1. Field of the Invention
This invention generally relates to systems and methods for analyzing assays, and more specifically, to optical systems and methods for analyzing assays using luminescent reporters.
2. Description of the Related Art
The following descriptions and examples are not admitted to be prior art by virtue of their inclusion within this section.
Spectroscopic techniques are widely employed in the analysis of chemical and biological assays. Most often, these techniques involve measuring the absorption or emission of electromagnetic radiation by the material of interest. One such application is in the field of microarrays, which is a technology exploited by a large number of disciplines including the combinatorial chemistry and biological assay industries. Luminex Corporation of Austin, Tex. has developed systems in which assays are analyzed through detection of fluorescence emissions from the surface of variously colored fluorescent microspheres. In such systems, a multiplexing scheme is often employed in which multiple analytes are evaluated in a single analysis step for a single sample. To facilitate a multiplexing scheme, particles are configured into distinguishable groups, with different groups used to indicate the presence, absence and/or amount of different analytes in an assay. For instance, different fluorescent dyes and/or different concentrations of dyes may be absorbed into particles and/or bound to the surface of particles and/or particles may vary by size. Contemporary systems using these microspheres can test for tens to over one hundred different analytes in a biological sample and future increases are probable. In particular, the number of particle categories may be augmented by increasing the number of fluorescent dyes and/or different dye intensities. The inclusion of additional dyes and/or dye intensities, however, adds complexity to a system, which can greatly contribute to increasing the expense and/or difficulty of producing the platform.
An alternative to detecting fluorescent emissions for assay analysis is chemiluminescent emission detection, specifically via a chemiluminescent reaction between particles coupled with a chemiluminescent compound and a trigger solution added to an assay including the particles. Such a manner of detection, however, typically requires the particles to be immobilized to adequately activate and measure the chemiluminescence. In particular, the emission kinetics of a typical chemiluminescent reaction generally occurs on the order of a few hundred microseconds after a trigger solution is introduced to an assay. As such, in order to ensure luminescent emission is captured, particles within an assay are immobilized prior to introduction of a trigger solution and remain immobilized for the subsequent measurement of chemiluminescence. For at least this reason, chemiluminescent detection is not considered feasible for flow systems and, thus, is generally performed with a static luminometer or a plate reader.
The following description of various embodiments of optical analysis systems and methods for analyzing an assay is not to be construed in any way as limiting the subject matter of the appended claims.
An embodiment of a method for analyzing an assay within an optical analysis flow system includes injecting a fluid assay comprising particles coupled with a luminescent compound into an optical analysis flow system. The method further includes activating the luminescent compound on at least some of the particles within the optical analysis flow system at a site along a flow path of the fluid assay prior to an examination zone of the optical analysis flow system such that the particles coupled with the activated luminescent compound emit luminescent light within the examination zone. Moreover, the method includes measuring the luminescent light emitting from the particles coupled with the activated luminescent compound as they flow through the examination zone.
An embodiment of an optical analysis flow system includes an interrogation flow cell and a fluid handling system including a sheath fluidic line for supplying a sheath fluid into the interrogation flow cell and an assay fluidic line extending into the interrogation flow cell for introducing a fluid assay into a flow of the sheath fluid within the interrogation flow cell. The optical analysis flow system also includes a means for facilitating activation of a luminescent material coupled to particles entrained within the fluid assay. The means for facilitating activation of the luminescent material is arranged such that the activation of the luminescent material is conducted at a site along a flow path of the fluid assay prior to an examination zone of the interrogation flow cell.
Another embodiment of a method for analyzing an assay includes introducing a fluid assay into an optical analysis system, measuring a first type of luminescent light emission from a first set of particles comprising the fluid assay, and measuring a second distinct type of luminescent light emission from a second set of particles comprising the fluid assay.
An embodiment of an optical analysis system includes a particle examination chamber and an assay fluidic line distinct from the particle examination chamber, but operably coupled to the particle examination chamber such that particles entrained within a fluid assay flowing in the assay fluidic line are routed to the particle examination chamber. In addition, the optical analysis system includes at least two distinct means for respectively facilitating the activation of at least two different luminescent materials coupled to the particles.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:
a illustrates a partial cross-sectional view of an exemplary interrogation flow cell assembly and other components of an optical analysis flow system;
b illustrates a partial cross-sectional view of a different configuration of an interrogation flow cell assembly and other components of an optical analysis flow system;
c illustrates a partial cross-sectional view of another different configuration of an interrogation flow cell assembly and other components of an optical analysis flow system;
d illustrates a partial cross-sectional view of yet another different configuration of an interrogation flow cell assembly and other components of an optical analysis flow system;
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
In general, the optical analysis systems and methods described herein are directed at facilitating alternative and/or additional manners in which to analyze a fluid assay. Some of the systems and methods described herein are particularly directed at configurations which allow assay analysis using non-fluorescent reporters in an optical analysis flow system, particularly non-fluorescent luminescent materials which have a prolonged and/or delayed light emission upon activation. Such systems and methods include a means for facilitating activation of luminescent material coupled to particles entrained within the fluid assay. The means is arranged such that the activation of the luminescent material is conducted at a site along a flow path of the fluid assay prior to an examination zone of an interrogation flow cell and further such that the particles coupled with the activated luminescent compound emit luminescent light within the examination zone.
Other systems and methods described herein are directed at configurations which allow multiple and different types of luminescent reporters to be used to analyze a single assay in any type of optical analysis system (i.e., the systems and methods are not restricted to flow systems). Such systems and methods are described herein as measuring “different types of luminescent light”, which may generally refer to measuring luminescence generated from different manners of activation (e.g., photoluminescence, fluorescence, phosphorescence, chemiluminescence, bioluminescence, crystalloluminescence, electroluminescence, cathodoluminescence, mechanolumnescence, triboluminescence, fractoluminescence, piezoluminescence, radioluminescence, sonoluminescence, and thermoluminescence). As set forth below, systems and methods which are configured to measure different types of luminescent light may increase the number of analytes which may be identified and quantified from a single assay, particularly without increasing the expense and/or difficulty of producing a platform to analyze the assay.
The term “particle” is used herein to generally refer to microspheres, polystyrene beads, quantum dots, nanodots, nanoparticles, nanoshells, beads, microbeads, latex particles, latex beads, fluorescent beads, fluorescent particles, colored particles, colored beads, tissue, cells, micro-organisms, organic matter, non-organic matter, or any other discrete substrates or substances known in the art. Any of such terms may be used interchangeably herein. Exemplary magnetic microspheres which may be used for the methods and systems described herein include xMAP® microspheres, which may be obtained commercially from Luminex Corporation of Austin, Tex.
Turning to the drawings, exemplary optical analysis systems, fluidic line assemblies, and methods for analyzing as assay are shown. In particular,
As shown in
In some cases, optical analysis system 10 may be a flow system and, therefore, the fluid pathways may include an interrogation flow cell. The term “interrogation flow cell” as used herein, may generally refer to an analysis vessel used to guide a flowing assay and having a portion (i.e., an examination zone) which is transparent such that measurements of particles may be taken as they are motion. In reference to
As set forth in more detail below, optical analysis systems which immobilize particles for examination may also be applicable for the systems and methods described herein. As such, optical analysis system 10 may be representative of static optical analysis systems in some embodiments, specifically static imaging systems. In such cases, optical analysis system 10 may still include a fluidic handling system for transporting a fluid assay and possibly other fluids to particle examination chamber 12, but the examination chamber may be generally configured to immobilize particles of the fluid assay for examination. Exemplary static imaging optical analysis systems having such a configuration are described in the U.S. patent application Ser. No. 11/757,841 entitled “Systems and Methods for Performing Measurements of One or More Materials” by Roth et al. filed on Jun. 4, 2007, which is incorporated by reference as if set forth fully herein.
As shown in
As set forth below, optical analysis system 10 may, in some embodiments, be configured to generate and measure different types of luminescent light for the identification and quantification of analytes within an assay. As such, detection system 16 may, in some embodiments, be used to measure different types of luminescent light emitted and/or scattered from particles. In order to accommodate such functionality, detection system 16 may, in some cases, include distinct sets of photodetectors arranged with respect to different locations along particle examination chamber 12 for detecting the distinct types of luminescent light emissions. In other embodiments, detection system 16 may include a single set of photodetectors arranged with respect to a single location along particle examination chamber 12 and optical analysis system 10 may be configured to segregate the detection of the distinct types of luminescent light emissions by isolating the activation of the different luminescent light materials coupled to or incorporated within particles. In particular, optical analysis system 10 may include a plurality of mechanisms for facilitating the activation of different luminescent materials to generate different types of luminescent light emissions and may be further configured to selectively employ such multiple mechanisms. In other embodiments, optical analysis system 10 may be used to measure a single type of luminescent light and, thus, may, in some cases, include a single means for facilitating the activation of a particular type of luminescent material. Examples of mechanisms for facilitating the activation of luminescent materials within optical analysis system 10 are described in more detail below.
For instance, illumination system 14 may be used to illuminate particle examination chamber 12 such that one or more photoluminescent materials coupled to particles within an assay emit fluorescence as they pass through or are immobilized within particle examination chamber 12. As noted above, optical analysis system 10 may, in some embodiments, be configured to generate and measure different types of luminescent light. For example, optical analysis system 10 may be configured to generate fluorescent light via illumination system 14 and may further be configured to generate another type of luminescent light by another means. Example of mechanisms for generating luminescent light other than fluorescent light are described in more detail below in reference to
In general, illumination system 14 may include any suitable light source known in the art, such as but not limited to light emitting diodes (LEDs), lasers, arc lamps, fiber illuminators, light bulbs, and incandescent lamps. Illumination system 14 may include any number of the aforementioned light sources, including multiple sources of the same type of light source or different light sources. One example of an appropriate combination of light sources which may be particular useful for the system shown in
As further shown in
In either case, control system 18 may, in some embodiments, be configured to block and/or turn illumination system 14 on and off. Such a configuration may be particularly applicable when the light generated from illumination system 14 may mask light generated from non-fluorescent luminescent material coupled to particles within an assay. Alternatively, illumination system 14 may be kept on while non-fluorescent luminescent light is measured by detection system 16, particularly if detection system 16 includes a filter to exclude the light from illumination system 14. In yet other embodiments, control system 18 and/or illumination system 14 may be configured to pulse light upon particle examination chamber 12. In any case, another application that control system 18 may be used to govern is the selective employment of mechanisms in optical analysis system 10 which facilitate the activation of luminescent compounds coupled to particles in an assay. Examples of such operations are described in more detail below in reference to
As shown by the dotted line connection in
As noted above, optical analysis system 10 may, in some embodiments, be configured to generate and measure different types of luminescent light. In such cases, the classification particle subsets used to detect and/or quantify analytes in an assay may include distinct subsets for the different types of luminescent light. Alternatively stated, different sets of classifications regions may be mapped out for each type of luminescent light. For example, examination system 19 may be configured to classify particles to 100 different classification regions based on fluorescent light emitted from particles and may be further configured to classify particles to a different set of 100 classification regions based on chemiluminescent light emitted from particles. In some embodiments, each classification region may be representative of a different analyte of interest. For example, in the scenario noted above, the system may be configured to detect and quantify up to 200 different analytes of interest. In yet other cases, the classification regions may be mapped out such that more than one classification region may represent a single analyte of interest. Such scenarios may be advantageous for verifying analyte detection and/or quantification within an assay.
In alternative embodiments, the classification subsets used to categorize particles may include similar or the same subsets for the different types of luminescent light. In other words, examination system 19 may be configured to classify different types of luminescent light to similar or the same classification regions. As set forth below, such a configuration may advantageously increase the capacity of an optical analysis system without having to implement software modifications to map out additional regions for particle classification. In particular, different analytes may be attributed to each classification region based on the luminescent light measured and, thus, the capacity of the system may effectively be a multiple of the number of different types of luminescent light the system is configured to measure.
For instance, in cases in which examination system 19 is configured to classify two different types of luminescence to the same 100 classification regions, each region may be representative of two different analytes and, thus, the optical analysis may be configured to detect and/or quantify 200 different analytes. In such embodiments, examination system 19 may be configured to differentiate between two analytes of interest for the same classification region based one or more different operational parameters of optical analysis system 10. Examples of parameters include but are not limited to whether illumination system 14 is turned off or blocked, which of a plurality of detectors in detection system 16 generated the signal, and/or whether a means for facilitating activation of a particular luminescent material is employed. Exemplary means for facilitating activation of particular luminescent materials within optical analysis system 10 are described in more detail below in reference to
In particular,
As set forth below, the configurations described in reference to
The position of a means for facilitating the activation of a luminescent material within an optical analysis system may vary among different applications and may generally depend on the design of the analysis system as well as the timing and/or duration of the luminescent material to emit light after being activated. In cases in which light generation after activation is delayed or prolonged for a relatively short amount of time, it may be advantageous to activate a luminescent material very close to a particle examination chamber. For example, it may be desirable to position a means for facilitating activation of a luminescent material such that the site of activation within an optical analysis system is along a flow path of a fluid assay less than approximately 1.0 inch from the particle examination chamber. Other positions relating to distance from a particle examination chamber, however, may be considered.
In some cases, the position of such a means may be described relative to the timing of activating a luminescent material and subsequently measuring its light emission within an optical analysis chamber. For instance, an optical analysis system may be configured with a means for facilitating activation of a luminescent material such that measuring the resultant light emission is performed less than approximately 500 milliseconds after the material is activated. To accommodate such timing, the luminescent compound/s may generally have emissions kinetics peaks less than approximately 500 ms after being triggered. In particular, such a range may be suitable for insuring luminescent light emission may be detected and measured in a particle examination zone chamber of the optical analysis systems described herein. Other positions of means for facilitating activation of a luminescent material relating to timings of particle travel, however, may be considered.
As noted above, the systems described herein may be configured to generate different types of luminescent light and, as such, any of the configurations described in reference to
As shown in
As further shown in
As described in more detail below in reference to
As shown in
In alternative configurations, reagent fluidic line 38 may be coupled directly to assay fluidic line 30, such as shown in
In an alternative configuration, reagent fluidic line 38 may extend into interrogation flow cell 20 in a similar manner as assay fluidic line 30. For example, reagent fluidic line 38 may be disposed adjacent to assay fluidic line 30 as shown in
In any case, the ends of fluidic lines 30 and 38 extending into interrogation flow cell 20 may, in some embodiments, be offset such as shown for the nested configuration of fluidic lines in
In any case, the different assay fluids provided through fluidic lines 30 and 38 may be mixed within interrogation flow cell 20 upon being dispensed from the multiple needles. In some cases, fluidic lines 30 and 38 may extend into interrogation flow cell 20 such that their ends are in the wide body cavity of the flow cell preceding focusing section 22. In yet other embodiments, fluidic lines 30 and 38 may extend into interrogation flow cell 20 in the vicinity of focusing section 22 as shown in
Following the line of discussion and configurations for inducing a chemiluminescent reaction within an optical analytical system, it is contemplated that one or more means for facilitating the activation of other types of luminescent light may be incorporated within optical analytical systems. Such other types of luminescent light include: photoluminescence, fluorescence, phosphorescence, bioluminescence, crystalloluminescence, electroluminescence, cathodoluminescence, mechanolumnescence, triboluminescence, fractoluminescence, piezoluminescence, radioluminescence, sonoluminescence, and thermoluminescence.
Turning to the flowchart depicted in
The one or more luminescent compounds may be coupled to the particles either directly or indirectly in the same manner as photoluminescent compounds are attached to particles for conventional processing. For example, indirect coupling is provided in a “competitive” immunoassay, where antibodies specific for the analyte to be detected are coupled to the particles. A labeled luminescent antigen (i.e., a reporter) is provided and will bind to the antibodies unless an antigen (i.e., analyte) in the fluid assay out-competes the labeled antigen for a limited number of antibody binding sites on the particle. In non-competitive immunoassays, the analyte is “sandwiched” between two antibodies, the capture antibody coupled to the particle and the detection antibody with the luminescent moiety coupled thereto. In some embodiments, the one or more luminescent compounds may vary by type and/or concentration among different sets of particles. In this manner, the one or more luminescent compounds may be attributed to particular classifications of particles and multiple analytes may be analyzed via luminescent detection/measurement. It is further noted that particles of an assay may include any combination of luminescent compounds used for analyte detection, including different types of luminescent compounds on the same particle.
As further shown in
As noted in block 44 in
As noted above, the luminescent compound/s used for the assay analysis processes described herein may generally have emissions kinetics peaks which cover the timeframe it takes for a particle to travel to a particle examination zone after being triggered. In particular, the prescribed range insures luminescent light emission may be detected and measured in a particle examination zone of the optical analysis systems described herein. Chemiluminescent compounds which have been found to be particularly suitable for chemiluminescent reactions are acridinium compounds, examples of which are set forth below including biacridinium, acridinium-9 carboximide, and an N-sulfonylamide derivative of acridinium-9 carboximide. In general, such compounds have been found to have a chemiluminescent reaction between approximately 100 ms and approximately 300 ms after being triggered.
An exemplary outline of the chemical mechanism for generating the chemiluminescent light may be as follows, but other chemical mechanisms may be considered. As shown below, an acridinium salt may be mixed with hydrogen peroxide to produce acridan hydroperoxide, which in turn may develop into a tetrahedral spirodioxetane intermediate and then on to acridone in an excited state.
Regardless of the activation process employed for block 42, the method depicted in
The measurement of the luminescent light denoted in blocks 46 and 52 may be performed successively, concurrently, or alternately. In some cases, as shown in block 54, it may be advantageous to block or turn off the light source for the measurement of the luminescent light relative to block 46. In particular, illumination of a particle examination chamber may mask the detection of some types of non-fluorescent light and, therefore, it may be advantageous, in some embodiments, to turn the light source off or block it when non-fluorescent luminescent light is being measured, particularly when the processes outlined in blocks 46 and 52 are performed successively or alternately. As such, in cases in which the measurements alternate, the method may include pulsing the light source on and off. In yet other embodiments, the detection system of the optical analysis flow system may include distinct detectors spaced along the examination zone of the interrogation flow cell each configured to collect the different type of luminescent light. In such cases, blocking or turning of the light source used to illuminate the examination zone may be omitted.
A dotted line is drawn to blocks 50-54 in
In particular,
As shown in block 62, the method includes measuring a first type of luminescent light emission from a first set of particles comprising the assay. The method further includes block 64 in which a second distinct type of luminescent light emission from a second set of particles comprising the assay is measured. As indicated by the double arrowed line to the right of the blocks, the steps may be performed in the opposite order and/or performed alternately. In any case, the first and second set of particles may each comprise a partial volume of the assay. The separate dispersements may include any fractions of the total volume of the assay. In some cases, the dispersements may each include 50% of the assay, but the method is not necessarily so limited. In some embodiments, the method may optionally include flushing the flow system between processes, as shown in block 66. In yet other embodiments, the processes of blocks 62 and 64 may be performed concurrently.
The aforementioned systems and methods offer several benefits to analyzing assays. In particular, a greater number analytes may be detected in a single assay when different types of luminescent detection are used for analysis relative to analysis using a single type of luminescent detection alone. For instance, it is contemplated that an assay may be tested for over two hundred different analytes and further increases are probable. Such a benefit may further be implemented without necessarily increasing the number of particles added to an assay. In particular, assays are generally fabricated with a large number of beads, typically exceeding the number needed to obtain an accurate analysis for particular analytes via fluorescent detection. As such, a portion of the particles may be additionally or alternatively used for a different type of luminescent detection, increasing the multiplexing breadth of the assay. Furthermore, the capacity of an optical analysis systems described herein may be increased without having to implement software modifications to map out additional regions for particle classification.
It will be appreciated to those skilled in the art having the benefit of this disclosure that this invention is believed to provide systems and methods for analyzing assays using one or more luminescent reporters. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. For example, although the figures and description are focused on applications of flow cytometers, the system configurations and methods described herein may be applied to any optical analysis system (i.e., the systems and methods may be applied to flow systems or static systems, particularly static imaging systems). Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
The captioned application claims priority to prior U.S. Provisional Application No. 61/016,879 filed Dec. 27, 2007.
Number | Date | Country | |
---|---|---|---|
61016879 | Dec 2007 | US |