Luminaires using waveguide bodies and optical elements

Information

  • Patent Grant
  • 11644157
  • Patent Number
    11,644,157
  • Date Filed
    Tuesday, September 29, 2020
    3 years ago
  • Date Issued
    Tuesday, May 9, 2023
    a year ago
Abstract
According to one aspect, a waveguide comprises a waveguide body having a coupling cavity defined by a coupling feature disposed within the waveguide body. A plug member comprises a first portion disposed in the coupling cavity and an outer surface substantially conforming to the coupling feature and a second portion extending from the first portion into the coupling cavity. The second portion includes a reflective surface adapted to direct light in the coupling cavity into the waveguide body.
Description
REFERENCE REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable


SEQUENTIAL LISTING

Not applicable


FIELD OF THE INVENTION

The present inventive subject matter relates to optical waveguides, and more particularly to optical waveguides for general lighting.


BACKGROUND OF THE INVENTION

An optical waveguide mixes and directs light emitted by one or more light sources, such as one or more light emitting diodes (LEDs). A typical optical waveguide includes three main components: one or more coupling elements, one or more distribution elements, and one or more extraction elements. The coupling component(s) direct light into the distribution element(s), and condition the light to interact with the subsequent components. The one or more distribution elements control how light flows through the waveguide and is dependent on the waveguide geometry and material. The extraction element(s) determine how light is removed by controlling where and in what direction the light exits the waveguide.


When designing a coupling optic, the primary considerations are: maximizing the efficiency of light transfer from the source into the waveguide; controlling the location of light injected into the waveguide; and controlling the angular distribution of the light in the coupling optic. One way of controlling the spatial and angular spread of injected light is by fitting each source with a dedicated lens. These lenses can be disposed with an air gap between the lens and the coupling optic, or may be manufactured from the same piece of material that defines the waveguide's distribution element(s). Discrete coupling optics allow numerous advantages such as higher efficiency coupling, controlled overlap of light flux from the sources, and angular control of how the injected light interacts with the remaining elements of the waveguide. Discrete coupling optics use refraction, total internal reflection, and surface or volume scattering to control the distribution of light injected into the waveguide.


After light has been coupled into the waveguide, it must be guided and conditioned to the locations of extraction. The simplest example is a fiber-optic cable, which is designed to transport light from one end of the cable to another with minimal loss in between. To achieve this, fiber optic cables are only gradually curved and sharp bends in the waveguide are avoided. In accordance with well-known principles of total internal reflectance light traveling through a waveguide is reflected back into the waveguide from an outer surface thereof, provided that the incident light does not exceed a critical angle with respect to the surface.


In order for an extraction element to remove light from the waveguide, the light must first contact the feature comprising the element. By appropriately shaping the waveguide surfaces, one can control the flow of light across the extraction feature(s). Specifically, selecting the spacing, shape, and other characteristic(s) of the extraction features affects the appearance of the waveguide, its resulting distribution, and efficiency.


Hulse U.S. Pat. No. 5,812,714 discloses a waveguide bend element configured to change a direction of travel of light from a first direction to a second direction. The waveguide bend element includes a collector element that collects light emitted from a light source and directs the light into an input face of the waveguide bend element. Light entering the bend element is reflected internally along an outer surface and exits the element at an output face. The outer surface comprises beveled angular surfaces or a curved surface oriented such that most of the light entering the bend element is internally reflected until the light reaches the output face.


Parker et al. U.S. Pat. No. 5,613,751 discloses a light emitting panel assembly that comprises a transparent light emitting panel having a light input surface, a light transition area, and one or more light sources. Light sources are preferably embedded or bonded in the light transition area to eliminate any air gaps, thus reducing light loss and maximizing the emitted light. The light transition area may include reflective and/or refractive surfaces around and behind each light source to reflect and/or refract and focus the light more efficiently through the light transition area into the light input surface of the light emitting panel. A pattern of light extracting deformities, or any change in the shape or geometry of the panel surface, and/or coating that causes a portion of the light to be emitted, may be provided on one or both sides of the panel members. A variable pattern of deformities may break up the light rays such that the internal angle of reflection of a portion of the light rays will be great enough to cause the light rays either to be emitted out of the panel or reflected back through the panel and emitted out of the other side.


Shipman, U.S. Pat. No. 3,532,871 discloses a combination running light reflector having two light sources, each of which, when illuminated, develops light that is directed onto a polished surface of a projection. The light is reflected onto a cone-shaped reflector. The light is transversely reflected into a main body and impinges on prisms that direct the light out of the main body.


Simon U.S. Pat. No. 5,897,201 discloses various embodiments of architectural lighting that is distributed from contained radially collimated light. A quasi-point source develops light that is collimated in a radially outward direction and exit means of distribution optics direct the collimated light out of the optics.


Kelly et al. U.S. Pat. No. 8,430,548 discloses light fixtures that use a variety of light sources, such as an incandescent bulb, a fluorescent tube and multiple LEDs. A volumetric diffuser controls the spatial luminance uniformity and angular spread of light from the light fixture. The volumetric diffuser includes one or more regions of volumetric light scattering particles. The volumetric diffuser may be used in conjunction with a waveguide to extract light.


Dau et al U.S. Pat. No. 8,506,112 discloses illumination devices having multiple light emitting elements, such as LEDs disposed in a row. A collimating optical element receives light developed by the LEDs and a light guide directs the collimated light from the optical element to an optical extractor, which extracts the light.


A.L.P. Lighting Components, Inc. of Niles, Ill., manufactures a waveguide having a wedge shape with a thick end, a narrow end, and two main faces therebetween. Pyramid-shaped extraction features are formed on both main faces. The wedge waveguide is used as an exit sign such that the thick end of the sign is positioned adjacent a ceiling and the narrow end extends downwardly. Light enters the waveguide at the thick end and is directed down and away from the waveguide by the pyramid-shaped extraction features.


Low-profile LED-based luminaires have recently been developed (e.g., General Electric's ET series panel troffers) that utilize a string of LED elements directed into the edge of a waveguiding element (an “edge-lit” approach). However, such luminaires typically suffer from low efficiency due to losses inherent in coupling light emitted from a predominantly Lambertian emitting source such as a LED element into the narrow edge of a waveguide plane.


SUMMARY OF THE INVENTION

According to one aspect, a waveguide comprises a waveguide body having a coupling cavity defined by a coupling feature disposed within the waveguide body. A plug member comprises a first portion disposed in the coupling cavity and an outer surface substantially conforming to the coupling feature and a second portion extending from the first portion into the coupling cavity. The second portion includes a reflective surface adapted to direct light in the coupling cavity into the waveguide body.


According to another aspect, a luminaire, comprises a waveguide body having a lateral extent defined by a first face and a second face opposite the first face. A coupling cavity extends in a depth dimension of the waveguide body transverse to the lateral extent and is defined by a plurality of light coupling features that extend between the first and second faces. At least one of the light coupling features has a first portion that extends laterally into the waveguide body to an extent greater than an extent to which a second portion of the at least one light coupling feature extends laterally into the waveguide body. A plurality of LED's is disposed in the coupling cavity.


According to yet another aspect, a luminaire comprises a waveguide body having an interior coupling cavity extending into a portion of the waveguide body remote from an edge thereof. An LED element extends into the interior coupling cavity and comprises first and second sets of LEDs wherein each LED of the first set comprises a first color LED and each LED of the second set comprises a second color LED. The second color LEDs are disposed between the first color LEDs and the first color LEDs have a first height and the second color LEDs have a second height less than the first height. The LED element further includes a lens disposed over the first and second sets of LEDs.


According to further aspect, a luminaire comprises a waveguide body having and interior coupling cavity, and an LED element extending into the interior coupling cavity. The interior coupling cavity extends into a portion of the waveguide body from an edge thereof and includes at least one scalloped surface.


Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description and the attached drawings wherein like numerals designate like structures throughout the specification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a first embodiment of a luminaire incorporating one or more waveguides;



FIG. 1A is an isometric view of a second embodiment of a luminaire incorporating one or more waveguides;



FIG. 2 is a sectional view taken generally along the lines 2-2 of FIG. 1;



FIGS. 3A, 3B, and 3C are fragmentary, enlarged, isometric views of the first embodiment of FIG. 1 illustrating various extraction features;



FIG. 4 is an enlarged, isometric view of the plug member of FIG. 1;



FIG. 5 is an elevational view of the LED element used in the luminaire of FIG. 1;



FIG. 6 is an elevational view of the LED element disposed in a first alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 7 is an enlarged, isometric view of a first alternative plug member that may be used in the coupling cavity of FIG. 6;



FIG. 8 is an elevational view of the LED element disposed in a second alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 9 is an enlarged, isometric view of a second alternative plug member that may be used in the coupling cavity of FIG. 8;



FIG. 10 is an elevational view of the LED element disposed in a third alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 11 is an elevational view of the LED element disposed in a fourth alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 12 is an enlarged, isometric view of a third alternative plug member that may be used in the coupling cavities of FIGS. 11 and 13;



FIG. 13 is an elevational view of the LED element disposed in a fifth alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 14 is an elevational view of the LED element disposed in a sixth alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 15 is an elevational view of the LED element disposed in a seventh alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIG. 16 is a fragmentary, enlarged, elevational view of a portion of the LED element disposed in the seventh alternative coupling cavity of FIG. 15;



FIG. 16A is an elevational view of an eighth alternative coupling cavity that may be incorporated in the luminaire of FIG. 1;



FIGS. 17 and 18 are elevational views of first and second alternative LED elements that may be used in any of the luminaires disclosed herein;



FIG. 18A is an elevational view of yet another alternative LED element that may be used in any of the luminaires disclosed herein;



FIGS. 19 and 20 are isometric and elevational views, respectively, of the luminaire of FIG. 1 utilizing a masking element;



FIG. 21 is an isometric view of a waveguide having redirection features;



FIG. 22 is an enlarged, fragmentary, isometric view of the redirection features of the waveguide of FIG. 21;



FIG. 23 is an enlarged, isometric view of the waveguide of FIG. 21 with a portion broken away;



FIG. 24 is an isometric view of a waveguide having first alternative redirection features;



FIG. 25 is a sectional view of the waveguide having first alternative redirection features taken generally along the lines 25-25 of FIG. 24;



FIG. 26 is an elevational view of the waveguide having first alternative redirection features during fabrication;



FIG. 27 is an elevational view of a waveguide having second and third alternative redirection features;



FIG. 28 is a diagrammatic fragmentary side elevational view of a further embodiment;



FIG. 28A is a diagrammatic plan view of the embodiment of FIG. 28;



FIG. 29 is an isometric view of a waveguide according to yet another embodiment;



FIG. 30 is a sectional view taken generally along the lines 30-30 of FIG. 29;



FIG. 31 is a fragmentary sectional view according to still another embodiment;



FIG. 32 is a side elevational view of an LED element including a lens;



FIG. 33 is a plan view of a further alternative coupling cavity;



FIG. 34 is a plan view of yet another alternative coupling cavity; and



FIG. 35 is a sectional view taken generally along the lines 35-35 of FIG. 33.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Some of the devices described herein utilize a “back-lit” approach in which one or more LED element(s) are located at least partially within one or more coupling cavities each in the form of a hole or depression in a waveguide body. In the embodiment shown in the figures, the coupling cavity extends fully through the waveguide body, although the coupling cavity may extend only partially through the waveguide body. A plug member disposed at least partially in the coupling cavity or formed integrally with the waveguide body to define the coupling cavity diverts light into the waveguide body. Light extraction features may be disposed in or on one or more surfaces of the waveguide body. A diffuser may be disposed adjacent the waveguide body proximate the plug member(s). In such an arrangement, light emitted by the LED element(s) is efficiently coupled into the waveguide body with a minimum number of bounces off of potentially absorbing surfaces, thus yielding high overall system efficiency. This arrangement also offers additional potential benefits in that multiple LED elements may be placed apart at greater distances, thereby reducing the need for costly and bulky heat sinking elements. Further, this approach is scalable in that the distance that light must travel through the waveguide body may be effectively constant as the luminaire size increases.


In the back-lit approach described in the immediately preceding paragraph, it is desirable that the proper amount of light is transmitted through each plug member such that the local region on the diffuser aligned with the plug member shows neither a bright nor a dark spot, nor a spot with a color that differs noticeably from the surrounding regions. Because the volume of the plug member is generally small, it is necessary to provide the plug member with a high degree of opacity, which can be achieved by incorporating highly scattering particles that are typically small in diameter in the material of the plug member. However, small particle diameter typically leads to preferential scattering of short wavelength (blue) light. As a result, the light transmitted through the plug member may have a noticeable yellowish tint, which is typically undesirable.


Further, there exist practical limits on the amount of scattering material that may be incorporated into the plug member. As a result, it may not be possible to achieve sufficient opacity without high absorption using scattering particles that are incorporated into the plug member material. Finally, in regions where the plug member is in contact with the sidewall of the coupling cavity, the index of refraction difference interface at the surface of the cavity may be interrupted, thereby allowing light to transmit from the plug member into the waveguide but not subject to refraction necessary to ensure total TIR within the waveguide.


Still further, a number of LEDs of the same color together comprising an LED element may be disposed in one or more of the coupling cavities. Alternatively, a number of LEDs not all of the same color and together comprising a multi-color LED element may be used in one or more of the coupling cavities of the luminaire in order to achieve a desired lighting effect, such as a particular color temperature. In the former case, a non-uniform intensity of light may be produced. In the latter case, a multi-color LED element may be subject to non-uniform color distribution at high angles, leading to non-uniformity in the color and intensity of output luminance. A non-uniform color distribution also may result from a multi-color LED element having different color LEDs with varying heights. For example, a multi-color LED element may include one or more red LEDs surrounded by a plurality of blue-shifted yellow LEDs. Each red LED has a height that is less than a height of the surrounding blue-shifted yellow LEDs. The light emitted from the red LED, therefore, is obstructed at least in part by the blue-shifted yellow LED, such that the light emanating from the LED element is not uniform. In addition to height differences, differences in the nature of the red and blue-shifted yellow LEDs affect the way the light is emitted from the respective LED.


According to an aspect of the present invention, the coupling cavities may have any of a number of geometries defined by surfaces that promote redirection of the light rays (e.g., through refraction) to better mix the light rays developed by the LEDs. Other design features are disclosed herein according to other aspects that promote light mixing and/or color and/or light intensity uniformity. Thus, for example, some embodiments comprehend the use of a thin reflective layer, such as a metal layer, on a portion of each plug member wherein the layer is of appropriate thickness to allow sufficient light to transmit without substantial shift in color.


Other embodiments relate to the fabrication and surface smoothness of the surface(s) defining the cavity or cavities, change in LED position and/or other modifications to the LED(s) or LED element(s), use of internal TIR features inside the waveguide body, and/or use of one or more masking elements to modify luminance over the surface of the luminaire module.


Specifically, FIGS. 1 and 2 illustrate a low profile luminaire 30 utilizing one or more back-lit waveguide luminaire portions 32a-32d to spread light uniformly. Each waveguide luminaire portion 32a-32d is joined or secured to other portions 32 by any suitable means, such as a frame 34 including outer frame members 36a-36d and inner frame members 36e-36g that are secured to one another in any suitable manner. One or more of the frame members may be coated with a reflective white or specular coating or other material, such as paper or a scattering film, on surfaces thereof that abut the portions 32. Alternatively, the luminaire portions 32 may abut one another directly, or may be separated from one another by an air gap, an optical index matching coupling gel, or the like. In these latter embodiments, the luminaire portions 32 may be secured together by any suitable apparatus that may extend around all of the portions 32 and/or some or all of the individual portions 32. In any event, the luminaire 30 may comprise a troffer sized to fit within a recess in a dropped ceiling, or may have a different size and may be suspended from a ceiling, either alone or in a fixture or other structure. The luminaire 30 is modular in the sense that any number of luminaire portions 32 may be joined to one another and used together. Also, the size of each luminaire portion 32 may be selected so that the luminaire portions may all be of a small size (e.g., about 6 in by 6 in or smaller), a medium size (e.g., about 1 ft by 1 ft), or a large size (e.g., about 2 ft by 2 ft or larger), or may be of different sizes, as desired. For example, as seen in FIG. 1A, an alternative luminaire 30-1 may have one large luminaire portion 32a-1 of a size of about 2 ft by 2 ft, a medium luminaire portion 32b-1 of a size of about 1 ft by 1 ft, and four small luminaire portions 32c-1 through 32c-4 each of a size of about 6 in by 6 in, wherein the luminaire portions 32 are maintained in assembled relation by a frame 34 comprising frame members 36a-1 through 36a-4 and 36b-1 through 36b-5. (The luminaire portion sizes noted above are approximate in the sense that the frame dimensions are not taken into account.) Any other overall luminaire size and/or shape and/or combinations of luminaire portion size(s), number(s), and relative placement are possible.


As seen in FIG. 2, each luminaire portion 32 includes a base element in the form of a substrate 52 having a base surface 56. If desired, the base surface 56 may be covered or coated by a reflective material, which may be a white material or a material that exhibits specular reflective characteristics. A light source 60 that may include one or more light emitting diodes (LEDs) is mounted on the base surface 56. The light source 60 may be one or more white or other color LEDs or may comprise multiple LEDs either mounted separately or together on a single substrate or package including a phosphor-coated LED either alone or in combination with at least one color LED, such as a green LED, a yellow or amber LED, a red LED, etc. In those cases where a soft white illumination is to be produced, the light source 60 typically includes one or more blue shifted yellow LEDs and one or more red LEDs. Different color temperatures and appearances could be produced using other LED combinations, as is known in the art. In one embodiment, the light source comprises any LED, for example, an MT-G LED element incorporating TrueWhite® LED technology or as disclosed in U.S. patent application Ser. No. 13/649,067, filed Oct. 10, 2012, entitled “LED Package with Multiple Element Light Source and Encapsulant Having Planar Surfaces” by Lowes et al., (Cree docket no. P1912US1-7), the disclosure of which is hereby incorporated by reference herein, both as developed by Cree, Inc., the assignee of the present application. In any of the embodiments disclosed herein the LED(s) have a particular emission distribution, as necessary or desirable. For example, a side emitting LED disclosed in U.S. Pat. No. 8,541,795, the disclosure of which is incorporated by reference herein, may be utilized inside the waveguide body. More generally, any lambertian, symmetric, wide angle, preferential-sided, or asymmetric beam pattern LED(s) may be used as the light source.


The light source 60 is operated by control circuitry (not shown) in the form of a driver circuit that receives AC or DC power. The control circuitry may be disposed on the substrate 52 or may be located remotely, or a portion of the control circuitry may be disposed on the substrate and the remainder of the control circuitry may be remotely located. In any event, the control circuitry is designed to operate the light source 60 with AC or DC power in a desired fashion to produce light of a desired intensity and appearance. If necessary or desirable, a heat exchanger (not shown) is arranged to dissipate heat and eliminate thermal crosstalk between the LEDs and the control circuitry. Preferably, the light source 60 develops light appropriate for general illumination purposes including light similar or identical to that provided by an incandescent, halogen, or other lamp that may be incorporated in a down light, a light that produces a wall washing effect, a task light, a troffer, or the like.


A waveguide 70 has a main body of material 71 (FIG. 2), which, in the illustrated embodiment, has a width and length substantially greater than an overall thickness d thereof and, in the illustrated embodiment, is substantially or completely rectangular or any other shape in a dimension transverse to the width and thickness (FIG. 1). Preferably, the thickness d may be at least about 500 microns, and more preferably is between about 500 microns and about 10 mm, and is most preferably between about 3 mm and about 5 mm. The waveguide body 71 may be made of any suitable optical grade material including one or more of acrylic, air, molded silicone, polycarbonate, glass, and/or cyclic olefin copolymers, and combinations thereof, particularly (although not necessarily) in a layered arrangement to achieve a desired effect and/or appearance.


In the illustrated embodiment, the waveguide body 71 has a constant thickness over the width and length thereof, although the body 71 may be tapered linearly or otherwise over the length and/or width such that the waveguide body 71 is thinner at one or more edges than at a central portion thereof. The waveguide body 71 further includes a first or outer side or surface 71a, a second opposite inner side or surface 71b, and an interior coupling cavity 76. The interior coupling cavity 76 is defined by a surface 77 that, in the illustrated embodiment, extends partially or fully through the waveguide 70 from the first side toward the second side. Also in some of the illustrated embodiments, the surface 77 defining the cavity 76 is preferably (although not necessarily) normal to the first and second sides 71a, 71b of the waveguide 70 and the cavity 76 is preferably, although not necessarily, centrally located with an outer surface of the main body of material 71. In some or all of the embodiments disclosed herein, the surface 77 (and, optionally, the surfaces defining alternate cavities described herein) is preferably polished and optically smooth. Also preferably, the light source 60 extends into the cavity 76 from the first side thereof. Still further in the illustrated embodiment, a light diverter of any suitable shape and design, such as a conical plug member 78, extends into the cavity 76 from the second side thereof. Referring to FIGS. 2-4, in a first embodiment, the surface 77 is circular cylindrical in shape and the conical plug member 78 includes a first portion 80 that conforms at least substantially, if not completely, to the surface 77 (i.e., the first portion 80 is also circular cylindrical in shape) and the first portion 80 is secured by any suitable means, such as, an interference or press fit or an adhesive, to the surface 77 such that a second or conical portion 82 of the plug member 78 extends into the cavity 76. Preferably, although not necessarily, the conformance of the outer surface of the first portion 80 to the surface 77 is such that no substantial gaps exist between the two surfaces where the surfaces are coextensive. Still further, if desired, the conical plug member 78 may be integral with the waveguide body 71 rather than being separate therefrom. Further, the light source 60 may be integral with or encased within the waveguide body 71, if desired. In the illustrated embodiment, the first portion 80 preferably has a diameter of at least 500 um, and more preferably between about 1 mm and about 20 mm, and most preferably about 3 mm. Further in the illustrated embodiment, the first portion 80 has a height normal to the diameter of at least about 100 um, and more preferably between about 500 um and about 5 mm, and most preferably about 1 mm. Still further in the illustrated embodiment, the second portion 82 forms an angle relative to the portion 80 of at least about 0 degrees, and more preferably between about 15 degrees and about 60 degrees, and most preferably about 20 degrees. The plug member 78 may be made of white polycarbonate or any other suitable transparent or translucent material, such as acrylic, molded silicone, polytetrafluoroethylene (PTFE), Delrin® acetyl resin, or any other suitable material. The material of the plug member 78 may be the same as or different than the material of the waveguide body 71.


In all of the embodiments disclosed herein, one or more pluralities of light extraction features or elements 88 may be associated with the waveguide body 71. For example one or more light extraction features 88 may be disposed in one or both sides or faces 71a, 71b of the waveguide body 71. Each light extraction feature 88 comprises a wedge-shaped facet or other planar or non-planar feature (e.g., a curved surface such as a hemisphere) that is formed by any suitable process, such as embossing, cold rolling, or the like, as disclosed in U.S. patent application Ser. No. 13/842,521. Preferably, in all of the embodiments disclosed herein the extraction features are disposed in an array such that the extraction features 88 are disposed at a first density proximate the cavity and gradually increase in density or size with distance from the light source 60, as seen in U.S. patent application Ser. No. 13/842,521. In any of the embodiments disclosed herein, as seen in FIGS. 3A and 3B, the extraction features may be similar or identical to one another in shape, size, and/or pitch (i.e., the spacing may be regular or irregular), or may be different from one another in any one or more of these parameters, as desired. The features may comprise indents, depressions, or holes extending into the waveguide, or bumps or facets or steps that rise above the surface of the waveguide, or a combination of both bumps and depressions. Features of the same size may be used, with the density of features increasing with distance from the source, or the density of features may be constant, with the size of the feature increasing with distance from the source and coupling cavity. For example, where the density of the extraction features is constant with the spacing between features of about 500 microns, and each extraction feature comprises a hemisphere, the diameter of the hemisphere may be no greater than about 1 mm, more preferably no greater than about 750 microns, and most preferably no greater than about 100 microns. Where each extraction feature comprises a shape other than a hemisphere, preferably the greatest dimension (i.e., the overall dimension) of each feature does not exceed about 1 mm, and more preferably does not exceed about 750 microns, and most preferably does not exceed about 100 microns. Also, the waveguide body 71 may have a uniform or non-uniform thickness. Irrespective of whether the thickness of the waveguide body 71 is uniform or non-uniform, a ratio of extraction feature depth to waveguide body thickness is preferably between about 1:10,000 and about 1:2, with ratios between about 1:10,000 and about 1:10 being more preferred, and ratios between about 1:1000 and about 1:5 being most preferred.


It should also be noted that the extraction features may be of differing size, shape, and/or spacing over the surface(s) of the waveguide body so that an asymmetric emitted light distribution is obtained. For example, FIG. 3C illustrates an arrangement wherein a relatively large number of extraction features 88a are disposed to the left of the coupling cavity 76 and a relatively small number of extraction features 88b are disposed to the right of the coupling cavity 76. As should be evident, more light is extracted from the left side of the waveguide body 71 and relatively less light is extracted from the right side of the waveguide body 71.


In all of the embodiments disclosed herein, the waveguide body may be curved, thereby obviating the need for some or all of the extraction features. Further, a diffuser 90 (FIG. 2) is preferably (although not necessarily) disposed adjacent the side 71a of the waveguide body 71 and is retained in position by any suitable means (not shown).


In the first embodiment, and, optionally, in other embodiments disclosed herein, the second portion 82 of the plug member 78 is coated with a reflecting material using any suitable application methodology, such as a vapor deposition process. Preferably, a thin reflective layer, such as a metal layer of particles, of appropriate layer thickness is uniformly disposed on the conical portion 82 to allow sufficient light to transmit through the plug member 78 so that development of a visually observable spot (either too bright or too dark or color shifted with respect to surrounding regions) is minimized at an outer surface of the diffuser 90 adjacent the plug member 78. In the preferred embodiment the metal layer comprises aluminum or silver. In the case of silver, the reflective layer preferably has a thickness of no greater than about 100 nm, and more preferably has a thickness between about 10 nm and about 70 nm, and most preferably has a thickness of about 50 nm. In the case of aluminum, the reflective layer preferably has a thickness of no greater than about 100 nm, and more preferably has a thickness between about 10 nm and about 50 nm, and most preferably has a thickness of about 30 nm.


In any of the embodiments disclosed herein the second portion 82 of the plug member 78 may be non-conical and may have a substantially flat shape, a segmented shape, a tapered shape, an inclined shape to direct light out a particular side of the waveguide body 71, etc.


In alternate embodiments, as seen in FIGS. 6-16, the plug member 78 has a first portion of any other suitable noncircular shape, including a symmetric or asymmetric shape, as desired, and a second portion preferably (although not necessarily) of conical shape as noted above. The coupling cavity may also (although it need not) have a noncircular shape or the shape may be circular where the first portion 80 is disposed and secured (in which case the first portion 80 is circular cylindrical) and the shape of the coupling cavity may be noncircular in other portions (i.e., at locations remote from the first portion 80).


Specifically referring to FIGS. 6 and 7, a first alternative cavity 100 is illustrated in a waveguide body 71 wherein the cavity 100 is defined by four surfaces 102a-102d. Preferably, the four surfaces 102 are normal to the upper and lower sides 71a, 71b and together define a quadrilateral shape, most preferably, a square shape in elevation as seen in FIG. 6. Each of the surfaces 102 preferably has a side-to-side extent (as seen in FIG. 6) of no less than about 500 um, and more preferably between about 1 mm and 20 mm, depending upon the size of the LED element. The LED light source 60 is disposed in the cavity 100, similar or identical to the embodiment of FIG. 3. A plug member 104 includes a first portion 106 that conforms at least substantially, if not fully, as described in connection with the embodiment of FIG. 3, to the preferably square shape defined by the surfaces 102. Each of the surfaces defining the first portion 106 has a height of no less than about 100 um, and more preferably between about 500 um and 5 mm, and most preferably about 1 mm. The plug member 104 further includes a conical second portion 108 similar or identical to the portion 82 of FIG. 3 both in shape and dimensions. The plug member 104 is otherwise identical to the plug member 78 and, in all of the embodiments disclosed in FIGS. 6-18, the second portion 108 may be coated with the metal layer as described in connection with the plug member 78. The first portion 106 is disposed and retained within the cavity 100 in any suitable manner or may be integral therewith such that the second portion 108 is disposed in the cavity 100 facing the light source 60, as in the embodiment of FIG. 3. Preferably, the surfaces 102 are disposed at 45 degree angles with respect to edges or sides 114a, 114b, 114c, and 114d, respectively, of an LED element 114 comprising the light source 60. Referring to FIG. 5, the illustrated LED element 114 comprises six blue-shifted yellow LEDs 118a-118f disposed in two rows of three LEDs located adjacent the edges or sides 114a, 114c. Three red LEDs 120a-120c are disposed in a single row between the two rows of blue-shifted LEDs 118. (The embodiments of FIGS. 6-18 are illustrated with the LED 114 element disposed in the same orientation as that illustrated in FIG. 6). The light from the LEDs 118 and 120 is mixed by the interaction of the light rays with the index of refraction interface at the surfaces 102 so that the ability to discern separate light sources is minimized.



FIGS. 8-10 illustrate embodiments wherein a star-shaped cavity 130 is formed in the waveguide body 71 and a star shaped plug member 132 is retained within the star shaped cavity. Thus, for example, FIG. 8 a star-shaped cavity 130-1 having eight equally spaced points 130a-130h is formed in the waveguide body 71 such that points 130a, 130c, 130e, and 130g are aligned with the sides 114a, 114b, 114c, and 114d, respectively, of the LED element 114. FIG. 10 illustrates a cavity 130-2 identical to the cavity 130-1 of FIG. 8 except that the cavity 130-2 is rotated 22.5 degrees counter-clockwise relative to the cavity 130-1. In both of the embodiments of FIGS. 8-10 the plug member 132 includes a first portion 134 that substantially or completely conforms to the walls defining the cavity 130. In this embodiment, the cavity 130 and plug member 132 have sharp points.



FIGS. 11-13 illustrate embodiments identical to FIGS. 8-10 with the exception that eight-pointed cavities 150-1 and 150-2 and plug member 152 have rounded or filleted points. Preferably, each fillet has a radius of curvature between about 0.1 mm and about 0.4 mm, and more preferably has a radius of curvature between about 0.2 mm and 0.3 mm, and most preferably has a radius of curvature of about 0.25 mm.


Of course, any of the embodiments disclosed herein may have a different number of points, whether sharp pointed or rounded, or a combination of the two. FIGS. 14-16 illustrate embodiments of cavities 170, 190 (and corresponding first portions of associated plug members) having relatively large numbers of points (16 points in FIG. 14, 32 points in FIGS. 15 and 16) of different shapes and sizes. In these alternative embodiments, the star shaped coupling cavity includes a first plurality of points 172 (FIG. 14) and a second plurality of points 174, and the first plurality of points 172 have a different shape than the second plurality of points 174. Thus, the coupling cavity is defined by a first set of surfaces 176a-176d (defining the first plurality of points 172) that direct a first distribution of light into the waveguide body and a second set of surfaces 178a-178d (defining the second plurality of points 174) that direct a second distribution of light different than the first distribution of light into the waveguide body. In these embodiments, the angles of the surfaces with respect to the central axis impact the luminance uniformity and color mixing of the light emitted from the light source. In particular, light uniformity and color mixing improve as the angled surface(s) of the coupling cavity become increasingly parallel with light rays (within Fresnel scattering angular limits, as should be evident to one of ordinary skill in the art), thus maximizing the angle of refraction, and hence light redirection, as the rays traverse the interface between the low index of refraction medium (air) and the higher index of refraction medium (the waveguide). While light uniformity and color mixing may be enhanced using complex shapes, such benefit must be weighed against the difficulty of producing such shapes.


In each of the embodiments of FIGS. 8, 10, 11 and 13-16, each cavity may have radially maximum size (i.e., the distance between a center or centroid (in the case of noncircular coupling cavity shapes) of the cavity and an outermost portion of the surface(s) defining the cavity) of at least about 100 um, and more preferably between about 1 mm and no more than about 50 mm, and most preferably between about 3 mm and about 20 mm. Further, each cavity may have radially minimum size (i.e., the distance between a center or centroid of the cavity and an innermost portion of the surface(s) defining the cavity) of at least about 100 um, and more preferably between about 1 mm and about 50 mm, and most preferably between about 3 mm and about 20 mm. (The term “centroid” as used herein is defined as the center of gravity of an imaginary mass of constant thickness and uniform density fully occupying the coupling cavity.)


The first and second portions of the plug members of FIGS. 9 and 12 (and plug members that may be used with FIGS. 14 and 15) may be identical to the plug members described previously, with the exception of the outside shape of the first portion, as should be evident.


Ray fan and full simulation analyses of the embodiments shown in FIGS. 6-16 were performed to compare color mixing, luminance, and efficiency of waveguides having various shapes of coupling cavities with the design shown in FIGS. 2-4. Ray fan simulations of LED elements within various-shaped coupling cavities demonstrated the color mixing of light rays emitted horizontally from the LED into the waveguide. Full simulations of LED elements within various shaped coupling cavities demonstrated the color mixing, luminance, and efficiency of light rays emitted from the LED into the waveguide having extraction features. LightTools 8.0 by Synopsys was utilized to perform the simulations, although other software known in the art, such as Optis by Optis or Radiant Zemax by Zemax, may be used.


It should be noted that the coupling cavity may have an asymmetric shape, if desired. FIG. 16A illustrates a triangular coupling cavity 179 defined by three coupling features 179a-179c that extend at least partially between upper and lower surfaces of a waveguide body 180. The cavity 179 has an asymmetric triangular shape with respect to a centroid 181. Although not shown, one or more LEDs and a light diverter extend into the coupling cavity 179 as in the other embodiments disclosed herein.


In embodiments disclosed herein, a coupling cavity is defined by one or more coupling features that extend between the first and second faces wherein at least one of the coupling features extends into the waveguide body to a lateral extent transverse to a depth dimension greater than a lateral extent to which another of the waveguide features extends into the waveguide body. Thus, for example, as seen in FIG. 16A, the coupling feature 179a includes at least one portion 179a-1 that is disposed to a greater extent farther into the waveguide body 180 than portions 179c-1 and 179c-2 of the feature 179c. The same is true of other embodiments. Further, where the coupling surfaces do not extend fully through the waveguide body, the resulting blind cavity may have one or more shaped cavity base surface(s) or a planar cavity base surface and the cavity base surface(s) may (but need not) be coated with a reflective and/or partially light transmissive material, if desired.


Referring next to FIGS. 17 and 18, the placement of LEDs on the substrate can be modified to enhance color mixing. FIG. 17 illustrates an embodiment in which the red LEDs 120 are reduced in number to two LEDs 120a, 120b. FIG. 18 illustrates an embodiment wherein the blue shifted yellow LEDs 118 comprise first and second single LEDs 118a, 118c disposed adjacent the edges or sides 114a, 114c and first and second pairs of LEDs 118b1, 118b2 and 118d1, 118d2, adjacent the sides 114b, 114d, respectively. Two red LEDs 120a, 120b are disposed between the LEDs 118 remote from the edges or sides 114. FIG. 18A illustrates an embodiment in which the LEDs 118, 120 are disposed in a checkerboard pattern with the red LEDs 120 being disposed between the blue-shifted LEDs 118.


In addition to the foregoing, the shape or other characteristic of any optics in the path of light may be varied. More particularly, a modified primary or secondary lens 192 (FIG. 32) may be used in conjunction with the LED light source 60 to further improve the luminance and/or color uniformity of the light emitted from the surface of the waveguide. In any embodiment, the primary LED light source lens may be varied and optimized to use refraction or scattering to direct light into preferred directions prior to entering the coupling cavity, thereby improving uniformity. The orientation and/or shape of the LED element relative to the surface(s) defining the coupling cavity may also be varied and optimized to improve light mixing. The lens 192 and/or any of the waveguides disclosed herein may be formed with one or more materials in accordance with the teachings of either U.S. patent application Ser. No. 13/843,928, filed Mar. 15, 2013, entitled “Multi-Layer Polymeric Lens and Unitary Optic Member for LED Light Fixtures and Method of Manufacture” by Craig Raleigh et al., (Cree docket no. P1988US1), or U.S. patent application Ser. No. 13/843,649, filed Mar. 15, 2013, entitled “One-Piece Multi-Lens Optical Member and Method of Manufacture” by Craig Raleigh et al., (Cree docket no. P2026US1), the disclosures of which are hereby incorporated by reference herein. If desired, a scatterer, which may be effectuated by scattering particles coated on or formed within the lens 192, may be provided to further mix the light developed by the LEDs.


Non-uniform illuminance by the luminaire 30 may be addressed by securing a masking element 210 to the diffuser 90 to obscure bright spots, as seen in FIGS. 19 and 20. The masking element 210 may have any desired shape, may comprise single or multiple sub-elements, and/or may be translucent or opaque. The masking element may be made of any desired material, and should minimize the absorption of light.


In the illustrated embodiment, the light emitted out the waveguide body is mixed such that point sources of light in the source 60 are not visible to a significant extent and the emitted light is controlled to a high degree. The interface between the coupling cavity and the waveguide as described above also results in obscuring discrete point sources.


Further, it may be desirable to redirect light within the waveguide to provide better luminance uniformity from discrete light sources, and/or to provide mixing of colors from multi-color sources. In addition to any or all of the features and embodiments disclosed herein, a waveguide may include internal redirection features that implement scattering, reflection, TIR, and/or refraction to redirect the light within the waveguide body. The spacing, number, size and geometry of redirection features determine the mixing and distribution of light within the waveguide. In some circumstances, the redirection feature may be designed such that some of the light is directed out of, i.e. extracted from, the waveguide body as well.


In one embodiment, the waveguide may include one or more extraction features on the one or more external faces to direct light out of the body, and one or more internal redirection features to redirect light within the body. In general, light reflected off of the extraction features travels relatively directly to the external surface, whereas light reflected off of the redirection features travels some distance within the waveguide before exiting through the external surface. Such redirection within the body of the waveguide is referred to hereinafter as occurring “in-plane.” In-plane redirection causes the light ray to be extracted from the waveguide at a modified, laterally-displaced extraction point, in contrast to the original or unaltered extraction point at which the light ray would have otherwise been extracted. The modified extraction point is preferred to the unaltered extraction point as the in-plane redirection enhances color uniformity within the body.


Referring to FIG. 21, a waveguide 250 may comprise a body 252 exhibiting a total internal reflectance characteristic and having a first external face 254 and a second external face 256 opposite the first external face 254. One or more coupling cavities or recesses 258 extends between and is preferably (although not necessarily) fully disposed between the first and second external faces 254, 256, and is adapted to receive a light source 259 (shown in FIG. 27). As in previous embodiments the light source 259 may include one or more LEDs that are configured to direct light into the waveguide body 252. A plug member (as in the previous embodiments, not shown in FIG. 21) may be used to direct light emitted by the LED(s) into the waveguide body 252. The waveguide body 252 also includes one or more redirection features 260a, 260b, 260c, 260d configured to redirect light emitted from the LED(s) in-plane.


As shown in FIG. 22, the redirection feature 260 is preferably at least partially or fully internal to the waveguide body 252 and comprises surfaces defining two opposing arcuate voids 261-1, 261-2 extending along the planar direction. The redirection feature 260 preferably, although not necessarily, has a substantially constant thickness (i.e., depth) of about 1 mm and either or both of the voids 261 may be filled with air, acrylic, an acrylic material including scattering particles, polycarbonate, glass, molded silicone, a cyclic olefin copolymer, or another material having an index of refraction different than or the same as the index of refraction of the remainder of the waveguide body 252, or combinations thereof.


Shown most clearly in FIG. 23, the body 252 is comprised of a first plate 262 and a second plate 264 bonded or otherwise secured to one another, wherein the first and second plates 262, 264 include the first and second external faces 254, 256, respectively. The coupling cavity 258 is formed in and extends into at least one of the first and second plates 262, 264 and may comprise any fraction of the thickness of the waveguide body from about 1% or less to 100% of such thickness. The first and second plates 262, 264 are optically transmissive bodies, and may be made of the same or different materials. Both of the first and second plates 262, 264 exhibit a total internal reflection characteristic. The first plate 262 includes a first internal face 266 opposite the first external face 254, and the second plate 264 includes a second internal face 268 opposite the second external face 256. The second internal face 268 of the second plate 264 is maintained in contact with the first internal face 266 of the first plate 262. In the illustrated embodiment the redirection feature 260 is formed by any suitable manufacturing process extending into the first plate 262 from the first internal face 266. Alternatively, in any of the embodiments disclosed herein, the redirection feature 260 may extend into the second plate 264 from the second internal face 268 or portions of the redirection feature 260 may extend into both plates 262, 264 from the faces 266, 268, as should be evident. In this last case, the portions of the redirection feature 260 may be partially or fully aligned with one another, as necessary or desirable.



FIGS. 24 and 25 illustrate an embodiment wherein the waveguide body 252 includes first alternative redirection features 272 each having a triangular cross-sectional shape associated with the first plate 262. Further, the waveguide body 252 may include one or more extraction features 274 on the first and second external faces 254, 256 to direct light out of the body 252. The internal redirection features 272 may also extract light out of the waveguide body 252 as well. A further redirection feature 278 may be embossed or otherwise associated with the second internal face 268 of the second plate 264.


Referring to FIG. 26, the redirection feature 272 is embossed, molded, screen printed, machined, laser-formed, laminated, or otherwise formed and disposed on the first internal face 266 of the first plate 262, and the first internal face 266 of the first plate 262 is thereafter secured to the second internal face 268 of the second plate 264. In any of the embodiments such securement may be accomplished by applying a solvent to one of the internal faces that chemically reacts with the waveguide body material to promote adhesion, and then pressing the internal faces together. Alternatively, the surfaces may be bonded through the application of high pressure and heat, or an adhesive material may be disposed between the surfaces. Other fabrication methods, such as through the use of a three-dimensional printer, are envisioned. Still further, other structures are within the scope of the present invention, including a film or other member having a portion having a first index of refraction and formed by any suitable methodology, such as those noted above (embossing, molding, screen printing, etc.), and sandwiched between two members both having a second index of refraction different than the first index of refraction. A further alternative comprehends a film or other structure disposed between two other members, wherein the film or other structure has a first index of refraction, a first of the two members has a second index of refraction and the other of the two members has a third index of refraction wherein the first, second, and third indices of refraction are different or where the film or other structure comprises an index-matching material.


As shown in FIG. 27, second and third alternative redirection features 282, 284 may extend from the coupling cavity 258 in a radial direction. Second alternative redirection features 282 have a rectangular shape, and third alternative redirection features 284 have a V-shape in plan view. It has been found that radially-extending redirection features are especially useful in promoting mixing of light emitted by an LED element having multiple LEDs distributed in spaced relation on a substrate such that at least some of the LEDs are disposed off-axis, i.e., such LEDs are offset from the center of the cavity in which the LED element is disposed. Specifically, light rays 280 emitted from the LEDs are reflected off of the redirection features 282, 284 due, for example, to total internal reflection, in different directions within the waveguide body 252.


One or more other light redirection feature shapes could be used, such as circular, diamond-shaped (seen in FIG. 28A), kite-shaped (i.e., a diamond shape with different angles at opposing ends of the shape), rectangular, polygonal, curved, flat, tapered, segmented, continuous, discontinuous, symmetric, asymmetric, etc. The light redirection feature preferably has an overall radial length of no less than about 1 um, and more preferably the overall radial length is between about 10 um and about 10 mm, and most preferably between about 1 mm and about 10 mm. Further the light redirection feature preferably has an overall circumferential extent of no less than about 1 um, and more preferably the overall circumferential extent is between about 10 um and about 10 mm, and most preferably between about 1 mm and about 10 mm. Any or all of the surfaces partially or fully defining any or all of the features disclosed herein, including the light redirection features disclosed herein, or any portion thereof, may be coated or otherwise formed with optically reflective materials, such as a specular material, such as a metallized coating, a scattering material, a white material, or the like, if desired.


It should be noted that the number, size, and arrangement of the light redirection features may be such as to gradually collimate light over the extent of the waveguide body and/or could cause redirection of light for another purpose, for example, to cause the light to avoid features that would otherwise absorb or scatter such light.


As seen in FIG. 31, a waveguide body 360 includes a coupling cavity 362 defined by a surface 364 and an LED element 366 extends into the cavity 362. In an illustrated embodiment, the cavity 362 does not extend fully through the waveguide body 360, and instead comprises a blind bore that terminates at a planar base surface 370 that comprises a light diverter. It should be noted that the surface 364 need not be circular cylindrical in shape as seen in FIG. 31; rather, the surface 364 may comprise a plurality of light coupling features in the form of facets or other shaped surfaces. In addition, the planar base surface 370 may also be replaced by other shaped surfaces, such as a conical surface (either convex or concave) or planar, segmented sections that taper to a point coincident with a central axis of the cavity 362. This embodiment is particularly adapted for use with relatively thin waveguide bodies. Also, the planar base surface 370 may be coated with a reflective material, such as a white or specular material as noted above with respect to the plug member.


Still further, the surface 364 (and/or any of the embodiments disclosed herein) may comprise an elongate light coupling cavity or portion, i.e., a cavity or portion that is not fully circular cylindrical, but at least a portion of the cavity or portion is instead another shape, such as elliptical, oval, racetrack-shaped, teardrop-shaped, symmetric or asymmetric, continuous or segmented, etc.



FIGS. 28 and 28A illustrate generally that the LED light source 259 need not be located at one or more interior portions of a waveguide body (such an arrangement can be referred to as an interior lit waveguide), it being understood that, as shown, the LED light source 259 may be adjacent or in an edge 302 of the waveguide body to obtain either an edge lit waveguide or an end lit waveguide, as described below. In edge lit embodiments, the light source 259 may be above, below, and/or to the side of the edge 302 and aligned therewith (as seen in FIG. 28). The waveguide body preferably includes at least one coupling feature 305 (FIG. 28A) defining a coupling cavity 309, and, if desirable, at least one redirection feature 307 (also seen in FIG. 28A) extending away from the coupling cavity 309 and the LED light source 259 as disclosed in the previous embodiments. A reflecting cover or member 303 may be disposed over, under or otherwise adjacent to the light source 259 in any of the embodiments disclosed herein, including the embodiment of FIG. 28, if desired.


A combined interior lit and edge lit waveguide (also referred to as an end lit waveguide) may be obtained by providing coupling features at interior portions and edge(s) of the waveguide. Specifically, FIGS. 29 and 30 illustrate an embodiment in which one or more light sources 259 are disposed adjacent an elongate coupling section or portion 310 of a coupling optic 312. The coupling section 310 includes at least one coupling feature and, if desired, at least one redirection feature as in the embodiments described above.


Referring next to FIG. 33, an alternate noncircular coupling cavity 400 is formed by any suitable methodology in any of the waveguide bodies disclosed herein (the coupling cavity 400 is noncircular in the sense that the surfaces defining the cavity 400, at least where light enters the waveguide body, do not define a smooth circle). The coupling cavity 400, which may comprise a blind cavity or a cavity that extends fully through the waveguide body, includes one or more coupling features in the form of a circumferential array of inwardly directed surfaces, shown as bumps or protrusions 402. The bumps or protrusions 402, each of which may comprise curved, planar, and/or other-shaped surfaces, promote mixing of light by providing surfaces at varying angles with respect to incident light rays developed by an LED light source 114. In the event that the coupling cavity extends fully through the waveguide body, a light diverter (not shown) may be provided opposite the LED light source 114, as in previous embodiments.



FIGS. 34 and 35 illustrate an embodiment identical to that shown in FIG. 33, except that the single circumferential array of inwardly directed curved surfaces are replaced by one or more coupling features comprising first and second circumferential arrays of surfaces comprising bumps or protrusions generally indicated at 410, 412. As seen in FIG. 35, the first array of bumps or protrusions 410 is axially shorter than the second array of bumps or protrusions 412. Further, the first array of bumps or protrusions 410 is disposed radially inside the second array of bumps or protrusions 412 and is coaxial therewith. Light developed by an LED light source 114 is efficiently mixed by the arrays 410, 412.


In any of the embodiments disclosed herein, gaps or interfaces between waveguide elements may be filled with an optical coupling gel or a different optical element or material, such as an air gap.


INDUSTRIAL APPLICABILITY

In summary, it has been found that when using a single color or multicolor LED element in a luminaire, it is desirable to mix the light output developed by the LEDs thoroughly so that the intensity and/or color appearance emitted by the luminaire is uniform. When the LED element is used with a waveguide, opportunities have been found to exist to accomplish such mixing during the light coupling and light guiding or distributing functions. Specifically, bending the light rays by refraction can result in improvement in mixing. In such a case, this refractive bending can be accomplished by providing interfaces in the waveguide between materials having different indices of refraction. These interfaces may define coupling features where light developed by the LED elements enters the waveguide and/or light redirection features at portions intermediate the coupling features and waveguide extraction features or areas where light is otherwise extracted (such as by bends) from the waveguide. It has further been found that directing light into a wide range of refraction angles enhances light mixing. Because the angle Ar of a refracted light ray is a function of the angle Ai between the incident light ray and the interface surface struck by the incident light ray (with refractive angle Ar increasing as Ai approaches zero, i.e., when the incident light ray approaches a parallel condition with respect to the interface surface), a wide range of refracted light ray angles can be obtained by configuring the interface surfaces to include a wide range of angles relative to the incident light rays. This, in turn, means that the interfaces could include a significant extent of interface surfaces that are nearly parallel to the incident light rays, as well as other surfaces disposed at other angles to the incident light rays. Overall waveguide shapes and coupling feature and redirection feature shapes such as curved (including convex, concave, and combinations of convex and concave surfaces), planar, non-planar, tapered, segmented, continuous or discontinuous surfaces, regular or irregular shaped surfaces, symmetric or asymmetric shapes, etc. can be used, it being understood that, in general, light mixing (consistent with the necessary control over light extraction) can be further improved by providing an increased number of interface surfaces and/or more complex interface shapes in the light path. Also, the spacing of coupling features and light redirection features affect the degree of mixing. In some embodiments a single light coupling feature and/or a single light redirection feature may be sufficient to accomplish a desired degree of light mixing. In other embodiments, multiple coupling features and/or multiple light redirection features might be used to realize a desired degree of mixing. In either event, the shapes of multiple coupling features or multiple redirection features may be simple or complex, they may be the same shape or of different shapes, they may be equally or unequally spaced, or distributed randomly or in one or more arrays (which may themselves be equally or unequally spaced, the same or different size and/or shape, etc.) Further, the interfaces may be disposed in a symmetric or asymmetric pattern in the waveguide, the waveguide itself may be symmetric or asymmetric, the waveguide may develop a light distribution that is symmetric, asymmetric, centered or non-centered with respect to the waveguide, the light distribution may be on-axis (i.e., normal to a face of the waveguide) or off-axis (i.e., other than normal with respect to the waveguide face), single or split-beam, etc.


Still further, one or more coupling features or redirection features, or both, may be disposed anywhere inside the waveguide, at any outside surface of the waveguide, such as an edge surface or major face of the waveguide, and/or at locations extending over more than one surface or portion of the waveguide. Where a coupling or light redirection feature is disposed inside the waveguide, the feature may be disposed in or be defined by a cavity extending fully through the waveguide or in or by a cavity that does not extend fully through the waveguide (e.g., in a blind bore or in a cavity fully enclosed by the material of the waveguide). Also, the waveguide of any of the embodiments disclosed herein may be planar, non-planar, irregular-shaped, curved, other shapes, suspended, a lay-in or surface mount waveguide, etc.


While specific coupling feature and light redirection feature parameters including shapes, sizes, locations, orientations relative to a light source, materials, etc. are disclosed as embodiments herein, the present invention is not limited to the disclosed embodiments, inasmuch as various combinations and all permutations of such parameters are also specifically contemplated herein. Thus, any one of the coupling cavities, plug members, LED elements, masking element(s), redirection features, extraction features, etc. as described herein may be used in a luminaire, either alone or in combination with one or more additional elements, or in varying combination(s) to obtain light mixing and/or a desired light output distribution. More specifically, any of the features described and/or claimed in U.S. patent application Ser. No. 13/842,521, U.S. patent application Ser. No. 13/839,949, U.S. patent application Ser. No. 13/841,074, filed Mar. 15, 2013, entitled “Optical Waveguide Body”, U.S. patent application Ser. No. 13/840,563, U.S. patent application Ser. No. 14/101,086, filed Dec. 9, 2013, entitled “Optical Waveguides and Luminaires Incorporating Same”, U.S. patent application Ser. No. 14/101,099, filed Dec. 9, 2013, entitled “Optical Waveguide Assembly and Light Engine Including Same”, U.S. patent application Ser. No. 14/101,132, filed Dec. 9, 2013, entitled “Waveguide Bodies Including Redirection Features and Methods of Producing Same”, U.S. patent application Ser. No. 14/101,129, filed Dec. 9, 2013, entitled “Simplified Low Profile Module With Light Guide For Pendant, Surface Mount, Wall Mount and Stand Alone Luminaires”, and U.S. patent application Ser. No. 14/101,051, filed Dec. 9, 2013, entitled “Optical Waveguide and Lamp Including Same”, incorporated by reference herein and owned by the assignee of the present application may be used in the devices disclosed herein. Thus, for example, any of the waveguides or luminaires disclosed herein may include one or more coupling features, one or more light redirection features, one or more coupling features or optics, a modified LED arrangement, one or more extraction features, and/or particular waveguide or overall luminaire shapes and/or configurations as disclosed in such applications, as necessary or desirable. Other luminaire and waveguide form factors than those disclosed herein are also contemplated.


The coupling features disclosed herein efficiently couple light into the waveguide, and the redirection features uniformly mix light within the waveguide and the light is thus conditioned for uniform extraction out of the waveguide. At least some of the luminaires disclosed herein are particularly adapted for use in installations, such as, replacement or retrofit lamps (e.g., LED PAR bulbs), outdoor products (e.g., streetlights, high-bay lights, canopy lights), and indoor products (e.g., downlights, troffers, a lay-in or drop-in application, a surface mount application onto a wall or ceiling, etc.) preferably requiring a total luminaire output of at least about 800 lumens or greater, and, more preferably, a total luminaire output of at least about 3000 lumens, and most preferably a total lumen output of about 10,000 lumens. Further, the luminaires disclosed herein preferably have a color temperature of between about 2500 degrees Kelvin and about 6200 degrees Kelvin, and more preferably between about 2500 degrees Kelvin and about 5000 degrees Kelvin, and most preferably about 2700 degrees Kelvin. Also, at least some of the luminaires disclosed herein preferably exhibit an efficacy of at least about 100 lumens per watt, and more preferably at least about 120 lumens per watt, and further exhibit a coupling efficiency of at least about 92 percent. Further, at least some of the luminaires disclosed herein preferably exhibit an overall efficiency (i.e., light extracted out of the waveguide divided by light injected into the waveguide) of at least about 85 percent. A color rendition index (CRI) of at least about 80 is preferably attained by at least some of the luminaires disclosed herein, with a CRI of at least about 88 being more preferable. A gamut area index (GAI) of at least about 65 is achievable as is a thermal loss of less than about 10%. Any desired form factor and particular output light distribution, such as a butterfly light distribution, could be achieved, including up and down light distributions or up only or down only distributions, etc.


When one uses a relatively small light source which emits into a broad (e.g., Lambertian) angular distribution (common for LED-based light sources), the conservation of etendue, as generally understood in the art, requires an optical system having a large emission area to achieve a narrow (collimated) angular light distribution. In the case of parabolic reflectors, a large optic is thus generally required to achieve high levels of collimation. In order to achieve a large emission area in a more compact design, the prior art has relied on the use of Fresnel lenses, which utilize refractive optical surfaces to direct and collimate the light. Fresnel lenses, however, are generally planar in nature, and are therefore not well suited to re-directing high-angle light emitted by the source, leading to a loss in optical efficiency. In contrast, in the present invention, light is coupled into the optic, where primarily TIR is used for re-direction and collimation. This coupling allows the full range of angular emission from the source, including high-angle light, to be re-directed and collimated, resulting in higher optical efficiency in a more compact form factor.


Embodiments disclosed herein are capable of complying with improved operational standards as compared to the prior art as follows:
















State of the
Improved Standards



art standards
Achievable by Present Embodiments


















Input coupling
90%
About 95% plus improvements through


efficiency

color mixing, source mixing, and


(coupling +

control within the waveguide


waveguide)


Output
90%
About 95%: improved through extraction


efficiency

efficiency plus controlled distribution


(extraction)

of light from the waveguide


Total system
~80% 
About 90%: great control, many choices




of output distribution









In at least some of the present embodiments the distribution and direction of light within the waveguide is better known, and hence, light is controlled and extracted in a more controlled fashion. In standard optical waveguides, light bounces back and forth through the waveguide. In the present embodiments, light is extracted as much as possible over one pass through the waveguide to minimize losses.


In some embodiments, one may wish to control the light rays such that at least some of the rays are collimated, but in the same or other embodiments, one may also wish to control other or all of the light rays to increase the angular dispersion thereof so that such light is not collimated. In some embodiments, one might wish to collimate to narrow ranges, while in other cases, one might wish to undertake the opposite.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.


The use of the terms “a” and “an” and “the” and similar references in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure.


Numerous modifications to the present disclosure will be apparent to those skilled in the art in view of the foregoing description. Preferred embodiments of this disclosure are described herein, including the best mode known to the inventors for carrying out the disclosure. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the disclosure.

Claims
  • 1. A waveguide, comprising: a waveguide body having a width and length that are substantially greater than a thickness thereof, where the thickness extends in a direction between a first side and a second side, wherein the waveguide body comprises a first plate and a second plate and wherein the first plate includes a first external face that defines the first side and a first internal face and the second plate includes a second external face that defines the second side and a second internal face, the first internal face being in contact with the second internal face;a plurality of redirection features between the first plate and the second plate of the waveguide body;a coupling cavity comprising a coupling feature configured to couple light into the waveguide body, wherein the coupling cavity is disposed within the waveguide body and extends in the direction; anda plug member having a first portion disposed in the coupling cavity and an outer surface substantially conforming to the coupling feature and a second portion extending from the first portion into the coupling cavity wherein the second portion includes a reflective surface adapted to direct light in the coupling cavity into the waveguide body.
  • 2. The waveguide of claim 1, wherein the plurality of redirection features is formed on at least one of the first internal face and the second internal face of the waveguide body.
  • 3. The waveguide of claim 1, wherein the coupling cavity extends into the first plate and the second plate of the waveguide body.
  • 4. The waveguide of claim 1, wherein the outer surface of the plug member has one of a cylindrical shape, a star shape, and a quadrilateral shape.
  • 5. The waveguide of claim 4, wherein the star shape comprises equally spaced points.
  • 6. The waveguide of claim 1, wherein the waveguide body includes a plurality of light extraction features.
  • 7. The waveguide of claim 1, wherein the second portion of the plug member is conical in shape.
  • 8. The waveguide of claim 1, further comprising a diffuser at least partially covering one of the first side and the second side of the waveguide body.
  • 9. The waveguide of claim 8, further comprising a masking element partially covering the diffuser to obscure bright spots.
  • 10. A waveguide, comprising: a waveguide body having a width and length that are substantially greater than a thickness thereof, where the thickness extends in a direction between a first side and a second side, wherein the waveguide body comprises a first plate and a second plate and wherein the first plate includes a first external face that defines the first side and a first internal face and the second plate includes a second external face that defines the second side and a second internal face, the first internal face being in contact with the second internal face;a coupling cavity comprising a coupling feature configured to couple light into the waveguide body, wherein the coupling cavity is disposed within the waveguide body and extends in the direction;a plug member having a first portion disposed in the coupling cavity and an outer surface substantially conforming to the coupling feature and a second portion extending from the first portion into the coupling cavity wherein the second portion includes a reflective surface adapted to direct light in the coupling cavity into the waveguide body; anda redirection feature that extends into at least one of the first internal face and the second internal face of the waveguide body and extends radially from the coupling cavity.
  • 11. The waveguide of claim 10, wherein the redirection feature is at least one of embossed, molded, screen printed, machined, laser-formed, and laminated on at least one of the first internal face and the second internal face.
  • 12. The waveguide of claim 10, wherein the redirection feature is at least partially formed with an optically reflective material.
  • 13. The waveguide of claim 12, wherein the optically reflective material comprises at least one of a metallized coating, a scattering material, and a white material.
  • 14. The waveguide of claim 10, wherein the outer surface of the plug member has one of a cylindrical shape, a star shape, and a quadrilateral shape.
  • 15. The waveguide of claim 14, wherein the star shape comprises equally spaced points.
  • 16. The waveguide of claim 10, wherein the waveguide body includes a plurality of light extraction features.
  • 17. The waveguide of claim 10, wherein the second portion of the plug member is conical in shape.
  • 18. A waveguide, comprising: a waveguide body having a width and length that are substantially greater than a thickness thereof, where the thickness extends in a direction between a first side and a second side, wherein the waveguide body comprises a first plate and a second plate and wherein the first plate includes a first external face that defines the first side and a first internal face and the second plate includes a second external face that defines the second side and a second internal face, the first internal face being in contact with the second internal face;a coupling cavity comprising a coupling feature configured to couple light into the waveguide body, wherein the coupling cavity is disposed within the waveguide body and extends in the direction;a plug member having a first portion disposed in the coupling cavity and an outer surface substantially conforming to the coupling feature and a second portion extending from the first portion into the coupling cavity wherein the second portion includes a reflective surface adapted to direct light in the coupling cavity into the waveguide body;a diffuser at least partially covering one of the first side and the second side of the waveguide body; anda masking element partially covering the diffuser to obscure bright spots.
  • 19. The waveguide of claim 18, further comprising a plurality of redirection features between the first plate and the second plate of the waveguide body, wherein the plurality of redirection features is formed on at least one of the first internal face and the second internal face of the waveguide body.
  • 20. The waveguide of claim 18, wherein the coupling cavity extends into the first plate and the second plate of the waveguide body.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application comprises a continuation of U.S. patent application Ser. No. 16/429,491; filed Jun. 3, 2019 (now U.S. Pat. No. 10,808,891); which is a division of U.S. patent application Ser. No. 15/812,729, filed Nov. 14, 2017 (now U.S. Pat. No. 10,344,922), which is a continuation of U.S. patent application Ser. No. 14/101,147, filed Dec. 9, 2013 (now U.S. Pat. No. 9,869,432), which in turn claims the benefit of U.S. Provisional Patent Application No. 61/758,660, filed Jan. 30, 2013 U.S. patent application Ser. No. 14/101,147 further comprises a continuation-in-part of U.S. patent application Ser. No. 13/842,521, filed Mar. 15, 2013 (now U.S. Pat. No. 9,519,095), and further comprises a continuation-in-part of U.S. patent application Ser. No. 13/839,949, filed Mar. 15, 2013 (now U.S. Pat. No. 9,581,751), and further comprises a continuation-in-part of U.S. patent application Ser. No. 13/841,074, filed Mar. 15, 2013 (now U.S. Pat. No. 9,625,638), and further comprises a continuation-in-part of U.S. patent application Ser. No. 13/840,563, filed Mar. 15, 2013 (now U.S. Pat. No. 10,436,969), and further comprises a continuation-in-part of U.S. patent Ser. No. 13/938,877, filed Jul. 10, 2013 (now U.S. Pat. No. 9,389,367), all owned by the assignee of the present application, and the disclosures of which are incorporated by reference herein. This patent application also incorporates by reference U.S. patent application Ser. No. 14/101,086, filed Dec. 9, 2013 (now U.S. Pat. No. 9,690,029), U.S. patent application Ser. No. 14/101,099, filed Dec. 9, 2013 (now U.S. Pat. No. 9,411,086), U.S. patent application Ser. No. 14/101,132, filed Dec. 9, 2013 (now U.S. Pat. No. 9,442,243), U.S. patent application Ser. No. 14/101,129, filed Dec. 9, 2013 (now U.S. Pat. No. 10,234,616) and U.S. patent application Ser. No. 14/101,051, filed Dec. 9, 2013 (now U.S. Pat. No. 9,366,396).

US Referenced Citations (659)
Number Name Date Kind
2043951 Eksergian Jun 1936 A
2992587 Hicks, Jr. et al. Jul 1961 A
3372740 Kastovich et al. Mar 1968 A
3532871 Shipman Oct 1970 A
D219546 Kaiser Dec 1970 S
4146297 Alferness et al. Mar 1979 A
4441787 Rosema Apr 1984 A
4714983 Lang Dec 1987 A
D298861 Ewing et al. Dec 1988 S
4954930 Maegawa et al. Sep 1990 A
4977486 Masaki Dec 1990 A
5005108 Pristash et al. Apr 1991 A
5009483 Marshal Apr 1991 A
5026161 Werner Jun 1991 A
5040098 Tanaka et al. Aug 1991 A
5047761 Sell Sep 1991 A
5061404 Wu et al. Oct 1991 A
5097258 Iwaki Mar 1992 A
5113177 Cohen May 1992 A
5113472 Gualtieri et al. May 1992 A
5171080 Bathurst Dec 1992 A
5175787 Gualtieri et al. Dec 1992 A
5186865 Wu et al. Feb 1993 A
5245689 Gualtieri Sep 1993 A
5253317 Allen et al. Oct 1993 A
5295019 Rapoport Mar 1994 A
5309544 Saxe May 1994 A
5359687 McFarland et al. Oct 1994 A
5359691 Tai et al. Oct 1994 A
5396350 Beeson et al. Mar 1995 A
5398179 Pacheco Mar 1995 A
5400224 DuNah et al. Mar 1995 A
5428468 Zimmerman et al. Jun 1995 A
5461547 Ciupke et al. Oct 1995 A
5462700 Beeson et al. Oct 1995 A
5481385 Zimmerman et al. Jan 1996 A
5506924 Inoue Apr 1996 A
5521725 Beeson et al. May 1996 A
5521726 Zimmerman et al. May 1996 A
5528720 Winston et al. Jun 1996 A
5537304 Klaus Jul 1996 A
5541039 McFarland et al. Jul 1996 A
5548670 Koike Aug 1996 A
5553092 Bruce et al. Sep 1996 A
5555109 Zimmerman et al. Sep 1996 A
5555160 Tawara et al. Sep 1996 A
5555329 Kuper et al. Sep 1996 A
5572411 Watai et al. Nov 1996 A
5577492 Parkyn, Jr. et al. Nov 1996 A
5584556 Yokoyama et al. Dec 1996 A
5598281 Zimmerman et al. Jan 1997 A
5613751 Parker Mar 1997 A
5613770 Chin, Jr. et al. Mar 1997 A
5657408 Ferm et al. Aug 1997 A
5658066 Hirsch Aug 1997 A
5659410 Koike et al. Aug 1997 A
5676457 Simon Oct 1997 A
5677702 Inoue et al. Oct 1997 A
5685634 Mulligan Nov 1997 A
5696865 Beeson et al. Dec 1997 A
5702176 Engle Dec 1997 A
5718497 Yokoyama et al. Feb 1998 A
5727107 Umemoto et al. Mar 1998 A
5735590 Kashima et al. Apr 1998 A
5739931 Zimmerman et al. Apr 1998 A
5748828 Steiner et al. May 1998 A
5761355 Kuper et al. Jun 1998 A
5769522 Kaneko et al. Jun 1998 A
5771039 Ditzik Jun 1998 A
5777857 Degelmann Jul 1998 A
5806955 Parkyn, Jr. et al. Sep 1998 A
5812714 Hulse Sep 1998 A
5818555 Yokoyama et al. Oct 1998 A
5839823 Hou et al. Nov 1998 A
5850498 Shacklette et al. Dec 1998 A
5854872 Tai Dec 1998 A
5863113 Oe et al. Jan 1999 A
5872883 Ohba et al. Feb 1999 A
5897201 Simon Apr 1999 A
5914759 Higuchi et al. Jun 1999 A
5914760 Daiku Jun 1999 A
5949933 Steiner et al. Sep 1999 A
5961198 Hira et al. Oct 1999 A
5967637 Ishikawa et al. Oct 1999 A
5971559 Ishikawa et al. Oct 1999 A
5974214 Shacklette et al. Oct 1999 A
5997148 Ohkawa Dec 1999 A
5999281 Abbott et al. Dec 1999 A
5999685 Goto et al. Dec 1999 A
6002829 Winston et al. Dec 1999 A
6007209 Pelka Dec 1999 A
6043951 Lee Mar 2000 A
6044196 Winston et al. Mar 2000 A
6079838 Parker et al. Jun 2000 A
6097549 Jenkins et al. Aug 2000 A
6134092 Pelka et al. Oct 2000 A
6139176 Hulse et al. Oct 2000 A
6151089 Fang et al. Nov 2000 A
6155692 Ohkawa Dec 2000 A
6155693 Spiegel et al. Dec 2000 A
6161939 Bansbach Dec 2000 A
6164790 Lee Dec 2000 A
6164791 Gwo-Juh et al. Dec 2000 A
6167182 Shinohara et al. Dec 2000 A
6185357 Zou et al. Feb 2001 B1
6206535 Hattori et al. Mar 2001 B1
6231200 Shinohara et al. May 2001 B1
6232592 Sugiyama May 2001 B1
6241363 Lee Jun 2001 B1
6257737 Marshall et al. Jul 2001 B1
6259854 Shinji et al. Jul 2001 B1
D446333 Frois Aug 2001 S
6304693 Buelow et al. Oct 2001 B1
6310704 Dogan et al. Oct 2001 B1
6379016 Boyd et al. Apr 2002 B1
6379017 Nakabayashi et al. Apr 2002 B2
6400086 Huter Jun 2002 B1
6421103 Yamaguchi Jul 2002 B2
6443594 Marshall et al. Sep 2002 B1
6461007 Akaoka Oct 2002 B2
6473554 Pelka et al. Oct 2002 B1
6480307 Yang Nov 2002 B1
6485157 Dhkawa Nov 2002 B2
6508563 Parker et al. Jan 2003 B2
6523986 Hoffmann Feb 2003 B1
6536921 Simon Mar 2003 B1
6541720 Gerald et al. Apr 2003 B2
6554451 Keuper Apr 2003 B1
6568819 Yamazaki et al. May 2003 B1
6582103 Popovich et al. Jun 2003 B1
6585356 Ohkawa Jul 2003 B1
6598998 West et al. Jul 2003 B2
6612723 Futhey et al. Sep 2003 B2
6616290 Ohkawa Sep 2003 B2
6629764 Uehara Oct 2003 B1
6633722 Kohara et al. Oct 2003 B1
6634772 Yaphe et al. Oct 2003 B2
6637924 Pelka et al. Oct 2003 B2
6647199 Pelka et al. Nov 2003 B1
6652109 Nakamura Nov 2003 B2
6659628 Gomez Del Campo Dec 2003 B2
6671452 Winston et al. Dec 2003 B2
6676284 Wilson Jan 2004 B1
6678021 Ohkawa Jan 2004 B2
6679621 West et al. Jan 2004 B2
6712481 Parker et al. Mar 2004 B2
6724529 Sinkoff Apr 2004 B2
6724543 Chinniah et al. Apr 2004 B1
6727965 Kubota Apr 2004 B1
6752505 Parker et al. Jun 2004 B2
6755546 Ohkawa Jun 2004 B2
6755556 Gasquet et al. Jun 2004 B2
6758582 Hsiao et al. Jul 2004 B1
6775460 Steiner et al. Aug 2004 B2
6796676 Severtson et al. Sep 2004 B2
6802626 Belfer et al. Oct 2004 B2
6802628 Kuo Oct 2004 B2
6814475 Yasuyuki Nov 2004 B2
6840656 Kuo Jan 2005 B2
6845212 Gardiner et al. Jan 2005 B2
6854857 Hara et al. Feb 2005 B2
6876408 Yamaguchi Apr 2005 B2
6894740 Ohkawa May 2005 B2
6896381 Benitez et al. May 2005 B2
6924943 Minano et al. Aug 2005 B2
D511221 Zucker Nov 2005 S
6974241 Hara et al. Dec 2005 B2
6992335 Ohkawa Jan 2006 B2
D518911 Lee Apr 2006 S
7025482 Yamashita et al. Apr 2006 B2
7046318 Yu et al. May 2006 B2
7046905 Gardiner et al. May 2006 B1
7063430 Greiner Jun 2006 B2
7072096 Holman et al. Jul 2006 B2
7085460 Leu et al. Aug 2006 B2
7090370 Clark et al. Aug 2006 B2
7090389 Parker et al. Aug 2006 B2
7097341 Tsai Aug 2006 B2
7106528 Ohmori et al. Sep 2006 B2
7111969 Bottesch et al. Sep 2006 B2
7118253 Simon Oct 2006 B1
D532532 Maxik Nov 2006 S
7131764 Hsu et al. Nov 2006 B2
7152985 Benitez et al. Dec 2006 B2
7160010 Chinniah et al. Jan 2007 B1
7160015 Parker Jan 2007 B2
7168841 Hsieh et al. Jan 2007 B2
7175330 Chen Feb 2007 B1
7178941 Roberge et al. Feb 2007 B2
7182480 Kan Feb 2007 B2
7192174 Myoung Mar 2007 B2
7195374 Saccomanno et al. Mar 2007 B2
7204634 Chen et al. Apr 2007 B2
7209628 Winston et al. Apr 2007 B2
7222995 Bayat et al. May 2007 B1
7223004 Chen et al. May 2007 B2
D544110 Hooker et al. Jun 2007 S
7246931 Hsieh et al. Jul 2007 B2
7254309 Chou et al. Aug 2007 B1
7258467 Saccomanno et al. Aug 2007 B2
7265800 Jagt et al. Sep 2007 B2
7273299 Parkyn et al. Sep 2007 B2
7290906 Suzuki et al. Nov 2007 B2
7292767 Cheng Nov 2007 B2
D563036 Miyairi et al. Feb 2008 S
D565778 Pedersen Apr 2008 S
D566300 Lo Apr 2008 S
7364342 Parker et al. Apr 2008 B2
D568529 Colleran, Jr. et al. May 2008 S
D570025 Walker May 2008 S
7369918 Cosgrove May 2008 B2
D573292 Zheng et al. Jul 2008 S
7393124 Williams Jul 2008 B1
7399108 Ayabe et al. Jul 2008 B2
7400809 Erben et al. Jul 2008 B2
7404660 Parker Jul 2008 B2
D575898 Tran et al. Aug 2008 S
7422357 Chang Sep 2008 B1
D581555 To et al. Nov 2008 S
7458714 Chang Dec 2008 B2
7465074 Blumel Dec 2008 B2
D584838 To et al. Jan 2009 S
7486854 Van et al. Feb 2009 B2
7488093 Huang et al. Feb 2009 B1
D587839 Guercio Mar 2009 S
D589195 Sabemig Mar 2009 S
7513672 Parker Apr 2009 B2
7520650 Smith Apr 2009 B2
7534013 Simon May 2009 B1
7559672 Parkyn et al. Jul 2009 B1
7566148 Noh et al. Jul 2009 B2
7566159 Oon et al. Jul 2009 B2
7581854 Ford Sep 2009 B2
D604002 Santoro Nov 2009 S
7614764 Williams et al. Nov 2009 B2
7626655 Yamazaki et al. Dec 2009 B2
7628508 Kita et al. Dec 2009 B2
7635205 Yu et al. Dec 2009 B2
7639918 Sayers et al. Dec 2009 B2
7641363 Chang et al. Jan 2010 B1
7648256 Shiratsuchi et al. Jan 2010 B2
D609384 Gray. et al. Feb 2010 S
D610722 Bi Feb 2010 S
7665865 Hulse Feb 2010 B1
D612527 Espiau et al. Mar 2010 S
7674018 Holder et al. Mar 2010 B2
7696531 Miyao Apr 2010 B2
7703950 Ewert et al. Apr 2010 B2
7703967 Parker Apr 2010 B2
D615232 Xiao et al. May 2010 S
D616145 Boissevain May 2010 S
7710663 Barnes May 2010 B2
7722224 Coleman et al. May 2010 B1
7722241 Chang May 2010 B2
7724321 Hsieh et al. May 2010 B2
D617489 Santoro Jun 2010 S
D618842 Ngai et al. Jun 2010 S
7730967 Ballantyne et al. Jun 2010 B2
7736019 Shimada et al. Jun 2010 B2
7736045 Yamashita et al. Jun 2010 B2
7750982 Nelson et al. Jul 2010 B2
7753551 Yaphe et al. Jul 2010 B2
7758227 Zane Jul 2010 B1
7760290 Kang et al. Jul 2010 B2
7762705 Sakai et al. Jul 2010 B2
D622894 Ngai et al. Aug 2010 S
7766515 Condon et al. Aug 2010 B2
7771087 Wilcox et al. Aug 2010 B2
7775697 Hirano et al. Aug 2010 B2
7776236 Shih et al. Aug 2010 B2
7780306 Hoshi Aug 2010 B2
7784954 Zane Aug 2010 B1
D623793 Ngai et al. Sep 2010 S
7798695 Parker Sep 2010 B2
D626260 Wei Oct 2010 S
7806581 Lee Oct 2010 B2
7810960 Soderman et al. Oct 2010 B1
7810968 Walker et al. Oct 2010 B1
7813131 Liang Oct 2010 B2
7821982 Chen et al. Oct 2010 B2
D627913 Gielen Nov 2010 S
D628319 Yoshinobu et al. Nov 2010 S
7826698 Meir et al. Nov 2010 B1
D629129 Lin et al. Dec 2010 S
7850357 Kim et al. Dec 2010 B2
7857487 Wu et al. Dec 2010 B2
7857619 Liu Dec 2010 B2
D630347 Pei et al. Jan 2011 S
D630775 Pan Jan 2011 S
D631577 Yoshinobu et al. Jan 2011 S
D631601 Lodhie Jan 2011 S
7866871 Couzin et al. Jan 2011 B2
D633636 Gielen Mar 2011 S
D634056 Hokazono et al. Mar 2011 S
7905646 Adachi et al. Mar 2011 B2
7907804 Meir et al. Mar 2011 B2
7914192 Zane Mar 2011 B2
7914193 Peifer et al. Mar 2011 B2
7914196 Parker et al. Mar 2011 B2
7929816 Meir et al. Apr 2011 B2
7934851 Boissevain et al. May 2011 B1
7967477 Bloemen et al. Jun 2011 B2
7969531 Li et al. Jun 2011 B1
7970246 Travis et al. Jun 2011 B2
D641923 Radchenko et al. Jul 2011 S
7976204 Li et al. Jul 2011 B2
7984999 Harbers et al. Jul 2011 B2
D642725 Kong et al. Aug 2011 S
7991237 Sekiguchi et al. Aug 2011 B2
7991257 Coleman Aug 2011 B1
7997784 Chung-Lin Aug 2011 B2
8002450 Van et al. Aug 2011 B2
D645194 Budike, Jr. et al. Sep 2011 S
D646406 Mu-Chiao et al. Oct 2011 S
8033674 Coleman et al. Oct 2011 B1
8033706 Kelly et al. Oct 2011 B1
8038308 Greiner Oct 2011 B2
8047696 Ijzerman et al. Nov 2011 B2
8052316 Lee Nov 2011 B2
8054409 Hsieh et al. Nov 2011 B2
8061877 Chang Nov 2011 B2
8064743 Meir et al. Nov 2011 B2
8067884 Li Nov 2011 B2
8075157 Zhang et al. Dec 2011 B2
8087807 Liu et al. Jan 2012 B2
8092068 Parker et al. Jan 2012 B2
8096671 Cronk et al. Jan 2012 B1
8096681 Fang et al. Jan 2012 B2
D654618 Kong et al. Feb 2012 S
8113704 Bae et al. Feb 2012 B2
8128272 Fine et al. Mar 2012 B2
8129731 Vissenberg et al. Mar 2012 B2
8152339 Morgan Apr 2012 B2
8152352 Edward Apr 2012 B2
8162524 Van et al. Apr 2012 B2
D659880 Maxik et al. May 2012 S
8172447 Meir et al. May 2012 B2
8177408 Zane May 2012 B1
8182128 Meir et al. May 2012 B2
8186847 Hu et al. May 2012 B2
8189973 Travis et al. May 2012 B2
D662255 Klus Jun 2012 S
D662256 Klus Jun 2012 S
D662643 Takahashi et al. Jun 2012 S
8192051 Dau et al. Jun 2012 B2
8198109 Lerman et al. Jun 2012 B2
8210716 Lerman et al. Jul 2012 B2
8212263 Bierhuizen et al. Jul 2012 B2
8218920 Van et al. Jul 2012 B2
8220955 Kwak et al. Jul 2012 B2
8220980 Gingrich, III Jul 2012 B2
8226287 Teng et al. Jul 2012 B2
8231256 Coleman et al. Jul 2012 B1
8231258 Kim et al. Jul 2012 B2
8231259 Keller et al. Jul 2012 B2
8242518 Lerman et al. Aug 2012 B2
8246187 Cheong et al. Aug 2012 B2
8246197 Huang Aug 2012 B2
8249408 Zane Aug 2012 B2
8258524 Tan et al. Sep 2012 B2
8272756 Patrick Sep 2012 B1
8272770 Edward Sep 2012 B2
D668370 Guercio et al. Oct 2012 S
D669624 Daniels Oct 2012 S
8277106 Van Gorkom et al. Oct 2012 B2
8282261 Pance et al. Oct 2012 B2
8282853 Mori et al. Oct 2012 B2
8283354 Wilson et al. Oct 2012 B2
8283853 Zongjie et al. Oct 2012 B2
8287152 Gill Oct 2012 B2
8292467 Vissenberg et al. Oct 2012 B2
8297801 Coushaine et al. Oct 2012 B2
8297818 Edward Oct 2012 B2
8301002 Shani Oct 2012 B2
D670422 Siekmann Nov 2012 S
D670856 Butler et al. Nov 2012 S
8310158 Coplin et al. Nov 2012 B2
8314566 Steele et al. Nov 2012 B2
8317363 Zheng Nov 2012 B2
8317366 Dalton et al. Nov 2012 B2
8319130 Lee et al. Nov 2012 B2
8328403 Morgan et al. Dec 2012 B1
8328406 Zimmermann Dec 2012 B2
8331746 Bogner et al. Dec 2012 B2
8338199 Lerman et al. Dec 2012 B2
8338839 Lerman et al. Dec 2012 B2
8338840 Lerman et al. Dec 2012 B2
8338841 Lerman et al. Dec 2012 B2
8338842 Lerman et al. Dec 2012 B2
8344397 Lerman et al. Jan 2013 B2
8348446 Nakamura Jan 2013 B2
8348489 Holman et al. Jan 2013 B2
8351744 Travis et al. Jan 2013 B2
8353606 Jeong Jan 2013 B2
8369678 Chakmakjian et al. Feb 2013 B2
8376582 Catone et al. Feb 2013 B2
8382354 Kim et al. Feb 2013 B2
8382387 Sandoval Feb 2013 B1
D677806 Jiang et al. Mar 2013 S
8388173 Sloan et al. Mar 2013 B2
8388190 Li et al. Mar 2013 B2
8398259 Kwak et al. Mar 2013 B2
8398262 Sloan et al. Mar 2013 B2
D679437 Watt Apr 2013 S
D679444 Vasylyev Apr 2013 S
D679843 Hsu et al. Apr 2013 S
D681262 Lee Apr 2013 S
3412010 Ghosh et al. Apr 2013 A1
3414154 Dau et al. Apr 2013 A1
8408737 Wright et al. Apr 2013 B2
8410726 Dau et al. Apr 2013 B2
8419224 Wan-Chih et al. Apr 2013 B2
8430536 Zhao Apr 2013 B1
8430548 Kelly Apr 2013 B1
8432628 Shiau et al. Apr 2013 B2
8434913 Vissenberg May 2013 B2
8434914 Li et al. May 2013 B2
8449128 Ko et al. May 2013 B2
8449142 Martin et al. May 2013 B1
D684296 Henderson et al. Jun 2013 S
8454218 Wang et al. Jun 2013 B2
8461602 Lerman et al. Jun 2013 B2
8469559 Williams Jun 2013 B2
8475010 Vissenberg et al. Jul 2013 B2
8482186 Wang et al. Jul 2013 B2
8485684 Lou et al. Jul 2013 B2
8506112 Dau Aug 2013 B1
8511868 Haugaard et al. Aug 2013 B2
8534896 Boonekamp Sep 2013 B2
8534901 Panagotacos et al. Sep 2013 B2
8541795 Keller et al. Sep 2013 B2
8547022 Summerford et al. Oct 2013 B2
8567983 Boyer et al. Oct 2013 B2
8567986 Szprengiel et al. Oct 2013 B2
D694449 Walker et al. Nov 2013 S
8573823 Dau et al. Nov 2013 B2
8585253 Duong et al. Nov 2013 B2
8591072 Shani et al. Nov 2013 B2
8593070 Wang et al. Nov 2013 B2
D695442 Speier et al. Dec 2013 S
D695447 Speier et al. Dec 2013 S
8598778 Allen et al. Dec 2013 B2
8602586 Dau et al. Dec 2013 B1
8608351 Peifer Dec 2013 B2
8618735 Coplin et al. Dec 2013 B2
8632214 Tickner et al. Jan 2014 B1
8641219 Johnson et al. Feb 2014 B1
8657479 Morgan et al. Feb 2014 B2
8696173 Urtiga et al. Apr 2014 B2
8702281 Okada et al. Apr 2014 B2
8724052 Hsieh et al. May 2014 B2
8740440 Mizuno et al. Jun 2014 B2
8755005 Bierhuizen et al. Jun 2014 B2
8833999 Wang et al. Sep 2014 B2
8840276 Shani et al. Sep 2014 B2
8851712 Shani et al. Oct 2014 B2
8864360 Parker et al. Oct 2014 B2
8870431 Lin et al. Oct 2014 B2
8882323 Solomon et al. Nov 2014 B2
8905569 Thomas et al. Dec 2014 B2
8915611 Zhang Dec 2014 B2
8917962 Nichol et al. Dec 2014 B1
8960969 Freund Feb 2015 B2
9046225 Meyers et al. Jun 2015 B2
9081125 Dau et al. Jul 2015 B2
9274270 Wilson et al. Mar 2016 B2
9366396 Yuan et al. Jun 2016 B2
9442243 Tarsa Sep 2016 B2
10379278 Wilcox Aug 2019 B2
20010019479 Nakabayashi et al. Sep 2001 A1
20020061178 Winston et al. May 2002 A1
20020172039 Inditsky Nov 2002 A1
20030034985 Needham Riddle et al. Feb 2003 A1
20040080938 Holman et al. Apr 2004 A1
20040135933 Leu et al. Jul 2004 A1
20040213003 Lauderdale et al. Oct 2004 A1
20040240217 Rice Dec 2004 A1
20050111235 Suzuki et al. May 2005 A1
20050201103 Saccomanno et al. Sep 2005 A1
20050210643 Mezei et al. Sep 2005 A1
20060002146 Baba Jan 2006 A1
20060028842 Kim Feb 2006 A1
20060072203 Lee Apr 2006 A1
20060076568 Keller et al. Apr 2006 A1
20060262521 Piepgras et al. Nov 2006 A1
20070081780 Scholl Apr 2007 A1
20070086179 Chen et al. Apr 2007 A1
20070121340 Hoshi May 2007 A1
20070139905 Birman et al. Jun 2007 A1
20070189033 Watanabe et al. Aug 2007 A1
20070223247 Lee et al. Sep 2007 A1
20070245607 Awai et al. Oct 2007 A1
20070253058 Wood Nov 2007 A1
20070274654 Choudhury et al. Nov 2007 A1
20080037284 Rudisill Feb 2008 A1
20080055931 Verstraete Mar 2008 A1
20080086922 Chen Apr 2008 A1
20080137695 Takahashi et al. Jun 2008 A1
20080186273 Krijn et al. Aug 2008 A1
20080192458 Li Aug 2008 A1
20080199143 Turner Aug 2008 A1
20090003002 Sato Jan 2009 A1
20090103293 Harbers et al. Apr 2009 A1
20090196071 Matheson et al. Aug 2009 A1
20090257242 Wendman Oct 2009 A1
20090297090 Bogner et al. Dec 2009 A1
20090309494 Patterson et al. Dec 2009 A1
20100008088 Koizumi et al. Jan 2010 A1
20100027257 Boonekamp et al. Feb 2010 A1
20100046219 Pijlman Feb 2010 A1
20100073597 Bierhuizen Mar 2010 A1
20100079843 Derichs et al. Apr 2010 A1
20100079980 Sakai Apr 2010 A1
20100118531 Montagne May 2010 A1
20100128483 Reo et al. May 2010 A1
20100133422 Lin et al. Jun 2010 A1
20100157577 Montgomery et al. Jun 2010 A1
20100208460 Ladewig et al. Aug 2010 A1
20100220484 Shani et al. Sep 2010 A1
20100220497 Ngai Sep 2010 A1
20100231143 May et al. Sep 2010 A1
20100231605 Moriya et al. Sep 2010 A1
20100238645 Bailey Sep 2010 A1
20100238671 Catone et al. Sep 2010 A1
20100271806 Bae Oct 2010 A1
20100302218 Bita et al. Dec 2010 A1
20100302616 Bita et al. Dec 2010 A1
20100302783 Shastry et al. Dec 2010 A1
20100302803 Bita et al. Dec 2010 A1
20100315833 Holman et al. Dec 2010 A1
20100320904 Meir Dec 2010 A1
20100328936 Pance et al. Dec 2010 A1
20110007505 Wang Jan 2011 A1
20110013397 Catone et al. Jan 2011 A1
20110013420 Coleman et al. Jan 2011 A1
20110037388 Lou et al. Feb 2011 A1
20110044582 Travis et al. Feb 2011 A1
20110058372 Lerman et al. Mar 2011 A1
20110063830 Narendran et al. Mar 2011 A1
20110063855 Vissenberg Mar 2011 A1
20110069843 Cohen et al. Mar 2011 A1
20110122616 Hochstein May 2011 A1
20110163681 Dau et al. Jul 2011 A1
20110163683 Steele et al. Jul 2011 A1
20110170289 Mien et al. Jul 2011 A1
20110180818 Lerman et al. Jul 2011 A1
20110187273 Summerford et al. Aug 2011 A1
20110193105 Lerman et al. Aug 2011 A1
20110193106 Lerman et al. Aug 2011 A1
20110193114 Lerman et al. Aug 2011 A1
20110195532 Lerman et al. Aug 2011 A1
20110198631 Lerman et al. Aug 2011 A1
20110198632 Lerman et al. Aug 2011 A1
20110199769 Bretschneider et al. Aug 2011 A1
20110204390 Lerman et al. Aug 2011 A1
20110204391 Lerman et al. Aug 2011 A1
20110210861 Winton et al. Sep 2011 A1
20110228527 Van Gorkom et al. Sep 2011 A1
20110233568 An et al. Sep 2011 A1
20110248287 Yuan et al. Oct 2011 A1
20110249467 Boonekamp Oct 2011 A1
20110261570 Okada et al. Oct 2011 A1
20110273079 Pickard et al. Nov 2011 A1
20110273882 Pickard Nov 2011 A1
20110280043 Van Ostrand et al. Nov 2011 A1
20110299807 Kim et al. Dec 2011 A1
20110305018 Angelini et al. Dec 2011 A1
20110305027 Ham Dec 2011 A1
20110317436 Kuan Dec 2011 A1
20120008338 Ono et al. Jan 2012 A1
20120026728 Lou et al. Feb 2012 A1
20120026828 Fjellstad et al. Feb 2012 A1
20120033445 Desmet et al. Feb 2012 A1
20120039073 Tong Feb 2012 A1
20120051041 Edmond et al. Mar 2012 A1
20120068615 Duong et al. Mar 2012 A1
20120069579 Koh Mar 2012 A1
20120069595 Catalano Mar 2012 A1
20120092887 Wu Apr 2012 A1
20120113676 Van Dijk et al. May 2012 A1
20120114284 Ender May 2012 A1
20120120651 Peck May 2012 A1
20120140461 Pickard Jun 2012 A1
20120140519 Sakai Jun 2012 A1
20120152490 Wen et al. Jun 2012 A1
20120170266 Germain et al. Jul 2012 A1
20120170316 Lee et al. Jul 2012 A1
20120170318 Tsai et al. Jul 2012 A1
20120182767 Petcavich et al. Jul 2012 A1
20120188774 Okada Jul 2012 A1
20120212957 Hyun et al. Aug 2012 A1
20120230019 Peifer Sep 2012 A1
20120236595 Parker Sep 2012 A1
20120250296 Lu et al. Oct 2012 A1
20120250319 Dau et al. Oct 2012 A1
20120257383 Zhang Oct 2012 A1
20120268931 Lerman et al. Oct 2012 A1
20120268932 Lerman et al. Oct 2012 A1
20120287654 He et al. Nov 2012 A1
20120294037 Holman Nov 2012 A1
20120298181 Cashion et al. Nov 2012 A1
20120320626 Quilici et al. Dec 2012 A1
20120326614 Tsuji et al. Dec 2012 A1
20130010464 Shuja et al. Jan 2013 A1
20130028557 Lee et al. Jan 2013 A1
20130033867 Coplin et al. Feb 2013 A1
20130037838 Speier et al. Feb 2013 A1
20130038195 Petroski et al. Feb 2013 A1
20130038219 Dau et al. Feb 2013 A1
20130038798 Takata Feb 2013 A1
20130039050 Dau et al. Feb 2013 A1
20130044480 Sato Feb 2013 A1
20130051067 Chen Feb 2013 A1
20130070480 Griffin Mar 2013 A1
20130077298 Steele et al. Mar 2013 A1
20130107518 Boyer et al. May 2013 A1
20130107527 Boyer et al. May 2013 A1
20130107528 Boyer et al. May 2013 A1
20130128593 Luo May 2013 A1
20130155723 Coleman Jun 2013 A1
20130170210 Athalye Jul 2013 A1
20130201715 Dau et al. Aug 2013 A1
20130208461 Warton et al. Aug 2013 A1
20130208495 Dau et al. Aug 2013 A1
20130214300 Lerman et al. Aug 2013 A1
20130215612 Garcia Aug 2013 A1
20130223057 Gassner et al. Aug 2013 A1
20130229804 Holder et al. Sep 2013 A1
20130229810 Pelka et al. Sep 2013 A1
20130250584 Wang et al. Sep 2013 A1
20130279198 Lin et al. Oct 2013 A1
20130294059 Galluccio et al. Nov 2013 A1
20130294063 Lou et al. Nov 2013 A1
20130343045 Lodhie et al. Dec 2013 A1
20130343079 Unger et al. Dec 2013 A1
20140003041 Dau et al. Jan 2014 A1
20140029257 Boyer et al. Jan 2014 A1
20140036510 Preston et al. Feb 2014 A1
20140071687 Tickner et al. Mar 2014 A1
20140092584 Ono Apr 2014 A1
20140133172 Vissenberg May 2014 A1
20140168955 Gershaw Jun 2014 A1
20140211462 Keller Jul 2014 A1
20140211476 Yuan Jul 2014 A1
20140211495 Yuan et al. Jul 2014 A1
20140211497 Yuan et al. Jul 2014 A1
20140211502 Keller et al. Jul 2014 A1
20140211504 Yuan et al. Jul 2014 A1
20140211508 Yuan et al. Jul 2014 A1
20140212090 Wilcox et al. Jul 2014 A1
20140268879 Mizuyama et al. Sep 2014 A1
20140334126 Speier et al. Nov 2014 A1
20140355302 Wilcox et al. Dec 2014 A1
20140376219 Ono Dec 2014 A1
20150003059 Haitz et al. Jan 2015 A1
20150049507 Shani et al. Feb 2015 A1
20150109820 Wilcox et al. Apr 2015 A1
20150260901 Onac Sep 2015 A1
20150277636 Holmgren Oct 2015 A1
Foreign Referenced Citations (29)
Number Date Country
3812764 Oct 1989 DE
20014114 Dec 2000 DE
20107425 Aug 2001 DE
10047101 Sep 2002 DE
10203106 Jul 2003 DE
10302563 Jul 2004 DE
10302564 Jul 2004 DE
102006009325 Sep 2007 DE
102006011296 Sep 2007 DE
102006013343 Sep 2007 DE
2784380 Oct 2014 EP
H10173870 Jun 1998 JP
2000147264 May 2000 JP
3093080 Apr 2003 JP
2004227934 Aug 2004 JP
2006131444 May 2006 JP
2007053019 Mar 2007 JP
2007123130 May 2007 JP
2007294191 Nov 2007 JP
3161425 Jul 2010 JP
9621122 Jul 1996 WO
9621884 Jul 1996 WO
2003031869 Apr 2003 WO
2009012484 Jan 2009 WO
2011130648 Oct 2011 WO
2013078463 May 2013 WO
2013082537 Jun 2013 WO
2014120672 Aug 2014 WO
2014120672 Aug 2014 WO
Non-Patent Literature Citations (23)
Entry
Author Unknown, “Transformations in Lighting: 2011 DOE Solid-State Lighting R&D Workshop,” Workshop Report, Mar. 2011, 24 pages.
Ji, et al., “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” vol. 28, Issue 13, Optics Letters, Jul. 1, 2003, pp. 1147-1149.
Ijima, et al., “Document scanner using polymer waveguides with a microlens array,” Optical Engineering, vol. 41, Issue 11, Nov. 2002, pp. 2743-2748.
Author Unknown, “Acrilica—281,” Technical data page, www.oluce.com/en/lampada/281/, available online at least as early as Nov. 19, 2013, 6 pages.
Invitation to Pay Additional Fees and Partial Search for International Patent Application No. PCT/US2014/013400, dated Apr. 30, 2014, 2 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013400, dated Jul. 10, 2014, 16 pages.
Invitation to Pay Additional Fees and Partial Search for International Patent Application No. PCT/US2014/013408, dated May 8, 2014, 2 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013408, dated Jul. 17, 2014, 17 pages.
Invitation to Pay Additional Fees and Partial Search for International Patent Application No. PCT/US2014/013840, dated May 8, 2014, 2 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013840, dated Jul. 28, 2014, 12 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013854, dated Jun. 5, 2014, 9 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013891, dated May 19, 2014, 8 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013931, dated Jul. 14, 2014, 17 pages.
Invitation to Pay Additional Fees and Partial Search for International Patent Application No. PCT/US2014/013931, dated May 1, 2014, 2 pages.
Invitation to Pay Additional Fees and Partial Search for International Patent Application No. PCT/US2014/013934, dated May 1, 2014, 2 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/013934, dated Jul. 10, 2014, 13 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/28887, dated Jul. 24, 2014, 9 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/028938, dated Jul. 28, 2014, 12 pages.
Non-Final Office Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 14/101,147, dated Feb. 26, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/812,729, dated Jun. 26, 2018, 8 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 15/812,729, dated Mar. 1, 2019, 10 pages.
Non-Final Office Action for U.S. Appl. No. 16/429,491, dated Feb. 19, 2020, 14 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 16/429,491, dated Jun. 15, 2020, 11 pages.
Related Publications (1)
Number Date Country
20210010646 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
61758660 Jan 2013 US
Divisions (1)
Number Date Country
Parent 15812729 Nov 2017 US
Child 16429491 US
Continuations (2)
Number Date Country
Parent 16429491 Jun 2019 US
Child 17036982 US
Parent 14101147 Dec 2013 US
Child 15812729 US
Continuation in Parts (5)
Number Date Country
Parent 13938877 Jul 2013 US
Child 14101147 US
Parent 13841074 Mar 2013 US
Child 13938877 US
Parent 13839949 Mar 2013 US
Child 13841074 US
Parent 13842521 Mar 2013 US
Child 13839949 US
Parent 13840563 Mar 2013 US
Child 13842521 US