are disclosed and described, it is to be understood that this invention is not limited to the specific devices, systems, and/or methods disclosed unless otherwise specified, and, as such, can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.
The following description of the invention is provided as an enabling teaching of the invention in its best, currently known embodiment. To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various aspects of the invention described herein, while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and can even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof.
As used throughout, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a band” can include two or more such bands unless the context indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
As used herein, the terms “optional” or “optionally” mean that the subsequently described event or circumstance can or can not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
The word “or” as used herein means any one member of a particular list and also includes any combination of members of that list. Further, one should note that conditional language, such as, among others, “can,” “could,” “might,” or “can,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain aspects include, while other aspects do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more particular aspects or that one or more particular aspects necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. Directional references such as “up,” “down,” “top,” “left,” “right,” “front,” “back,” and “corners,” among others are intended to refer to the orientation as illustrated and described in the figure (or figures) to which the components and directions are referencing.
Embodiments of the present invention relate to a light engine having an attached optical tray and lens, as well as to light fixtures or luminaires incorporating such light engines.
Referring to
It will further be appreciated that the luminaire 100 can be of any size and have a variety of different profiles and profile heights. As one non-limiting example, the luminaire 100 is approximately two feet long. In other examples, the luminaire 100 may be of any length. Embodiments of the luminaire 100 are may be more efficient than traditional luminaires. As a non-limiting example, the luminaire 100 according to one embodiment of the invention may be two feet long and emit 4000 lumens; traditionally, a four foot fluorescent fixture was required to achieve this output.
The housing 102 comprises a base 106, a sidewall 108, an outer surface 110, and an inner surface 1512 (illustrated in
The housing 102 may be constructed from various materials as desired. As one non-limiting example, in some embodiments, the housing 102 may be formed from a material that is compliant with UL 94-5VA flammability ratings, such as, but not limited to, flame resistant polymeric materials, metal, or glass. As another non-limiting example, the housing 102 may be constructed from a UL F1 rated material. In some examples, metal (e.g. steel, aluminum, etc.) or glass can be utilized to construct the housing. In other examples, polymeric materials such as, but not limited to SMC fiberglass, BMC fiberglass, polycarbonate, acrylonitrile butadiene styrene (ABS), polycarbonate blends, etc. can be utilized to construct the housing 102. In these examples using polymeric materials, in some aspects, the housing 102 can be formed through a compression molding or injection molding process. It will appreciated that other manufacturing process can also be used to construct the housing 102, including, but not limited to, machining, stamping, various types of molding, etc.
In some examples, as illustrated in
In the illustrated embodiment, housing fasteners 116 are provided along the sidewall 108 of the housing 102. In some examples, the housing fasteners 116 can be formed as part of the housing 102 or may be attached to the housing 102. It will be appreciated that the number or location of the housing fasteners 116 should not be considered limiting on the current disclosure. In one embodiment, the housing fasteners 116 are latches; however, in various other examples, the housing fasteners 116 can be any suitable mechanism suitable for detachably securing the light engine 104 to the housing 102, including, but not limited to, clips, clasps, hooks, snaps, pins, nuts and bolts, and various other fasteners. For example, in some embodiments, the housing fastener 116 can be latches (
The light engine 104 includes the lens 120 and an optical tray 222 (illustrated in
Referring to
The mounting support 228 may be made from any suitable metallic or polymeric material, but in some embodiments it is formed from a thermally conductive material so as to help dissipate the heat generated by the LEDs. For example, in some embodiments the mounting support 228 is formed from metal, such as aluminum or steel. In various examples, the mounting support 228 defines a plurality of bores 352 extending from the top surface 224 to the bottom surface 326 that can be utilized for securing various devices or structures to the mounting support 228.
The mounting support 228 may include flanges about the perimeter edge 240 for attachment to the lens 120 as well as the housing 102 (as discussed below). In one embodiment, at least one upstanding flange 242 is provided along at least a portion of the perimeter edge 240. The at least one upstanding flange 242 extends in an upward direction relative to the top surface 224. In some examples, the at least one upstanding flange 242 is substantially perpendicular to the top surface 224, although in other embodiments, the at least one upstanding flange 242 can be at various other angles relative to the top surface 224. In various embodiments, the at least one upstanding flange 242 defines at least one slot 244. In some examples, the at least one upstanding flange 242 is formed integrally with the mounting support 228; however, in various other examples, the at least one upstanding flange may be attached to the mounting support 228 through various attachment mechanisms.
In the present example, the mounting support 228 includes two upstanding flanges 242, although it will be appreciated that the number of upstanding flanges 242 should not be considered limiting on the current disclosure. In various examples with two upstanding flanges 242, the upstanding flanges 242 are at distal positions along the perimeter edge 240, although they need not be.
In some embodiments, the mounting support 228 optionally includes at least one downwardly extending flange 246 along at least a portion of the perimeter edge 240. In these examples, the at least one downwardly extending flange 246 extends in a downward direction relative to the bottom surface 326. In some examples, the at least one downwardly extending flange 246 is substantially perpendicular to the bottom surface 326, although in other embodiments, the at least one downwardly extending flange 246 can be at various other angles relative to the bottom surface 326. In some examples, the at least one downwardly extending flange 246 is formed integrally with the mounting support 228; however, in various other examples, the at least one downwardly extending flange 246 may be attached to the mounting support 228 through various attachment mechanisms.
In various examples, the at least one downwardly extending flange 246 includes a lip 248 extending outwardly from a bottom edge of the downwardly extending flange 246. In some examples, the lip 248 extends outwardly substantially perpendicular to the downwardly extending flange 246, although it need not in various other embodiments. In various cases, the a notch 250 is defined in a distal edge of the lip 248.
In the present example, the mounting support 228 includes two downwardly extending flanges 246, although it will be appreciated that the number of downwardly extending flanges 246 should not be considered limiting on the current disclosure. In various examples with two downwardly extending flanges 246, the downwardly extending flanges 246 are at distal positions along the perimeter edge 240. In these examples, the downwardly extending flanges 246 can be at positions between the upstanding flanges 242, although they need not be.
Referring to
In some examples, securing recesses 264 are provided on the lens 120, such as along the sidewall 256 of the lens 120. The number of securing recesses 264 and their location should not be considered limiting on the current disclosure. In some examples, the securing recesses 264 are partially defined by the base 254, although they need not be. In one non-limiting example and as described in more detail below, securing recesses 264 on the lens 120 engage with housing fasteners 116 on the housing 102 such that the lens 120 is detachably secured to the housing 102. In such case, the recesses 264 and fasteners 116 should be located on the lens 120 and housing 102, respectively, to allow such engagement.
In some examples, a ledge 662 having a ledge surface 668 extends from the inner surface of the sidewall 256 and into the lens cavity 266. The ledge 662 extends at least partially around the sidewall 256 within the lens cavity 266. In various examples, at least one tab 670 may be provided along the ledge 662. The number of tabs 670 should not be considered limiting on the current disclosure. In various examples with two tabs 670, the tabs 670 can be provided at distal locations on the ledge 662.
The lens 120 may be formed from any suitable material including, but not limited to acrylic, polycarbonate, silicone, and various other materials. Optionally, the lens 120 can include various optical enhancements including, but not limited to, ribbing, prisms, frosted appearance, and various other optical enhancements to achieve the desired light distribution and effect from the luminaire 100.
The light engine 104 is assembled with the optical tray 222 seated within the lens cavity 266. In various examples, the optical tray 222 is seated to rest at least partially on the ledge 662 of the lens 120 such that the lens 120 supports the optical tray 222. In embodiments where the optical tray 222 includes the at least one downwardly extending flange 246 having the lip 248, the underside of the lip 248 can be positioned to rest on the ledge 662. In some examples, the at least one downwardly extending flange 246 is positioned such that the at least one tab 670 engages the notch 250 of the lip 248. Engagement of the tab 670 in the notch 250, while optional, can help ensure proper positioning and registration of the optical tray 222 and lens 120, as well as prevent relative lateral and/or longitudinal translation between the optical tray 222 and lens 120.
The at least one downwardly extending flange 246 serves to distance the optical tray 222 from the base 254 of the lens 120 so as to ensure that the optical tray 222 is recessed to the desired degree within the lens cavity 262. For example and without limitation, the height of the at least one downwardly extending flange 246 may be tailored to achieve the desired recession depth. However, in various other embodiments where the at least one downwardly extending flange 246 is omitted, the bottom surface 326 of the optical tray 222 can rest directly on the ledge 662. It will be appreciated that various other configurations of tabs 670, flanges 242 and 246, lips 248, and notches 250 can also be present.
In various examples, the optical tray 222 is attached to the lens 120 to form the light engine 104. The optical tray 222 can be attached to the lens 120 through various attachment mechanisms including, but not limited to, mechanical fasteners, glues, adhesives, and various other attachment mechanisms. In one embodiment, the optical tray 222 is attached to the lens 120 through an adhesive tape. As a non-limiting example, double-sided tape, such as that sold under the trade name VHB™ by 3M™, is positioned on the underside of the optical tray 222 (for example, on the underside of the lip 248 that is positioned on the ledge 662 or on the bottom surface 326 of the mounting support 228) and engages the ledge 662 to secure the optical tray 222 and lens 120 together. In some cases with the adhesive tape, the adhesive tape selected can be tailored to meet the material surface requirements of the optical tray 222 and lens 120 as well as meet temperature ratings of the intended application of the luminaire 100. Once the light engine 104 is assembled, it is ready for incorporation into the housing 102 so as to form the luminaire 100.
Regardless of the type of luminaire 100, attachment of the optical tray 222 and lens 120 to each other facilitates installation and servicing of the luminaire 100. In traditional luminaires, the optical tray (with LEDs) and the lens historically have been separately attached to the housing. To install these traditional luminaires, the lens and optical tray were separately removed, the housing mounted, electrical connections were made, and then the optical tray and lens were separately re-attached. The luminaire 100 described above eliminates steps in this process by connecting the optical tray 222 and lens 120 to form the light engine 104 that can be removed and re-installed as a single unit. Moreover, the light engine 104 may be easily removed from the housing 102 for servicing, maintenance, and replacement. In some embodiments, a lanyard or tether may be provided between the housing 102 and the light engine 104. In such embodiments, the light engine 104 may not completely detach from the housing 102 during installation and servicing, but rather remains connected via the lanyard or tether.
Referring to
In other examples, electrical components may be mounted on the mounting support 228. For example, electrical components can be mounted on the top surface 224 or the bottom surface 326 of the mounting support 228. In some embodiments, the electrical components are mounted to the housing 102 and reside between the mounting support 228 and the housing 102 so as to thermally isolate the LEDs 1472 and the LED driver.
In various embodiments, the luminaire 100 includes interior fasteners 1574. The interior fasteners 1574 can be positioned within the housing cavity 1514. In various examples, the interior fasteners 1574 are formed integrally with the housing 102; however, in various other examples, the interior fasteners 1574 may be attached to the housing 102 through various attachment mechanisms. It will be appreciated that the number of interior fasteners 1574 or the location of the interior fasteners 1574 should not be considered limiting on the current disclosure. In the present example, the interior fasteners 1574 are spring clips; however, it will be appreciated that the interior fasteners 1574 can be screws, clips, spring clips, bolts, hooks, and various other suitable types of fasteners.
In some examples with interior fasteners 1574, the light engine 104 is positioned within the housing cavity 1514 such that the interior fasteners 1574 align with and engage the slots 244 in the upstanding flanges 242 of the mounting support 228 such that the light engine 104 effectively snap-fits into the housing 102. In these examples, the light engine 104 can be detachably secured to the housing 102 in addition to or in place of the housing fasteners 116.
A gasket or other sealing device may be interposed between the light engine 104 and the housing 102 to seal the inside of the luminaire 100 from dust, water, and other contaminants that can detrimentally impact its operation. The latches or other fastening structures disclosed herein—if used to secure the connection between the housing 102 and the light engine 104—can serve to compress the gasket so as to create a better seal.
While the light engine 104 is described and illustrated for use in a surface mounted or suspended luminaire 100, it can be used in other types of fixtures, including, but not limited to, wall-mounted luminaires 100. The light engine 104 may be provided in new luminaire housings or retrofitted into existing luminaire housings already installed in the field.
As illustrated in
Referring to
The foregoing is provided for purposes of illustrating, explaining, and describing embodiments of the present invention. Further modifications and adaptations to these embodiments will be apparent to those skilled in the art and may be made without departing from the scope or spirit of the invention. Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and subcombinations are useful and may be employed without reference to other features and subcombinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications can be made without departing from the scope of the invention.
It should be emphasized that the above-described aspects are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present disclosure. Many variations and modifications can be made to the above-described embodiment(s) without departing substantially from the spirit and principles of the present disclosure. All such modifications and variations are intended to be included herein within the scope of the present disclosure, and all possible claims to individual aspects or combinations of elements or steps are intended to be supported by the present disclosure. Moreover, although specific terms are employed herein, as well as in the claims which follow, they are used only in a generic and descriptive sense, and not for the purposes of limiting the described invention, nor the claims which follow.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/158,133, filed May 7, 2015 and entitled LIGHT ENGINES AND LIGHT FIXTURES INCORPORATING SAME, which is incorporated in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
62158133 | May 2015 | US |