1. Technical Field
The present disclosure relates to a luminance adjusting circuit.
2. Description of the Related Art
Most LED (light emitting diode) driving circuits employ rectifier bridge for converting alternating current (AC) provided by a power supply, into a direct current to power LEDs. An LED module applied in the LED driving circuit includes a number of LEDs. If the voltage across each of the LEDs can not be maintained within a predetermined range, the luminance of each of the LEDs may change. Although some integrated circuits (ICs) can be employed in the LED driving circuit to adjust the luminance of the LEDs, the structure of the IC is complicated, and the price is expensive.
Therefore, there is room for improvement within the art.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of a luminance adjusting circuit. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The luminance adjusting circuit 100 further includes a voltage regulating circuit 12, a processing unit 13, a button module 15, a current detecting unit 16, and a switch module 17. The voltage regulating circuit 12 connected between the power supply 10 and the processing unit 13 is configured for regulating the voltage output from the power supply 10 which is forwarded to the processing unit 13. The switch module 17 includes a control terminal 170, a first conduction terminal 171, and a second conduction terminal 172. The first conduction terminal 172 is connected to the current detecting unit 16, and the second conduction terminal 171 is connected to the LED module 14.
The processing unit 13 includes a storage module 130, a calculating module 131, a judging and executing module 132, and a signal generating module 133. The storage module 130 stores a table defining a relationship between luminance levels of the LED module 14 and average current flowing through the LED module 14. The control terminal 170 is connected to the signal generating module 133. The current detecting unit 16 is connected between the second conduction terminal 172 and the calculating module 131. The button module 15 creates trigger signal(s) in response to the user's operation thereon, and sends the trigger signal(s) to the judging and executing module 132.
The button module 15 may be an electronic button or a mechanical button disposed on an electronic device (not shown) in which the LED luminance adjusting circuit 100 is employed. In the embodiment, the button module 15 is a mechanical button.
The judging and executing module 132 is configured for establishing the luminance level of the LED module 14 according to the table stored in the storage module 130 (as described below), and further produces a luminance adjusting control signal when a trigger signal is received from the button module 15. In the embodiment, the button module 15 generates one trigger signal per touch or per press. In the embodiment, the judging and executing module 132 generates one luminance adjusting control signal to change the luminance of the LED module 14 from a lower level to a higher level, or from a higher level to a lower level, in response to the trigger signal. In an alternative embodiment, the judging and executing module 132 generates one luminance adjusting control signal to change the luminance of the LED module 14 from a higher level to a lower level or from a lower level to a higher level in response to the trigger signal.
The table defines four luminance levels, i.e., the first level to the fourth level, in a sequence of low luminance level to high luminance level, the fourth level being the highest luminance level. If the judging and executing module 132 determines the current luminance level of the LED module 14 is at the second level, when the button module 15 generates two consecutive trigger signals, for example, the judging and executing module 132 generates a signal(s) to change the luminance level of the LED module 14 from the second level to the fourth level. When the button module 15 generates four consecutive trigger signals, the judging and executing module 132 changes the luminance level of the LED module 15 from the second level to the second level in the next turn. Thus the judging and executing module 132 counts the luminance levels from the second level to the fourth level, then cycles down to a first level and counts from the first level to the second level. Thus, the judging and executing module 132 may adjust the luminance level of the LED module 14 according to the number of operations on the button module 15.
The judging and executing module 132 further determines the average current value of the preset luminance levels defined in the table, and generates a signal to control the signal generating module 133 to produce a timing signal to the switch module 17 according to the average value of the current required. The timing signal defines a first control signal and a first endurance time of the first control signal, and a second control signal and a second endurance time of the second control signal, in a manner of a pulse width modulated signal. In the embodiment, the switch module 17 is turned on in response to the first control signal, and turned off in response to the second control signal. Thus, the judging and executing module 132 controls the signal generating module 133 to produce the timing signal to turn on or off the switch module 17 periodically, thereby adjusting the current flowing through the LED module 14 to obtain an average current value which according to the table equates to the desired luminance level.
In the embodiment, the first control signal is a high level signal, and the second control signal is a low level signal. The switch module 17 is turned on when the signal generating module 133 produces the first control signal, and turned off when the signal generating module 133 produces the second control signal.
In the embodiment, the luminance of the LED module 14 is set to be at the first level when the electronic device is switched on.
In the embodiment, if the actual luminance level is not equal to the desired luminance level, the actual luminance level can be adjusted. The manner for adjusting the actual luminance level to the desired luminance level is: detecting the value of the current flowing through the LED module 14 by the current detecting unit 16; calculating the average value of the current in a predetermined period according to the value of the current detected, by the calculating module 131; comparing the average value calculated by the calculating module 131 with the average value of the current for the desired luminance level, as defined in the table. If the average value calculated by the calculating module 131 is not equal to the desired luminance level, the judging and executing module 132 controls the signal generating module 133 to produce the necessary timing signal(s) with the required endurance times of the first and second control signals, and adjusting the luminance level of the LED module 14 to achieve compliance.
The luminance adjusting circuit 100 further includes a voltage detecting unit 18. The voltage detecting unit 18 is connected between the integrated circuit 11 and the judging and executing module 132, and detects the output voltage of the integrated circuit 11. The judging and executing module 132 is further configured for determining whether such output voltage is lower than a preset value, and controlling the signal generating module 133 to produce a signal to turn off the switch module 17 for a longer period when the output voltage is determined to be lower than the preset value. The preset voltage is the minimum working voltage of the LED module 14.
Referring to
In the embodiment, the switch module 17 is an N-channel metal oxide semiconductor (NMOS). The gate of the NMOS is connected to the signal generating module 133, the source of the NMOS is connected to the current detecting unit 16, and the drain of the NMOS is connected to the LED module 14 via the resistor R2.
The current detecting unit 16 includes a resistor R1. The resistor R1 and the source terminal of the NMOS are connected to a first intersection 160. The calculating module 131 is connected to the first intersection 160. The voltage regulating circuit 12 includes a zener diode D2.
Referring to
When the desired luminance level of the LED module 14 is the third level, the judging and executing module 132 controls the signal generating module 133 to produce a timing signal for period T′ including a first lasting time T1′ and a second lasting time T2′. In the embodiment, the signal generating module 133 produces a high level signal for turning on the NMOS for the first lasting time T1′ and then producing a low level signal for turning off the NMOS during the second lasting time T2′. The average current flowing through the LED module 14 is fixed at the average current corresponding in the table to the third level, thereby adjusting the luminance level of the LED module 14 from the second level to the third level.
The voltage provided to the LED module 14 is in a form of direct voltage with two half-waves in each period, the value of the current flowing through the LED module 14 changes with the direct voltage of the two half-waves in the first endurance time T1′. The calculating module 133 calculates the average value of the current resulting based on the value of the current detected by the current detecting unit 16 in integral principle during the period T′.
The period of the timing signal, the first lasting time and the second lasting time are short enough to avoid any possibility of flickering which might be visible to a user.
The bridge rectifier D1 is connected to the judging and executing module 132 via a resistor R3. The resistor R4 and the bridge rectifier D1 are connected to a second intersection 110. The judging and executing module 132 determines whether or not the voltage of the second intersection 110 is lower than the preset voltage.
It is understood that the present disclosure may be embodied in other forms without departing from the spirit thereof. The present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the disclosure is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
2011 1 0329507 | Oct 2011 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20080224625 | Greenfeld | Sep 2008 | A1 |
20110279040 | Briggs et al. | Nov 2011 | A1 |
20130009561 | Briggs | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130106302 A1 | May 2013 | US |