This application claims priority from and the benefit of German Patent Application No. 10 2009 030 205.0, filed on Jun. 24, 2009, and Korean Patent Application No. 10-2009-0080263, filed on Aug. 28, 2009, which are hereby incorporated by reference for all purposes as if fully set forth herein.
1. Field of the Invention
Exemplary embodiments of the present invention relate to inorganic silicate-based luminescent substances which can be used as radiation converters for converting higher-energy primary radiation, for example (ultraviolet) UV radiation or blue light. The higher-energy primary radiation is converted into a longer-wave visible radiation and can therefore be is employed in corresponding light-emitting arrangements, such as light emitting diodes (LEDs) emitting colored or white light.
2. Discussion of the Background
Europium-activated alkaline earth metal oxyorthosilicates such as Sr3SiO5:Eu have become known for use in LEDs emitting colored or white light. The element strontium in these compounds may also be completely or partly replaced by other alkaline earth metal ions.
Such a strontium silicate-based luminescent substance for long-wave LEDs emitting UV light is described in WO 2004/085570AI with the structure Sr3-xSiO5:Eu2+, where x=0<x≦1. The luminescent substance is said to have high luminescence efficiency. WO 2006/081803AI discloses a luminescent substance from the class consisting of oxyorthosilicates with the structure (Sr, Ba, Ca)3SiO5:Eu.
These known luminophores emit in the yellow to orange range of the visible spectrum and, with excitation by UV radiation or blue light, have the high luminescence efficiencies required for the relevant technical applications. Moreover, they display small full-widths at half maximum of the emissions spectra, which are advantageous for various applications. They also have low temperature extinction.
US 2006/261309A1 has disclosed luminescent mixtures which emit yellow light and have two silicate-based phases. These luminescent mixtures have an emission intensity in the wavelength range from 555 nm to 580 nm if they are excited by a radiation source having a wavelength range of 220 nm to 530 nm. The first phase includes a crystal structure (M1)2SiO4, and the second phase includes a crystal structure (M2)3SiO5. M1 and M2 are each selected from the group which consists of Sr, Ba, Mg, Ca and Zn. At least one of the phases of the mixture is comprises greater than or equal to 0.0001 percent by weight of Mg, and at least one of the phases is activated with divalent europium (Eu2+). In addition, at least one of the phases comprises a dopant D which is selected from the group which consists of F, Cl, Br, S and N. At least one of the dopant atoms are arranged at lattice sites of the oxygen atom of the silicate crystal host of the luminescent substance.
WO 2007/035026A1 describes a silicate luminescent substance for emitting UV light with long-wave excitation, which has a color coordinate of x=0.50 to 0.64 and y=0.38 to 0.51. This is represented by the formula (Sr1-x-y-zAxBanZny)3SiO5:Rez, where A is at least one alkaline earth metal which is selected from Ca and Mg. R denotes a rare earth metal and 0≦x≦0.5; 0<y≦0.5; 0<z<0.2; and 0<n<1. The luminescent substance is prepared from a stoichiometric mixture of strontium, barium, zinc, and silicon dioxide as matrix components and rare earth metal as an active substance component. The resulting mixture is dried at 100 to 150° C. for preparation of the luminescent substance. This is followed by heat treatment of the luminescent substance at 800 to 1500° C. under a mixed gas atmosphere comprising nitrogen and hydrogen. 0.001 to 0.5 mol of alkaline earth metal and 0.001 to 0.5 mol of zinc are then added to the matrix component per 1 mol of strontium.
The disadvantage of these known luminescent substances is that they may have a relatively short lifespan under conditions of use. This is due in particular to the high moisture sensitivity of the europium-doped alkaline earth metal oxyorthosilicates. Such a substantial disadvantage may limit the technical applicability of the above luminophores.
Exemplary embodiments of the invention provide chemically modified oxyorthosilicate luminescent substances having improved properties, in particular having increased stability to atmospheric humidity.
Exemplary embodiments of the present invention also provide stabilization of the solid-state matrix, improved resistance of the corresponding luminophores to atmospheric humidity and other environmental factors, and longevity of the luminescent substances.
Additional features of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.
Exemplary embodiments of the present invention disclose a luminescent substance with Eu2+-doped silicate luminophores including alkaline earth metal oxyorthosilicates, rare earth metal oxyorthosilicates, and solid solutions in the form of mixed phases arranged between the alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates.
Exemplary embodiments of the present invention also disclose a light emitting diode including a luminescent substance with Eu2+-doped silicate luminophores including alkaline earth metal oxyorthosilicates, rare earth metal oxyorthosilicates, and solid solutions in the form of mixed phases arranged between the alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
The invention is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure is thorough, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like reference numerals in the drawings denote like elements.
The preparation of the luminescent substances according to the exemplary invention includes multiple high-temperature solid-state reactions. Alkaline earth metal, rare earth metal carbonates or the corresponding oxides, and colloidal SiO2 are preferably used as the starting material. It may be possible also to add certain amounts of fluxes or mineralization additives, such as NH4Cl, or certain alkali metal or alkaline earth metal fluorides, to the reaction mixture for promoting the reactivity and for controlling the particle size distribution of the resulting luminophores. These starting materials are thoroughly mixed and then ignited for 1 to 48 hours at temperatures of 1300 to 1700° C. in an inert or reducing atmosphere. The main ignition process may also have a plurality of ignition stages in different temperature ranges to optimize the properties of the luminescent substance. After the end of the ignition process, the samples are cooled to room temperature and subjected to suitable post-treatment processes for the elimination of flux residues, the minimization of surface defects, or the fine adjustment of the particle size distribution.
Instead of the colloidal silica, silicon nitride (Si3N4) may also alternatively be used as a reactant for the reaction with the alkaline earth metal and rare earth metal compounds used. It is also possible to first prepare the respective individual alkaline earth metal or rare earth metal oxyorthosilicate components separately from one another and then to ensure the solid solution formation by repeated thermal treatment in a temperature range suitable for the purpose.
Detailed information on the preparation of the luminescent substances according to the exemplary invention is described below with reference to a plurality of working examples.
Example 1 first describes the preparation of a strontium oxyorthosilicate luminescent substance having the composition (Sr2.95Ba0.01Eu0.04)SiO5, which is to be regarded as reference material for evaluating the advantages of the luminescent substances of the exemplary invention.
For the preparation of this luminescent substance, 217.75 g of SrCO3, 0.99 g of BaCO3, 3.52 g of Eu2O3, 31.54 g of SiO2, and 2.68 g of NH4Cl are thoroughly mixed and then ignited for 4 hours at a temperature of 1350° C. in a forming gas atmosphere. After the end of the ignition process, the ignited material is homogenized by milling and then subjected again to a thermal treatment at 1350° C. for two hours in a reducing N2/H2 atmosphere having a hydrogen concentration of at least 5%. The post-treatment of the cooled ignited material includes the milling thereof, the washing processes, and the drying and sieving of the end products.
Example 2 describes the synthesis of the luminescent substance according to the exemplary invention having the composition 0.99.(Sr2.95Ba0.01Eu0.04)SiO5.0.01.Y2SiO5. This luminescent substance is prepared while maintaining the ignition conditions described in Example 1, the following starting materials and amounts used being: 215.58 g of SrCO3, 0.98 g of BaCO3, 1.13 g of Y2O3, 3.47 g of Eu2O3, 31.54 g of SiO2, and 2.68 g of NH4Cl.
In the preparation of the luminescent substance according to the exemplary invention having the composition 0.95.(Sr2.8875Ba0.025Cu0.0025Eu0.10)SiO5.0.05.Gd2SiO4, 202.48 g of SrCO3, 0.94 g of BaCO3, 0.094 g of CuO, 9.06 g of Gd2O3, 8.36 g of Eu2O3, and 30.94 g of SiO2 are used as starting materials in Example 3, to which 4.0 g of NH4Cl are added as a flux. After thorough homogenization, the starting mixture is transferred to corundum crucibles, which are positioned in a high temperature furnace. In this, the solid mixtures are subjected to an ignition regime which has a first 10 hour holding stage at 1200° C., a second 5 hour holding stage at 1550° C., and a third 2 hour holding stage at 1350° C. s. The ignitions are performed in pure nitrogen until a 1550° C. ramp has been reached, in an N2/H2 mixture with 20% hydrogen during the 1550° C. phase, and then in forming gas (5% hydrogen) during the 1350° C. ignition stage. Finally, the mixture is rapidly cooled after the third holding stage. The post-treatment of the samples of the luminescent substance is performed in the manner described in Example 1.
Preparation of the luminescent substance according to Example 4 comprises first preparing the modified strontium oxyorthosilicates and the rare earth metal oxyorthosilicates separately from one another and then performing the solid solution formation in a separate production step. The resulting luminescent substance has the composition 0.995.(Sr2.498Ba0.45Ca0.002Eu0.05)SiO5.0.005.La2SiO5.
The synthesis of the (Sr2.498Ba0.45Ca0.002Eu0.05)SiO5 component is performed as in Example 1 in the following amounts: 184.39 g of SrCO3, 44.40 g of BaCO3, 0.078 g of CaF2, 3.96 g of Eu2O3, and 31.54 g of SiO2. The lanthanum oxyorthosilicate La2SiO5 is prepared in a one-stage ignition process with the use of 325.81 g of La2O3, 55.2 g of SiO2, and 2.68 g of NH4Cl, the thoroughly mixed starting materials being ignited for 6 hours at temperatures of 1380° C. in forming gas.
For the production of the luminescent substance according to the exemplary invention in its composition, 197.23 g of the prepared (Sr2.498Ba0.45Ca0.002Eu0.05)SiO5 component and 0.96 g of La2SiO5 are subjected to a thorough mixing procedure and then heated for 6 hours at 1150° C. in a nitrogen-hydrogen (5%) stream.
Table 1 lists the lattice constants of luminescent substances according to the exemplary invention which are prepared according to the preparation method stated in Example 2. The lattice constants of the luminophores are similar to one another. In view of the comparatively small proportions of SE2SiO5 in the oxyorthosilicate solid solutions used as base lattices of the luminescent substances, no clear trends are detectable for the variation of the lattice constants.
In Table 2, indications of solid solution formation between the differing oxyorthosilicate lattices are evident from the listed luminescence parameters of the luminescent substances according to the exemplary invention. In particular, the systematic shifts of the color coordinates and of the full widths at half maximum of the emissions spectra which occur with an increase in proportion of SE2SiO5 indicate the formation of solid solutions. Differences occur with the addition of yttrium oxyorthosilicate, gadolinium oxyorthosilicate, or lanthanum oxyorthosilicate. These are very probably due to the differences in the ionic radii of the respective rare earth elements.
The luminescence efficiencies of the inventive luminescent substances and the temperature dependencies thereof show improvements over the known Sr3SiO5:Eu luminescent substances.
The results documented in Table 2 show that the luminescent substances according to the exemplary invention may have higher luminescence efficiencies depending on the preparation methods. In
For assessing the moisture stability of the materials, the luminescent substances are stored in a conditioned chamber for a period of 7 days at a temperature of 85° C. and 85% relative humidity. Thereafter, the luminophores are dried at 150° C. and then subjected to a comparative measurement of the luminescence efficiency. Exemplary results of such investigations are shown in Table 3.
From the data shown, it is evident that both the known luminescent substances of the structure Sr3SiO5:Eu and the (Sr2.95Ba0.01Eu0.04)SiO5 luminescent substance of Example 1 have only about 70% of their original luminescence efficiency after the moistening test. In comparison, the europium-doped oxyorthosilicate luminescent substances of Examples 2 to 4 having mixed-phased base lattices comprising alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates have improved moisture resistances. After storage in an 85° C./85% H atmosphere for seven days, luminescence efficiencies of greater than 90%, and in the case of optimized samples of greater than 95%, are still found. The arrangements comprising the conversion luminescent substances according to exemplary embodiments of the present invention are distinguished in particular by an improved temperature-dependent efficiency of the luminescence or quantum efficiency. The luminescent substances also exhibit a longer lifespan. In particular, the luminescent substances or luminophores display a high stability with respect to the radiation load occurring and with respect to the influence of atmospheric humidity and other environmental factors.
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 030 205 | Jun 2009 | DE | national |
10-2009-0080263 | Aug 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
2110162 | Leverenz | Mar 1938 | A |
2402760 | Leverenz | Jun 1946 | A |
2570136 | Lyon | Oct 1951 | A |
2617773 | Nagy et al. | Nov 1952 | A |
2719128 | Kressin | Sep 1955 | A |
2780600 | Wollentin | Feb 1957 | A |
3143510 | Wanmaker et al. | Aug 1964 | A |
3598752 | Sisneros | Aug 1971 | A |
3644212 | McAllister et al. | Feb 1972 | A |
3893939 | De Kalb et al. | Jul 1975 | A |
3905911 | Kelsey, Jr. et al. | Sep 1975 | A |
4215289 | De Hair et al. | Jul 1980 | A |
4770950 | Ohnishi | Sep 1988 | A |
4972086 | Bryan et al. | Nov 1990 | A |
5032316 | Takahashi et al. | Jul 1991 | A |
5433295 | Murphy | Jul 1995 | A |
5472636 | Forster et al. | Dec 1995 | A |
5518808 | Bruno et al. | May 1996 | A |
5770110 | Schrell et al. | Jun 1998 | A |
5770111 | Moriyama et al. | Jun 1998 | A |
5853614 | Hao et al. | Dec 1998 | A |
5952681 | Chen | Sep 1999 | A |
5965192 | Potter | Oct 1999 | A |
5998925 | Shimizu et al. | Dec 1999 | A |
6045722 | Leblans et al. | Apr 2000 | A |
6066861 | Hohn et al. | May 2000 | A |
6084250 | Justel et al. | Jul 2000 | A |
6373184 | Suh et al. | Apr 2002 | B1 |
6472765 | Sano et al. | Oct 2002 | B1 |
6482664 | Lee et al. | Nov 2002 | B1 |
6565771 | Ono et al. | May 2003 | B1 |
6670751 | Song et al. | Dec 2003 | B2 |
6686691 | Mueller et al. | Feb 2004 | B1 |
6842664 | Harada et al. | Jan 2005 | B2 |
6982045 | Menkara et al. | Jan 2006 | B2 |
6982048 | Atwater et al. | Jan 2006 | B1 |
6987353 | Menkara et al. | Jan 2006 | B2 |
7019335 | Suenaga | Mar 2006 | B2 |
7029602 | Oshio | Apr 2006 | B2 |
7045078 | Choi | May 2006 | B2 |
7138770 | Uang et al. | Nov 2006 | B2 |
7189340 | Shimomura et al. | Mar 2007 | B2 |
7206507 | Lee et al. | Apr 2007 | B2 |
7229571 | Ezuhara et al. | Jun 2007 | B2 |
7244965 | Andrews et al. | Jul 2007 | B2 |
7332746 | Takahashi et al. | Feb 2008 | B1 |
7468147 | Shida et al. | Dec 2008 | B2 |
7554129 | Roth et al. | Jun 2009 | B2 |
7608200 | Seto et al. | Oct 2009 | B2 |
7679101 | Ota et al. | Mar 2010 | B2 |
7679281 | Kim et al. | Mar 2010 | B2 |
8535564 | Lee et al. | Sep 2013 | B2 |
20020015013 | Ragle | Feb 2002 | A1 |
20030038295 | Koda | Feb 2003 | A1 |
20030168636 | Dobson et al. | Sep 2003 | A1 |
20040051111 | Ota et al. | Mar 2004 | A1 |
20040104391 | Maeda et al. | Jun 2004 | A1 |
20040135504 | Tamaki et al. | Jul 2004 | A1 |
20040136891 | Kijima et al. | Jul 2004 | A1 |
20040206970 | Martin | Oct 2004 | A1 |
20040251809 | Shimomura et al. | Dec 2004 | A1 |
20050001537 | West et al. | Jan 2005 | A1 |
20050029927 | Setlur et al. | Feb 2005 | A1 |
20050117334 | Lee et al. | Jun 2005 | A1 |
20050139846 | Park et al. | Jun 2005 | A1 |
20050141048 | Mizutani | Jun 2005 | A1 |
20050239227 | Aanegola et al. | Oct 2005 | A1 |
20050264161 | Oaku et al. | Dec 2005 | A1 |
20050274930 | Roth et al. | Dec 2005 | A1 |
20050274972 | Roth et al. | Dec 2005 | A1 |
20060076883 | Himaki et al. | Apr 2006 | A1 |
20060158090 | Wang et al. | Jul 2006 | A1 |
20060261309 | Li et al. | Nov 2006 | A1 |
20060261350 | Kawazoe et al. | Nov 2006 | A1 |
20060267042 | Izuno et al. | Nov 2006 | A1 |
20070029526 | Cheng et al. | Feb 2007 | A1 |
20070247051 | Kuze et al. | Oct 2007 | A1 |
20070284563 | Lee et al. | Dec 2007 | A1 |
20080036364 | Li et al. | Feb 2008 | A1 |
20080067472 | Roth et al. | Mar 2008 | A1 |
20080067920 | Roth et al. | Mar 2008 | A1 |
20080224163 | Roth et al. | Sep 2008 | A1 |
20090050847 | Xu et al. | Feb 2009 | A1 |
20090050849 | Lee et al. | Feb 2009 | A1 |
20090134413 | Roth et al. | May 2009 | A1 |
20090152496 | Roth et al. | Jun 2009 | A1 |
20090262515 | Lee et al. | Oct 2009 | A1 |
20090303694 | Roth et al. | Dec 2009 | A1 |
20100002454 | Lee et al. | Jan 2010 | A1 |
20100096974 | Setlur et al. | Apr 2010 | A1 |
20100165645 | Lee et al. | Jul 2010 | A1 |
20100207132 | Lee et al. | Aug 2010 | A1 |
20100224830 | Park et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
410266 | Mar 2003 | AT |
1218084 | Jun 1999 | CN |
1289454 | Mar 2001 | CN |
1317537 | Oct 2001 | CN |
1344777 | Apr 2002 | CN |
1434521 | Aug 2003 | CN |
1707819 | Dec 2005 | CN |
19528758 | Dec 1996 | DE |
10233050 | Feb 2004 | DE |
10259946 | Jul 2004 | DE |
0094132 | Nov 1983 | EP |
0382295 | Aug 1993 | EP |
0862794 | Sep 1998 | EP |
0896994 | Feb 1999 | EP |
1249873 | Oct 2002 | EP |
1605030 | Dec 2005 | EP |
2031038 | Mar 2009 | EP |
1336053 | Nov 1973 | GB |
2016034 | Sep 1979 | GB |
31-1118 | Feb 1956 | JP |
33-8177 | Sep 1958 | JP |
38-6082 | May 1963 | JP |
39-8803 | May 1964 | JP |
47-6258 | Apr 1972 | JP |
49-38994 | Oct 1974 | JP |
55-135190 | Oct 1980 | JP |
57-109886 | Jul 1982 | JP |
61-258892 | Nov 1986 | JP |
62-197487 | Sep 1987 | JP |
5-78659 | Mar 1993 | JP |
9-40946 | Feb 1997 | JP |
9-153644 | Jun 1997 | JP |
2001-308393 | Nov 2001 | JP |
2001-524163 | Nov 2001 | JP |
2002-50795 | Feb 2002 | JP |
2002-057376 | Feb 2002 | JP |
2002-094122 | Mar 2002 | JP |
2002-97465 | Apr 2002 | JP |
2002-97466 | Apr 2002 | JP |
2002-173677 | Jun 2002 | JP |
2002-335019 | Nov 2002 | JP |
2002-359403 | Dec 2002 | JP |
2002-368277 | Dec 2002 | JP |
2003-064358 | Mar 2003 | JP |
2003-152229 | May 2003 | JP |
2003-183649 | Jul 2003 | JP |
2003-224306 | Aug 2003 | JP |
2003-321675 | Nov 2003 | JP |
2004-006582 | Jan 2004 | JP |
2004-010786 | Jan 2004 | JP |
2004-505470 | Feb 2004 | JP |
2004-071726 | Mar 2004 | JP |
2004-71807 | Mar 2004 | JP |
2004-127988 | Apr 2004 | JP |
2004-134699 | Apr 2004 | JP |
2004-192833 | Jul 2004 | JP |
2001-115157 | Dec 2004 | JP |
2005-167177 | Jun 2005 | JP |
2006-073656 | Mar 2006 | JP |
2006-173433 | Jun 2006 | JP |
2007-186674 | Jul 2007 | JP |
2009-007545 | Jan 2009 | JP |
10-232395 | Dec 1999 | KR |
10-2001-0032450 | Apr 2001 | KR |
10-2001-0050839 | Jun 2001 | KR |
10-2001-0101910 | Nov 2001 | KR |
10-2002-0000835 | Jan 2002 | KR |
10-2002-0053975 | Jul 2002 | KR |
10-0392363 | Jul 2002 | KR |
10-2002-0079513 | Oct 2002 | KR |
10-2003-0063211 | Jul 2003 | KR |
10-2003-0082395 | Oct 2003 | KR |
10-0426034 | Jul 2004 | KR |
10-2004-0088418 | Oct 2004 | KR |
10-2005-0008426 | Jan 2005 | KR |
10-2005-0070349 | Jul 2005 | KR |
10-2005-0098462 | Oct 2005 | KR |
10-2005-0106945 | Nov 2005 | KR |
10-2005-0117164 | Dec 2005 | KR |
10-2006-0034056 | Apr 2006 | KR |
10-0626272 | Sep 2006 | KR |
10-2006-0134728 | Dec 2006 | KR |
10-2007-0016900 | Feb 2007 | KR |
10-2007-0050833 | May 2007 | KR |
10-2007-0084659 | Aug 2007 | KR |
10-2007-0086483 | Aug 2007 | KR |
10-2008-0046789 | May 2008 | KR |
10-2008-0074241 | Jul 2008 | KR |
10-2008-0075181 | Jul 2008 | KR |
I328885 | Mar 1999 | TW |
1996-32457 | Oct 1996 | WO |
98-05078 | Feb 1998 | WO |
98-12757 | Mar 1998 | WO |
98-39805 | Sep 1998 | WO |
98-42798 | Oct 1998 | WO |
00-19546 | Apr 2000 | WO |
01-41215 | Jun 2001 | WO |
02-054502 | Jul 2002 | WO |
02-054503 | Jul 2002 | WO |
2002-089219 | Nov 2002 | WO |
03-021691 | Mar 2003 | WO |
2004-085570 | Oct 2004 | WO |
2004085570 | Oct 2004 | WO |
2004-111156 | Dec 2004 | WO |
2005-068584 | Jul 2005 | WO |
2005-112137 | Nov 2005 | WO |
2005109532 | Nov 2005 | WO |
2006-043682 | Apr 2006 | WO |
2006-068359 | Jun 2006 | WO |
2006081803 | Aug 2006 | WO |
2006-081803 | Aug 2006 | WO |
2006109659 | Oct 2006 | WO |
2007-035026 | Mar 2007 | WO |
2007035026 | Mar 2007 | WO |
2007-055538 | May 2007 | WO |
2007-069869 | Jun 2007 | WO |
2007-114614 | Nov 2007 | WO |
2009028818 | Mar 2009 | WO |
Entry |
---|
Toropov et al., ' A Study of the Formation of Solid Solutions of Tristrontium Silicate With Some Oxyorthosilicates of the Rare Earths (La, Nd, Y), 1963, Inorganic and Analytical Chemistry, No. 12, pp. 1918-1921. |
Copending U.S. Appl. No. 12/767,253. |
Feldmann C., “Inorganic Luminescent Materials: 100 Years of Research and Application”, Adv. Funct. Matter, 2003, pp. 511-516. |
G. Blasse, B.C. Grabmeier, “Luminescent Materials”, Springer, 1994, 87-90. |
B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverria, E. Cremades, F. Barragán, and S. Alvarez, “Covalent radii revisted”, Dalton Trans., (2008), pp. 2832-2838. |
R.J. Angel et al., “Structure and twinning of single-crystal MgSiO3 garnet synthisized at 17 GPa and 1800° C”, American Minerologist, 74 (1989) pp. 509-512. |
P.A. Cox, “Transition Metal Oxides”, Oxford University Press, 1995, p. 105. |
Garcia Solé, L.E. Bausá, D. Jaque, “An Introduction to the Optical Spectroscopy of Inorganic Solids”, Wiley, 2005, pp. 163-164. |
G. Blasse, B.C. Grabmeier, “Luminescent Materials”, Springer, 1994, p. 25. |
S. Shionoya, W.M. Yen, “Phospher Handbook” CRC press, 1999, ch. 3.3, pp. 183-184. |
Garcia Solé, L.E. Bausá, D. Jaque, “An Introduction to the Optical Spectroscopy of Inorganic Solids”, Wiley, 2005, pp. 132-133. |
S. Shionoya, W.M. Yen, “Phosphor Handbook” CRC press, 1999, ch. 3.3, pp. 179-182. |
G. Blasse, A. Bril, “Characteristic Luminescence”, Philips Technical Review, 31 (1970) 304, p. 306. |
G. Blasse, B.C. Grabmeier, “Luminescent Materials”, Springer, 1994, pp. 40-47. |
Non-Final Office Action of U.S. Appl. No. 11/568,769 issued on Feb. 16, 2011. |
Non-Final Office Action of U.S. Appl. No. 13/004,554 issued on Mar. 15, 2011. |
Notice of Allowance of U.S. Appl. No. 11/024,722 issued on Mar. 10, 2011. |
Final Office Action of U.S. Appl. No. 12/196,923 issued on Mar. 4, 2011. |
Notice of Allowance of U.S. Appl. No. 11/948,845 issued on Mar. 23, 2011. |
International Search Report dated Jul. 12, 2007 for PCT Application No. PCT/KR2007/001587. |
International Search Report dated Mar. 21, 2007 for PCT Application No. PCT/KR2006/005500. |
International Search Report dated Feb. 20, 2007 for PCT Application No. PCT/KR2006/004716. |
International Search Report dated Oct. 24, 2005 for PCT Application No. PCT/KR2005/002332. |
International Search Report dated Oct. 13, 2005 for PCT Application No. PCT/KR2005/002333. |
International Search Report dated Aug. 12, 2005 for PCT Application No. PCT/KR2005/001288. |
International Search Report dated Aug. 12, 2005 for PCT Application No. PCT/KR2005/001287. |
International Search Report dated Feb. 27, 2009 for PCT Application No. PCT/KR2008/004734. |
International Search Report dated Feb. 11, 2009 for PCT Application No. PCT/KR2008/004733. |
Joung Kyu Park, et al., “Silicate Phosphors for White LEDs Identified Through Combinatorial Chemistry”, Electrochemical and Solid-State Letters, vol. 10(2), pp. J15-J18, (2007), XP-00251106706-11-12). |
Joung Kyu Park, et al., “Luminescence Characteristics of Yellow Emitting Ba3SiO5:EU2+ Phosphor”, Journal of Materials Science 40 (2005), pp. 2069-2071, XP-002511068. |
Search Report dated Feb. 2, 2009 for EP Application No. EP08014684. |
S.D. Jee, et al., “Photoluminescence properties of Eu2+-activated Sr3SiO5 Phosphors,” J. Mater Sci. 41 (2006), pp. 3139-3141. |
G. Blasse, et al., “Fluorescence of Europium2+-activated silicates,” Philips Res. Repts 23 (1968), pp. 189-199. |
G. Roth, et al. “Advanced Silicate Phosphors for improved white LED”, Global Phosphor Summit Seoul/Korea, Mar. 5-7, 2007. |
H.G. Kang, et al., “Embodiment and Luminescence Properties of Sr3SiO5:Eu(yellow-orange phosphor) by co-doping lanthanide”, Solid State Phenomena, vol. 124-126 (2007) pp. 511-514. |
T.L. Barry, “Fluorescence of Eu2+ Activated Phases in Binary Alkaline Earth Orthosilicate Systems”, J. Electrochem Soc., Nov. 1968, pp. 1181-1184. |
Notice of Allowance dated Dec. 1, 2008 issued in U.S. Appl. No. 11/024,702. |
Chinese Office Action corresponding to Patent App No. 2005800150173 dated Dec. 28, 2007. |
Final OA dated Oct. 22, 2007 issued in U.S. Appl. No. 11/024,722. |
Office Action dated Dec. 28, 2007 corresponding to China App No. 200580016844.4. |
X. W. Sun et al., “Pulsed Laser Deposition of Silicate Phosphor Thin Films”, Appl. Phys. A 69, 1999, 5 pp. |
W.L. Wanmaker et al. “Luminescence of Phosphors Based on the Host Lattice ABGe2O6 (A, B=Ca, Sr, Ba)” Journal of Solid State Chemistry 3, (1971), pp. 194-196. |
Declaration under 37 CFR 1.132 dated Aug. 24, 2007. |
Non-Final OA mailed May 23, 2007 for U.S. Appl. No. 11/024,722 entitled “Luminescent Material”. |
Ageeth A. Bol et al., “Luminescence of ZnS:Cu2+”, Journal of Luminescence, No. 99, 2002, pp. 325-334. |
J.F. Suyver et al., “Luminescence of nanocrystalline ZnSe:Cu”, Applied Physics Letters, vol. 79, No. 25, Dec. 17, 2001, pp. 4222-4224. |
Ping Yang et al., “Photoluminescence of Cu+-doped and Cu2+-doped ZnS nanocrystallites”, Journal of Physics and Chemistry of Solids, No. 63, 2002, pp. 638-643. |
S. Shionoya et al., (Eds.), “Principal phosphor materials and their optical properties” in Phosphor Handbook, CRC Press, 1999, pp. 231-255. |
A. Scacco et al., “Optical Spectra of Cu2+ Ions in LiF Crystals”, Radiation Effects and Defects in Solids, vol. 134, 1995, pp. 333-336. |
Lujcan Dubicki et al., “The First d-d Fluorescence of a Six-Coordinate Copper (II) Ion”, J. Am. Chem. Soc. 1989, No. 111, pp. 3452, 3454. |
A.B.P. Lever, “Inorganic Electronic Spectroscopy”, 2nd ed., Elsevier, 1984, pp. 355 and 557-559. |
A.G. Shenstone, “The Third Spectrum of Copper (Cu III)”, Journal of Research of the National Bureau of Standards—A. Physics and Chemistry, vol. 79A, No. 3, May-Jun. 1975, pp. 497-521. |
S. Shinoya et al. (Eds.), “Principal phosphor materials and their optical properties” in Phosphor Handbook, CRC Press, 1999, p. 836. |
First Office Action of the PRC to Chinese Patent App No. 20051002304.2 dated Feb. 15, 2008. |
Yang, “Up- Conversion Fluorescence in Er3 + Yb3 + Co- Doped Oxy - Fluoride Compound Materials Based on GeO2”, Natural Science Journal of Xiangtan University, vol. 23, No. 2, 2001, pp. 37-41. |
Bernhardt, Investigations of the Orange Luminescence of PbMo04 Crystals, Phys. Stat. Sol (a), 91, 643, 1985, pp. 643-647. |
Butler, “Fluorescent Lamp Phosphors”, The Pennsylvania State University Press, 1980, pp. 175-176. |
Butler, “Fluorescent Lamp Phosphors”, The Pennsylvania State University Press, 1980, pp. 181-182. |
Butler, “Fluorescent Lamp Phosphors”, The Pennsylvania State University Press, 1980, pp. 281-284. |
“Phosphors for Mercury Lamps” https:/www.lamptech.co.uk/Docuemnts/M14%20Phosphors.htm 2003 (2 pages). |
Blasse, “Radiationless Processes in Luminescent Materials”, Radiationless Processes, 1980, pp. 287-289, 293. |
Shinonoya, “Phosphor Handbook”, edited under the auspice of Phosphor Research Society, CRC Press, 1999, pp. 204-205. |
Shinonoya, “Phosphor Handbook”, edited under the auspice of Phosphor Research Society, CRC Press, 1999, p. 238-239, 241. |
van Gool, “Philips Res. Rept. Suppl.” 3, 1, 1961, pp. 1-9, 30-51, 84-85. |
Declaration Under Rule 37 CFR 1.132 of Ulrich Kynast dated Sep. 6, 2008. |
G. Blasse, “Characteristic Luminescence”, Philips Technical Review, vol. 31, 1970, pp. 304-332. |
Non-Final Office Action of U.S. Appl. No. 12/098,263 issued on Mar. 30, 2011. |
Indian Office Action of Indian Application No. 2468/KOLNP/2007 issued on Jan. 28, 2011, corresponding to U.S. Appl. No. 12/098,263. |
Non-Final Office Action of U.S. Appl. No. 12/854,001 issued on Apr. 6, 2011. |
International Search Report for PCT/KR2010/003302 issued on Jan. 3, 2011, corresponding to U.S. Appl. No. 12/767,253. |
Final Office Action dated Dec. 8, 2010 in U.S. Appl. No. 11/948,813. |
Final Office Action dated Dec. 23, 2010 in U.S. Appl. No. 11/569,060. |
Non Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/731,811. |
Final Office Action dated Dec. 7, 2010 in U.S. Appl. No. 11/948,845. |
Non Final Office Action dated Nov. 26, 2010 in U.S. Appl. No. 12/440,001. |
Non Final Office Action dated Nov. 24, 2010 in U.S. Appl. No. 12/093,441. |
Final Office Action dated Nov. 30, 2010 in U.S. Appl. No. 11/024,722. |
Non Final Office Action dated Nov. 30, 2010 in U.S. Appl. No. 12/196,923. |
Notice of Allowance dated Aug. 18, 2010 in U.S. Appl. No. 12/098,263. |
Final Office Action dated May 11, 2010 in U.S. Appl. No. 12/098,263. |
Non Final Office Action dated Mar. 17, 2010 in U.S. Appl. No. 11/024,722. |
Non Final Office Action dated Aug. 17, 2010 in U.S. Appl. No. 11/948,845. |
EP Search Report dated Sep. 1, 2010 in EP Appl No. 08015119 correpsonding to U.S. Appl. No. 12/440,001. |
EP Search Report dated Oct. 6, 2010 in EP Appl No. 07745750.5—corresponding to U.S. Appl. No. 12/295,438. |
Non Final Office Action dated Jun. 16, 2010 in U.S. Appl. No. 12/097,741. |
Final Office Action dated Nov. 12, 2010 in U.S. Appl. No. 12/097,741. |
Non-Final Office Action dated Aug. 10, 2010 in U.S. Appl. No. 11/024,722. |
Final Office Action dated Jun. 21, 2010 in U.S. Appl. No. 11/569,060. |
Non-Final Office Action dated Apr. 30, 2010 in U.S. Appl. No. 11/568,769. |
Final Office Action dated Sep. 9, 2010 in U.S. Appl. No. 11/568,769. |
CN Office Action dated Feb. 5, 2010 in CN Appl. No. 2005100023042. |
European Search Report of Oct. 26, 2010 in EP 10 17 7817, corresponding to U.S. Appl. No. 11/024,722. |
Non-Final Office Action dated Aug. 18, 2010 in U.S. Appl. No. 11/948,813. |
Non-Final Office Action dated Aug. 10, 2010 in U.S. Appl. No. 12/731,811. |
IP Australia Office Action dated Jul. 2, 2010 for AU Patent Appl. No. 2005-319965, corresponding to U.S. Appl. No. 12/098,263. |
TW Office Action of Sep. 10, 2010 in TW Patent Appl. No. 098123458. |
European Search Report of Sep. 23, 2010 in European Patent Appl. No. 10 16 4970. |
Non-final office action dated May 29, 2009 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004. |
Notice of Allowance dated May 4, 2009 issued in U.S. Appl. No. 11/024,702. |
Non-final office action dated Nov. 29, 2007 issued in U.S. Appl. No. 11/024,702, filed Dec. 30, 2004. |
Non-final office action dated Aug. 12, 2009 issued in U.S. Appl. No. 11/569,060, filed Jun. 22, 2007. |
Non-final office action dated Jan. 13, 2010 issued in U.S. Appl. No. 11/569,060, filed Jun. 22, 2007. |
Non-final office action dated Nov. 17, 2009 issued in U.S. Appl. No. 12/097,741, filed Oct. 9, 2008. |
Bogner et al., DE 102 33 050 A1, Feb. 5, 2004, Machine Traslation. |
Final office action dated Feb. 7, 2007 issued in U.S. Appl. No. 11/024,702, filed Dec. 30, 2004. |
Non-final office action dated Jun. 22, 2006 issued in U.S. Appl. No. 11/024,702, filed Dec. 30, 2004. |
Non-final office action dated Nov. 29, 2006 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004. |
Final office action dated Oct. 28, 2009 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004. |
Non-final office action dated May 23, 2007 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004. |
Non-final office action dated Nov. 14, 2008 issued in U.S. Appl. No. 11/024,722, filed Dec. 30, 2004. |
Non-final office action dated Nov. 2, 2009 issued in U.S. Appl. No. 12/098,263. |
Ralchenko, Yu., Kramida, A.E., Reader, J. and NIST ASD Team (2008). NIST Atomic Spectra Database (version 3.1.5), [Online]. Available: http://physics.nist.gov/asd3 [Feb. 27, 2009]. National Institute of Standards and Technology, Gaithersburg, MD. |
N. S. Akhmetov, “Inorganic Chemistry”, Moscow “Vysshaya Shkola”, 1975; (partial translation; translated pp. 332-333, 372-373, 384-385, 427, 432, 436, 445, 471, 476, 486, 491, 496-497, 501, 546-549). |
Markovsky L, Ya. et al., Phosphors (Moscow-Leningrad, Khimiya Publishers, 1966, p. 7 (partial translation). |
Search Report dated Apr. 11, 2006 for EP Application No. EP04106880.0. |
Search Report dated Nov. 5, 2008 for EP Application No. EP06812549.1. |
Search Report dated Aug. 21, 2007 for EP Application No. EP04106882.6. |
International Search Report for PCT/KR2010/003285 issued on Jan. 24, 2011, corresponding to U.S. Appl. No. 12/773,514. |
N. A. Toropov, et al “Inorganic and Analytical Chemistry—a Study of the Formation of Solid Solutions of Tristrontium Silicate . . . ”published by Institute of Silicate Chemistry, Academy of Sciences of the USSR. pp. 1918-1921, submitted Aug. 21, 1962. |
R. Chen, et al., “Developments in Luminescence and Display Materials Over the Last 100 Years as Reflected in Electrochemical Society Publications”, Journal of the Electrochemical Society, vol. 149 No. 9, pp. 69-78 (2002). |
G.L. Miessler & D.A. Tarr, “Inorganic Chemistry”, 3rd ed., Pearson / Prentice Hall, New Jersey, pp. 117-118 (2004). |
Wanmaker, et al., “Luminescence of Copper-Activated Orthophosphates of the Type ABPO (A=Ca, Sr, or Ba and B=Li, Na or K)”, Journal of the Electrochemical Society, vol. 109, No. 2, pp. 109-113 (Feb. 1962). |
Wanmaker, et al., “Luminescence of Copper-Activated Calcium and Strontium Orthophosphates”, Journal of the Electrochemical Society, vol. 106, No. 12, pp. 1027-1031 (Dec. 1959). |
Chinese First Office Action issued on Jul. 2, 2013 in Chinese Patent Application No. 201080028841.3. |
Extended European Search Report issued on Jul. 9, 2013 in European Patent Application No. 10839706. |
Taiwanese Preliminary Notice of First Office Action issued on Sep. 18, 2013 in Taiwanese Patent Application No. 099144790. |
H. S. Jang, et al., “Emission Band Change of (Sr1-xMx)3Si05:Eu<2+> (M= Ca, Ba) phosphor for white light sources using blue/near-ultraviolet LEDs”, Journal of the electrochemical Society, vol. 156, No. 6, Apr. 6, 2009 pp. J138-J142. |
Number | Date | Country | |
---|---|---|---|
20100327229 A1 | Dec 2010 | US |