The present invention is directed to a luminance enhancement structure for reflective display devices. The structure not only can enhance the brightness of a display device; but also can reduce the Moiré pattern effect.
The lack of satisfactory brightness is often a concern for electrophoretic display devices. Total internal reflection would occur with electrophoretic display devices due to the fact that the display device usually has components of a high refractive index. Because of the components having a higher refractive index (e.g., about 1.5) than the air (which has a refractive index of about 1) surrounding the display panel, some of the scattering light from the display panel may reflect back to the display device by total internal reflection. This total internal reflection phenomenon could result in a loss of about 30-50% of the scattering light, thus causing reduction in brightness.
A luminance enhancement structure can be used to enhance the brightness of an electrophoretic display. However, when a luminance enhancement structure is applied onto an electrophoretic display, the Moiré effect may occur which could significantly affect the quality of the images displayed. The Moiré effect may be avoided by designing different luminance enhancement structures for different display devices, depending on the size and shape of the display cells of the display device. In other words, depending on the size and shape of its display cells (or other equivalent repeated patterns, such as active matrix backplane), each display device has to have a customized luminance enhancement structure to avoid the Moiré effect. Such an approach obviously is not desirable because it could be costly.
The present invention is directed to a luminance enhancement structure which not only can enhance the brightness of a display device, but also can reduce the Moiré effect, regardless of the size and shape of the display cells in the display device. Moreover, the luminance enhancement structure of the present invention has the additional advantage that the brightness of the display device may change depending on the viewing angle, in a more uniform manner.
One aspect of the invention is directed to a luminance enhancement structure which comprises columns and grooves wherein said columns have wavy edges. In one embodiment, the grooves have a triangular cross-section. The surface of the grooves is optically flat and optionally coated with a metal layer. In one embodiment, the enhancement structure has a thickness in the range of about 10 μm to about 200 μm. In one embodiment, the enhancement structure is formed from a material having a refractive index of about 1.4 to 1.7. In one embodiment, the wavy edges shift in the X direction while the columns themselves extend in the Z direction. In one embodiment, the widths of the top surface of the columns are equal when cross-sectioned by parallel lines. In one embodiment, the grooves have the same apex angle. In one embodiment, the variance of the shift of the wavy edges is within 15% of the nominal or average period of the variance in the Z direction. In one embodiment, no column has a shift pattern of the wavy edges matching the shift pattern of another column within 10 or more columns.
Another aspect of the invention is directed to a display device which comprises an array of microcups and a luminance enhancement structure on the viewing side of the display device wherein said luminance enhancement structure comprises columns and grooves and said columns have wavy edges. In one embodiment, the grooves have a triangular cross-section. In one embodiment, the surface of the grooves is optically flat and optionally coated with a metal layer. In one embodiment, the luminance enhancement structure has a thickness in the range of about 10 μm to about 200 μm. In one embodiment, the luminance enhancement structure is formed from a material having a refractive index of about 1.4 to 1.7. In one embodiment, the wavy edges shift in the X direction while the columns themselves extend in the Z direction. In one embodiment, the widths of the top surface of the columns are equal when cross-sectioned by parallel lines. In one embodiment, the grooves have the same apex angle. In one embodiment, the variance of the shift of the wavy edges is within 15% of the nominal or average period of the variance in the Z direction. In one embodiment, no column has a shift pattern of the wavy edges matching the shift pattern of another column within 10 or more columns. In one embodiment, the microcups are filled with an electrophoretic fluid. In one embodiment, the display device further comprises two electrode layers. One of the electrode layers comprises thin film transistor pixel electrodes or is a patterned segment electrode layer.
a depicts a luminance enhancement structure of the present invention.
b and 3c show the three-dimensional view of the luminance enhancement structure.
a and 4b illustrate the dimensions of the luminance enhancement structure.
a-6e illustrate the formation of a luminance enhancement structure coated with a metal layer.
I. Definitions
The technical term “total internal reflection” used in this application refers to an optical phenomenon that occurs when a ray of light strikes a medium boundary at an angle greater than the critical angle with respect to the normal axis to the surface. This can only occur where light travels from a medium with a higher refractive index to one with a lower refractive index.
Generally speaking, when a ray of light crosses a boundary between materials with different refractive indices, the light will be partially refracted at the boundary surface, and partially reflected. However, if the angle of incidence is greater than the critical angle, the light will stop crossing the boundary and instead be totally reflected back.
The critical angle is calculated based on the equation of Snell's law: C=sin−1(n2/n1) wherein n1 and n2 are the refractive indices of the two different media, with n1 being the higher refractive index and n2 being the lower refractive index.
The terms “period” and “frequency” have the commonly known meanings. The time it takes to complete a cycle (360°, as indicated by arrows in
The term “Moiré pattern” is a pattern created by stacking one layer having a repetitive pattern on top of another layer also having a repetitive pattern. The two repeated patterns may be different. For example, a Moiré pattern may become visible when a microcup layer is placed on top of a TFT (thin film transistor) layer.
II. Display Devices
For an electrophoretic display panel, the display cells are filled with an electrophoretic fluid which comprises charged pigment particles dispersed in a solvent. The display fluid may be a system comprising one or two types of particles.
In the system comprising only one type of particles, the charged pigment particles are dispersed in a solvent of a contrasting color. The charged particles will be drawn to one of the electrode layers (204 or 205), depending on the potential difference of the two electrode layers, thus causing the display panel to show either the color of the particles or the color of the solvent, on the viewing side.
In a system comprising particles carrying opposite charges and of two contrasting colors, the particles would move to one electrode layer or the other, based on the charge that they carry and the potential difference of the two electrode layers, causing the display panel to show the two contrasting colors, on the viewing side. In this case, the particles may be dispersed in a clear solvent.
The display cells may also be filled with a liquid crystal composition. In addition, it is understood that the present invention is applicable to all types of reflective display devices.
For a segment display device, the two electrode layers (204 and 205) are one common electrode (e.g., ITO) and one patterned segment electrode layer, respectively. For an active matrix display device, the two electrode layers (204 and 205) are one common electrode and an array of thin film transistor pixel electrodes, respectively. For a passive matrix display device, the two electrode layers (204 and 205) are two line-patterned electrode layers.
The electrode layers are usually formed on a substrate layer (206) [(such as polyethylene terephthalate (PET)). The thickness of the substrate layer (206) is usually between about 5 μm to about 175 μm, more preferably between about 5 μm to about 50 μm. The substrate layer may also be a glass layer.
For a microcup-based display device disclosed in U.S. Pat. No. 6,930,818, the content of which is incorporated herein by reference in its entirety, the filled display cells are sealed with a polymeric sealing layer. Such a display device may be viewed from the sealing layer side or the side opposite the sealing layer side, depending on the transparency of the materials used and the application.
III. The Luminance Enhancement Structure
a is a cross-section view of a luminance enhancement structure (300) of the present invention.
The groove has a triangular cross-section (301), an apex angle α and a top point A. The surface (304) of the grooves is optically flat and may optionally be coated with a metal layer. In the context of this application, the terms “groove” or “grooves” refers to the groove or grooves the surface of which is either uncoated or coated. In one embodiment of the present invention, the surface of the groove or grooves is preferably uncoated. The columns (302) have a top surface (305).
The thickness of the luminance enhancement structure may be in the range of about 10 μm to about 200 μm. The thickness of the luminance enhancement structure is expressed as the height (“h”) of the column (302) in
The luminance enhancement structure is formed from a material having a refractive index of about 1.4 to 1.7. The luminance enhancement structure is transparent.
The columns have wavy edges (306). Each column has two wavy edges, as shown in
In a single column, the widths (e.g., w1, w2, w3, etc.) of the top surface (305) of the column are equal when cross-sectioned by parallel lines (e.g., L1, L2, L3, etc.). In addition, the widths (e.g., w1, w1′, w1″, etc) of the top surface (305) of all columns (302) are also equal when cross-sectioned by a same line.
The horizontal shift of the edges, however, will cause the base width (w) of the grooves (303) to vary. As a result, the depth (d) of the grooves will also vary. The apex angles of all the grooves are equal in the same luminance enhancement structure.
The variance of the horizontal shift of the edges is generally small, preferably within 15% of the nominal or average period of the variance in the Z direction. The term “period” is the time needed to complete a cycle (as shown in
The variance of the shift pattern may change from one column to another column. The frequency of changes in the Z direction for each individual column is usually high so that the changing patterns will not be detectable by human eyes.
It is preferred that every column has a different horizontal shift pattern so that no column will have a shift pattern matching the shift pattern of another column within a certain range (e.g., within 10 or more columns). This design will help reduce the Moiré pattern when the luminance enhancement structure is laminated over a display device.
IV. Dimensions of the Luminance Enhancement Structure
a and 4b illustrate the dimensions of a groove of a luminance enhancement structure of the present invention.
In
The critical angle C1, in this case, is about 42° based on the refractive index of the material for the luminance enhancement structure being 1.5 and the refractive index of air surrounding the top surface of the luminance enhancement structure being 1.
As shown in
An incoming light (not shown) from a light source transmits through the luminance enhancement structure and strikes the display device and is then reflected with a scattering profile. The scattered light 402 in
b demonstrates that the tilted surface (403) of the groove (401) will reflect incoming light by total internal reflection. The design aims to ensure that the light striking the tilted surface (403) of the groove (401) will be reflected instead of transmitting through the space within the groove. The critical angle (not shown) at the boundary between the tilted surface (403) and the space within the groove may be calculated based on the refractive index of the material for the luminance enhancement structure and the refractive index of what is filled in the space of the groove (401). If the groove is unfilled, the refractive index of air is about 1. With the refractive index of the material for the luminance enhancement structure being about 1.5, the critical angle C2 would be about 42°. When the angle of incidence θ2 of the light (408) coming from the surface (407) is greater than 42°, the light striking the tilted surface (403) will be totally internal reflected towards the surface 406 which is desired in this case because, otherwise, the light would transmit through the space in the groove.
A reflective tilted surface may be achieved by coating a metal layer over the surface of the groove. However, in one embodiment of the present invention, the surface of the grooves is uncoated.
V. Display Device with the Luminance Enhancement Structure
The thickness of the substrate layer (206) between the luminance enhancement structure and the display device is preferably in the range of about 0 to about 25 μm, preferably in the range of about 0 to about 20 μm.
The space within the grooves (303) usually is filled with air. It is also possible for the space to be in a vacuum state. Alternatively, the space in the grooves (303) may be filled with a low refractive index material, lower than the refractive index of the material forming the luminance enhancement structure.
VI. Fabrication of the Luminance Enhancement Structure
The luminance enhancement structure may be fabricated in many different ways.
A Fast Tool Servo system with precision single point diamond turning is one of the methods which may be used to manufacture the luminance enhancement structure. The hard tools may be very small diamond tools mounted on CNC (computer numeric control) machines (e.g., turning, milling and ruling/shaping machines). These machines may have vibration devices attached to assist the tools to create the horizontal shifts with different levels of irregularity. Examples include STS (Slow Tool Servo), FTS (Fast Tool Servo) and other ultrasonic vibration apparatus. U.S. Pat. No. 6,581,286 discloses one of the applications of the FTS for creating grooves on an optical film by using thread cutting. The tool is mounted onto the machine to create constant peak apex angle of cavities in relation to X-Y planes along the Z direction within a basic element. By using a tool to form surfaces in a mold in relation to increasing degrees of freedom, three-dimensionally varying irregular prism blocks of the structured surfaces of the optical substrates can be obtained.
The non-regularity design of the present invention causes every column to redirect the light by a different factor, resulting in a different viewing angle distribution for every column, which are then combined to form a more uniform changing viewing angle for the luminance enhancement structure.
The refraction index of the material for forming the luminance enhancement structure is preferably greater than about 1.4, more preferably between about 1.5 and about 1.7.
The luminance enhancement structure may be used as is or further coated with a metal layer. In the latter case, a metal layer is then deposited over the surface of the grooves. Suitable metals for this step may include, but are not limited to, aluminum, copper, zinc, tin, molybdenum, nickel, chromium, silver, gold, iron, indium, thallium, titanium, tantalum, tungsten, rhodium, palladium, platinum and cobalt. Aluminum is usually preferred. The metal material must be reflective, and it may be deposited on the surface of the grooves, using a variety of techniques such as sputtering, evaporation, roll transfer coating, electroless plating or the like.
In order to facilitate formation of the metal layer only on the intended surface of the grooves, a strippable masking layer may be coated before metal deposition, over the surface on which the metal layer is not to be deposited. As shown in
The coating of the strippable masking layer may be accomplished by a printing technique, such as flexographic printing, driographic printing, electrophotographic printing, lithographic printing, gravure printing, thermal printing, inkjet printing or screen printing. The coating may also be accomplished by a transfer-coating technique involving the use of a release layer. The strippable masking layer preferably has a thickness in the range of about 0.01 to about 20 microns, more preferably about 1 to about 10 microns.
For ease of stripping, the layer is preferably formed from a water-soluble or water-dispersible material. Organic materials may also be used. For example, the strippable masking layer may be formed from a re-dispersible particulate material. The advantage of the re-dispersible particulate material is that the coated layer may be easily removed without using a solubility enhancer. The term “re-dispersible particulate” is derived from the observation that the presence of particles in the material in a significant quantity will not decrease the stripping ability of a dried coating and, on the contrary, their presence actually enhances the stripping speed of the coated layer.
The re-dispersible particulate consists of particles that are surface treated to be hydrophilic through anionic, cationic or non-ionic functionalities. Their sizes are in microns, preferably in the range of about 0.1 to about 15 um and more preferably in the range of about 0.3 to about 8 um. Particles in these size ranges have been found to create proper surface roughness on a coated layer having a thickness of <15 um. The re-dispersible particulate may have a surface area in the range of about 50 to about 500 m2/g, preferably in the range of about 200 to about 400 m2/g. The interior of the re-dispersible particulate may also be modified to have a pore volume in the range of about 0.3 to about 3.0 ml/g, preferably in the range of about 0.7 to about 2.0 ml/g.
Commercially available re-dispersible particulates may include, but are not limited to, micronized silica particles, such as those of the Sylojet series or Syloid series from Grace Davison, Columbia, Md., USA.
Non-porous nano sized water re-dispersible colloid silica particles, such as LUDOX AM can also be used together with the micron sized particles to enhance both the surface hardness and stripping rate of the coated layer.
Other organic and inorganic particles, with sufficient hydrophilicity through surface treatment, may also be suitable. The surface modification can be achieved by inorganic and organic surface modification. The surface treatment provides the dispensability of the particles in water and the re-wettability in the coated layer.
In
c shows the structure after removal of the strippable masking layer (604) with the metal layer 601 coated thereon. This step may be carried out with an aqueous or non-aqueous solvent such as water, MEK, acetone, ethanol or isopropanol or the like, depending on the material used for the strippable masking layer. The strippable masking layer may also be removed by mechanical means, such as brushing, using a spray nozzle or peeling it off with an adhesive layer. While removing the strippable masking layer (604), the metal layer (601) deposited on the strippable masking layer is also removed, leaving the metal layer (601) only on the surface (602) of the grooves.
d and 6e depict an alternative process for depositing the metal layer. In
The luminance enhancement structure comprising grooves (uncoated or coated with a metal layer) is then laminated over a layer of display cells as described above.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, materials, compositions, processes, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application claims priority to U.S. Provisional Application No. 61/120,243, filed Dec. 5, 2008; the content of which is incorporated herein by reference in its entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4083626 | Miyahara et al. | Apr 1978 | A |
| 5151801 | Hiroshima | Sep 1992 | A |
| 6144430 | Kuo | Nov 2000 | A |
| 6166787 | Akins et al. | Dec 2000 | A |
| 6277263 | Chen | Aug 2001 | B1 |
| 6327013 | Tombling et al. | Dec 2001 | B1 |
| 6556261 | Krusius et al. | Apr 2003 | B1 |
| 6565729 | Chen et al. | May 2003 | B2 |
| 6581286 | Campbell et al. | Jun 2003 | B2 |
| 6753064 | Nakama et al. | Jun 2004 | B1 |
| 6784962 | Sumida et al. | Aug 2004 | B2 |
| 6806995 | Chung et al. | Oct 2004 | B2 |
| 6930818 | Liang et al. | Aug 2005 | B1 |
| 6940569 | Tanaka et al. | Sep 2005 | B2 |
| 6997595 | Mi et al. | Feb 2006 | B2 |
| 7061569 | Yun et al. | Jun 2006 | B2 |
| 7088404 | Otake et al. | Aug 2006 | B2 |
| 7160017 | Lee et al. | Jan 2007 | B2 |
| 7184188 | Kamijima | Feb 2007 | B2 |
| 7244476 | Sumida et al. | Jul 2007 | B2 |
| 7248394 | Ding et al. | Jul 2007 | B2 |
| 7286197 | Kwon et al. | Oct 2007 | B2 |
| 7294866 | Liu | Nov 2007 | B2 |
| 7332066 | Chen et al. | Feb 2008 | B2 |
| 7339716 | Ding et al. | Mar 2008 | B2 |
| 7342556 | Oue et al. | Mar 2008 | B2 |
| 7397619 | Hwang et al. | Jul 2008 | B2 |
| 7408696 | Liang et al. | Aug 2008 | B2 |
| 7463317 | Takizawa et al. | Dec 2008 | B2 |
| 7543973 | Shimura | Jun 2009 | B2 |
| 7564519 | Takizawa | Jul 2009 | B2 |
| 7576914 | Goto | Aug 2009 | B2 |
| 7612846 | Takizawa et al. | Nov 2009 | B2 |
| 7638808 | Owen et al. | Dec 2009 | B2 |
| 7667785 | Van Gorkom et al. | Feb 2010 | B2 |
| 7693389 | Kamijima | Apr 2010 | B2 |
| 7830592 | Sprague et al. | Nov 2010 | B1 |
| 8237892 | Sprague et al. | Aug 2012 | B1 |
| 20010006409 | Lee | Jul 2001 | A1 |
| 20010026347 | Sawasaki et al. | Oct 2001 | A1 |
| 20010026445 | Naghi et al. | Oct 2001 | A1 |
| 20020033927 | Mun et al. | Mar 2002 | A1 |
| 20020057413 | Sumida et al. | May 2002 | A1 |
| 20030165016 | Whitehead et al. | Sep 2003 | A1 |
| 20030234900 | Kim | Dec 2003 | A1 |
| 20050003108 | Sumida et al. | Jan 2005 | A1 |
| 20050041311 | Mi et al. | Feb 2005 | A1 |
| 20050140846 | Lubart et al. | Jun 2005 | A1 |
| 20050141844 | Olczak | Jun 2005 | A1 |
| 20060034099 | Yang et al. | Feb 2006 | A1 |
| 20060055627 | Wilson | Mar 2006 | A1 |
| 20060103779 | Amemiya et al. | May 2006 | A1 |
| 20060291247 | Kao et al. | Dec 2006 | A1 |
| 20070063965 | Kawai | Mar 2007 | A1 |
| 20070152592 | Kim et al. | Jul 2007 | A1 |
| 20070160811 | Gaides et al. | Jul 2007 | A1 |
| 20070200975 | Kamijima | Aug 2007 | A1 |
| 20070253072 | Mullen et al. | Nov 2007 | A1 |
| 20080012034 | Thielen et al. | Jan 2008 | A1 |
| 20090097273 | Chang | Apr 2009 | A1 |
| 20090231245 | Lin | Sep 2009 | A1 |
| 20100177396 | Lin | Jul 2010 | A1 |
| 20100182351 | Lin | Jul 2010 | A1 |
| 20100225999 | Lin et al. | Sep 2010 | A1 |
| 20100271407 | Ho et al. | Oct 2010 | A1 |
| 20110043894 | Sprague et al. | Feb 2011 | A1 |
| 20110057927 | Lin | Mar 2011 | A1 |
| Number | Date | Country |
|---|---|---|
| 2001-264819 | Sep 2001 | JP |
| WO 0167170 | Sep 2001 | WO |
| WO 2008122927 | Oct 2008 | WO |
| WO 2009114361 | Sep 2009 | WO |
| Entry |
|---|
| U.S. Appl. No. 12/837,350, filed Jul. 15, 2010, Sprague et al. |
| U.S. Appl. No. 12/843,396, filed Jul. 26, 2010, Sprague et al. |
| Sprague, R.A. (Sep. 23, 2009) SiPix Microcup Electrophoretic Epaper for Ebooks. NIP 25, 2009 pp. 460-462. (Presentation conducted on Sep. 23, 2009 at the 25th Int'l Conference on Digital Printing Technologies, Digital Fabrication 2009 (NIP 25) by Society for Imaging Science and Technology, in Louisville, Kentucky, USA.). |
| Kao, WC., Ye, JA., Chu, MI., and Su, CY. (Feb. 2009) Image Quality Improvement for Electrophoretic Displays by Combining Contrast Enhancement and Halftoning Techniques. IEEE Transactions on Consumer Electronics, 2009, vol. 55, Issue 1, pp. 15-19. |
| Kao, WC., (Feb. 2009) Configurable Timing Controller Design for Active Matrix Electrophoretic Dispaly. IEEE Transactions on Consumer Electronics, 2009, vol. 55, Issue 1, pp. 1-5. |
| Kao, WC., Ye, JA., and Lin, C. (Jan. 2009) Image Quality Improvement for Electrophoretic Displays by Combining Contrast Enhancement and Halftoning Techniques. ICCE 2009 Digest of Technical Papers, 11.2-2. |
| Kao, WC., Ye, JA., Lin, FS., Lin, C., and Sprague, R. (Jan. 2009) Configurable Timing Controller Design for Active Matrix Electrophoretic Display with 16 Gray Levels. ICCE 2009 Digest of Technical Papers, 10.2-2. |
| Kao, WC., Fang, CY., Chen, YY., Shen, MH., and Wong, J. (Jan. 2008) Integrating Flexible Electrophoretic Display and One-Time Password Generator in Smart Cards. ICCE 2008 Digest of Technical Papers, P4-3. (Int'l Conference on Consumer Electronics, Jan. 9-13, 2008). |
| Zang, HM., Wang, F., Kang, Y.M., Chen, Y., and Lin, W. (Jul. 2007) Microcup® e-Paper for Embedded and Flexible Designs. IDMC'07, Taipei International Convention Center, Taiwan. |
| Zang, HM., (Feb. 2007) Developments in Microcup® Flexible Displays. Presentation conducted at the 6th Annual Flexible Display and Microelectronics Conference, Phoenix, AZ Feb. 6-8. |
| Ho, Andrew. (Nov. 2006) Embedding e-Paper in Smart Cards, Pricing Labels & Indicators. Presentation conducted at Smart Paper Conference Nov. 15-16, 2006, Atlanta, GA, USA. |
| Zang, HM., (Sep. 2006) Monochrome and Area Color Microcup® EPDs by Roll-to-Roll Manufacturing Process. Presentation conducted at the Forth Organic Electronics Conference and Exhibition (OEC-06), Sep. 25-27, 2006, Frankfurt, Germany. |
| Wang, X., Zang, HM., and Li, P. (Jun. 2006) Roll-to-Roll Manufacturing Process for Full Color Electrophoretic film. SID Digest, 00pp. 1587-1589. |
| Zang, HM., Wang, W., Sun, C., Gu, H., and Chen, Y. (May 2006) Monochrome and Area Color Microcup® EPDs by Roll-to-Roll Manufacturing Processes. ICIS ' 06 International Congress of Imaging Science Final Program and Proceedings, pp. 362-365. |
| Wang, X., Li, P., Sodhi, D., Xu, T. and Bruner, S. et al., (Feb. 2006) Inkjet Fabrication of Multi-Color Microcup® Electrophorectic Display. the Flexible Microelectronics & Displays Conference of U.S. Display Consortium. |
| Liang, R.C., (Feb. 2005) Flexible and Roll-able Displays/Electronic Paper—A Brief Technology Overview. Flexible Display Forum, 2005, Taiwan. |
| Zang, H.M. & Hou, Jack, (Feb. 2005) Flexible Microcup® EPD by RTR Process. Presentation conducted at 2nd Annual Paper-Like Displays Conference, Feb. 9-11, 2005, St. Pete Beach, Florida. |
| Ho, Candice. (Feb. 1, 2005) Microcupt® Electronic Paper Device and Applicaiton. Presentation conducted at USDC 4th Annual Flexible Display Conference 2005. |
| Bardsley, J.N. & Pinnel, M.R. (Nov. 2004) Microcup™ Electrophoretic Displays. USDC Flexible Display Report, 3.1.2. pp. 3-12-3-16. |
| Liang, R.C. (Oct. 2004) Flexible and Roll-able Displays/Electronic Paper—A Technology Overview. Paper presented at the METS 2004 Conference in Taipie, Taiwan. |
| Liang, R.C., Zang, H.M., Wang, X., Chung, J. & Lee, H., (Jun./Jul. 2004) << Format Flexible Microcup® Electronic Paper by Roll-to-Roll Manufacturing Process >>, Presentation conducted at the 14th FPD Manufacturing Technology EXPO & Conference. |
| Wang, X., Kiluk, S., Chang, C., & Liang, R.C., (Jun. 2004) Microcup® Electronic Paper and the Converting Processes. Advanced Display, Issue 43, 48-51 (in Chinese, with English abstract). |
| Hou, J., Chen, Y., Li, Y., Weng, X., Li, H. and Pereira, C. (May 2004). Reliability and Performance of Flexible Electrophoretic Displays by Roll-to-Roll Manufacturing Processes. SID Digest, 32.3, 1066-1069. |
| Liang, R.C. (Apr. 2004). Microcup Electronic Paper by Roll-to-Roll Manufacturing Process. Presentation at the Flexible Displays & Electronics 2004 of Intertech, San Fransisco, California, USA. |
| Chaug, Y.S., Haubrich, J.E., Sereda, M. and Liang, R.C. (Apr. 2004). Roll-to-Roll Processes for the Manufacturing of Patterned Conductive Electrodes on Flexible Substrates. Mat. Res. Soc. Symp. Proc., vol. 814, 19.6.1. |
| Wang, X., Kiluk, S., Chang, C., & Liang, R.C. (Feb. 2004). Mirocup® Electronic Paper and the Converting Processes. ASID, 10.1.2-26, 396-399, Nanjing, China. |
| Zang, H.M. (Feb. 2004). Microcup Electronic Paper. Presentation conducted at the Displays & Microelectronics Conference of U.S. Display Consortium, Phoenix, Arizona, USA. |
| Zang, H.M, Hwang, J.J., Gu, H., Hou, J., Weng, X., Chen, Y., et al. (Jan. 2004). Threshold and Grayscale Stability of Microcup® Electronic Paper. Proceeding of SPIE-IS&T Electronic Imaging, SPIE vol. 5289, 102-108. |
| Ho, C.,& Liang, R.C. (Dec. 2003). Microcup® Electronic Paper by Roll-to-Roll Manufacturing Processes. Presentation conducted at FEG, Nei-Li, Taiwan. |
| Chung, J., Hou, J., Wang, W., Chu, L.Y., Yao, W., & Liang, R.C. (Dec. 2003). Microcup® Electrophoretic Displays, Grayscale and Color Rendition. IDW, AMD2/EP1-2, 243-246. |
| Zang, H.M. (Oct. 2003). Microcup® Electronic Paper by Roll-to-Roll Manufacturing Processes. Presentation conducted at the Advisory Board Meeting, Bowling Green State University, Ohio, USA. |
| Allen, K. (Oct. 2003). Electrophoretics Fulfilled. Emerging Displays Review: Emerging Display Technologies, Monthly Report—Oct. 2003, 9-14. |
| Zang, H.M., & Liang, R.C. (2003) Microcup Electronic Paper by Roll-to-Roll Manufacturing Processes. The Spectrum, 16(2), 16-21. |
| Chen, S.M. (Jul. 2003) The Applications for the Revolutionary Electronic Paper Technology. OPTO News & Letters, 102, 37-41. (in Chinese, English abstract attached). |
| Lee, H., & Liang, R.C. (Jun. 2003) SiPix Microcup® Electronic Paper—An Introduction. Advanced Display, Issue 37, 4-9 (in Chinese, English abstract attached). |
| Liang, R.C., Hou, J., Chung, J., Wang, X., Pereira, C., & Chen, Y. (May 2003). Microcup® Active and Passive Matrix Electrophoretic Displays by A Roll-to-Roll Manufacturing Processes. SID Digest, vol. 34, Issue 1, pp. 838-841, 20.1. |
| Chen, S.M. (May 2003) The New Application and the Dynamics of Companies. TRI. 1-10. (In Chinese, English abstract attached). |
| Liang, R.C., Hou, J., Zang, H.M., Chung, J., & Tseng, S. (2003). Microcup® displays : Electronic Paper by Roll-to-Roll Manufacturing Processes. Journal of the SID, 11(4), 621-628. |
| Liang, R.C., Hou, J., Zang, H.M., & Chung, J. (Feb. 2003). Passive Matrix Microcup® Electrophoretic Displays. Paper presented at the IDMC, Taipei, Taiwan. |
| Liang, R.C., & Tseng, S. (Feb. 2003). Microcup® LCD, A New Type of Dispersed LCD by A Roll-to-Roll Manufacturing Process. Paper presented at the IDMC, Taipei, Taiwan. |
| Liang, R.C. (Feb. 2003) Microcup® Electrophoretic and Liquid Crystal Displays by Roll-to-Roll Manufacturing Processes. Presentation conducted at the Flexible Microelectronics & Displays Conference of U.S. Display Consortium, Phoenix, Arizona, USA. |
| Liang, R.C., Hou, J., & Zang, H.M. (Dec. 2002) Microcup Electrophoretic Displays by Roll-to-Roll Manufacturing Processes. IDW, EP2-2, 1337-1340. |
| Nikkei Microdevices. (Dec. 2002) Newly-Developed Color Electronic Paper Promises—Unbeatable Production Efficiency. Nikkei Microdevices, p. 3. (in Japanese, with English translation). |
| U.S. Appl. No. 12/323,315, filed Nov. 25, 2008, Sprague et al. |
| Number | Date | Country | |
|---|---|---|---|
| 20100141573 A1 | Jun 2010 | US |
| Number | Date | Country | |
|---|---|---|---|
| 61120243 | Dec 2008 | US |