The present invention relates to a keyboard, and more particularly to a luminous keyboard with an illuminating function.
Generally, the widely-used peripheral input device of a computer system includes for example a mouse device, a keyboard, a trackball device, or the like. Via the keyboard, characters and symbols can be directly inputted into the computer system. As a consequence, most users and most manufacturers of input devices pay much attention to the development of keyboards.
With the maturity of the computing technologies, the keyboard manufacturers make efforts in designing novel keyboards with special functions in order to meet diversified requirements of different users. For this reason, luminous keyboards are favored by users. The outer appearance of the conventional luminous keyboard is substantially similar to the outer appearance of the conventional keyboard 1. Since the luminous keyboard provides the function of illuminating the keys, the inner structure of the luminous keyboard is different from the inner structure of the keyboard without the illuminating function. Hereinafter, the inner structure of the luminous keyboard will be illustrated in more details.
The membrane switch circuit board 21 comprises an upper wiring board 211, a separation layer 212, and a lower wiring board 213. The upper wiring board 211, the separation layer 212 and the lower wiring board 213 are all made of a light-transmissible material. The light-transmissible material is for example polycarbonate (PC) or polyethylene (PE). The upper wiring board 211 has plural upper contacts 2111. The separation layer 212 is located under the upper wiring board 211, and comprises plural perforations 2121 corresponding to the plural upper contacts 2111. The lower wiring board 213 is located under the separation layer 212, and comprises plural lower contacts 2131 corresponding to the plural upper contacts 2111. The plural lower contacts 2131 and the plural upper contacts 2111 are collectively defined as plural key switches 214.
The backlight module 23 comprises a light guide plate 230, an illumination circuit board 231, plural light-emitting elements 232, a reflecting plate 233 and a light-shading plate 234. For clarification and brevity, only two light-emitting elements 232 are shown in the drawing. The light guide plate 230 is located under the supporting plate 22. The illumination circuit board 231 is located under the membrane switch circuit board 21 and electrically connected with the light-emitting elements 232. The illumination circuit board 231 provides electric power to the plural light-emitting elements 232. The plural light-emitting elements 232 are disposed on the illumination circuit board 231. In addition, the plural light-emitting elements 232 are inserted into plural reflecting plate openings 2331 of the reflecting plate 233 and plural light guide plate openings 2301 of the light guide plate 230, respectively. By acquiring the electric power, the plural light-emitting elements 232 are driven to emit plural light beams B. Moreover, the plural light beams B are introduced into the light guide plate 230. After portions of the light beams B are exited from the light guide plate 230, the light beams B are reflected back into the light guide plate 320 by the reflecting plate 233. The light-shading plate 234 is located over the light guide plate 230 for shading the light beams B. For example, the plural light-emitting elements 232 are side-view light emitting diodes. After the light beams B are introduced into the light guide plate 230, the light beams B are subjected to total internal reflection within the light guide plate 230. Then, the light beams B are guided to the keycap 201 by the light guide plate 230.
From top to bottom, the keycap 201, the scissors-type connecting element 202, the elastic element 203, the membrane switch circuit board 21, the supporting plate 22, the light-shading plate 234, the light guide plate 230 and the reflecting plate 233 of the conventional luminous keyboard 2 are sequentially shown. For example, the conventional luminous keyboard 2 is a keyboard for a notebook computer (not shown).
In the conventional luminous keyboard 2, each keycap 201 has a light-outputting zone 2011. The light-outputting zone 2011 is located at a character region or a symbol region of the keycap 201. Moreover, the position of the light-outputting zone 2011 is aligned with the position of a corresponding light-guiding dot 2302 of the light guide plate 230. The light beams can be guided upwardly to the light-outputting zone 2011 by the corresponding light-guiding dot 2302. The light-shading plate 234 comprises plural light-shading plate openings 2341. The plural light-shading plate openings 2341 are aligned with the corresponding light-guiding dots 2302 and the corresponding light-outputting zones 2011. Consequently, the light beams B are transmitted through the light-shading plate openings 2341 of the light-shading plate 234. Similarly, the supporting plate 22 comprises plural supporting plate openings 221. The plural supporting plate openings 221 are aligned with the corresponding light-guiding dots 2302 and the corresponding light-outputting zones 2011. Consequently, the light beams B are transmitted through the supporting plate openings 221 of the supporting plate 22.
On the other hand, since the membrane switch circuit board 21 is made of the light-transmissible material, the plural light beams B can be transmitted through the membrane switch circuit board 21. Consequently, after the plural light beams B are guided by the light-guiding dots 2302, the plural light beams B are sequentially transmitted through the plural supporting plate openings 221 and the membrane switch circuit board 21 and directed to the plural light-outputting zones 2011, thereby illuminating the character region or the symbol region of the keycap 201. Under this circumstance, the illuminating function is achieved.
In view of the optical paths of the light beams B, the conventional luminous keyboard still has some drawbacks. For example, after the light beams B are transmitted through the supporting plate openings 221 and projected to the keycaps 201 and the scissors-type connecting element 202, only a portion of the light beams B are projected to the light-outputting zones 2011. The remaining portion of the light beams B are reflected by the keycaps 201 and the scissors-type connecting element 202, and leaked out through the vacant spaces g between the keycaps 201 and the membrane switch circuit board 21. Consequently, a periphery region 2012 of the keycap 201 provides a ring-shaped luminous effect. However, since the supporting plate openings 221 are uniformly distributed in the supporting plate 22, the light beams B cannot be uniformly outputted. Under this circumstance, the ring-shaped luminous effect provided by the periphery region 2012 of the keycap 201 is usually not uniform.
Therefore, there is a need of providing a luminous keyboard for providing uniform illuminating efficacy.
An object of the present invention provides a luminous keyboard for providing uniform illuminating efficacy.
In accordance with an aspect of the present invention, there is provided a luminous keyboard. The luminous keyboard includes at least one key structure, a switch circuit board, a supporting plate, a backlight module and at least one ring-shaped structure. The at least one key structure is exposed outside the luminous keyboard. The switch circuit board is located under the at least one key structure. When the switch circuit board is triggered by the at least one key structure, a corresponding key signal is generated. The switch circuit board includes at least one circuit board opening. The supporting plate is located under the switch circuit board and connected with the at least one key structure. The supporting plate includes at least one supporting plate opening corresponding to the at least one circuit board opening. The backlight module is located under the supporting plate. The backlight module generates a light beam and projects the light beam to the at least one key structure through the at least one supporting plate opening and the at least one circuit board opening. The at least one ring-shaped structure corresponds to the at least one key structure. The at least one ring-shaped structure is disposed on the switch circuit board and arranged around the corresponding key structure. When the light beam is reflected by the at least one key structure, the light beam is received by the at least one ring-shaped structure. Consequently, a luminous effect is generated.
From the above descriptions, the present invention provides the luminous keyboard. The ring-shaped structures are made of the fluorescent material or the light diffusion material. Moreover, the ring-shaped structures are disposed on the switch circuit board and at the positions under the periphery regions of the keycaps. That is, the ring-shaped structures are disposed within the vacant spaces between the keycaps and the switch circuit board. The portions of the light beams that are not projected to the light-outputting zones of the keycaps are reflected to the ring-shaped structures by the keycaps and the connecting elements. Due to the material properties of the ring-shaped structures, the periphery regions of the keycaps can provide the uniform luminous effect or the uniform light diffusion effect. In other words, the luminous keyboard of the present invention can provide enhanced luminous uniformity.
The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
For overcoming the drawbacks of the conventional technology, the present invention provides a luminous keyboard.
The structure of the luminous keyboard will be described with reference to
As shown in
In this embodiment, the connecting element 302 is a scissors-type connecting element, and the elastic element 303 is a rubbery elastomer. Preferably but are not exclusively, the plural keycaps 301 of the plural keys are moved upwardly or downwardly with the connecting elements 302, and the switch circuit board 31 is depressed by the elastic elements 303 through the connecting elements 302. In another embodiment, the connecting elements are non-scissors connecting elements for controlling movements of the keys. For example, a crater-shaped connecting element for a desktop computer is one of the non-scissors connecting elements. In a further embodiment, the keycaps are moved upwardly or downwardly in response to magnetic forces.
The structure of the switch circuit board 31 will be described as follows. Please refer to
In an embodiment, the switch circuit board 31 is a membrane switch circuit board. Moreover, the upper wiring plate 311, the lower wiring plate 312 and the separation layer 313 are made of a light-transmissible material for allowing the light beams B to go through. Moreover, as shown in
The structure of the backlight module 33 will be described as follows. The backlight module 33 comprises a light guide plate 331, plural light-emitting elements 332 and an illumination circuit board 333. The light guide plate 331 is arranged between the light-shading plate 35 and the reflecting plate 34. The light guide plate 331 is used for guiding the light beams B to the light-outputting zones 3011 through the supporting plate openings 322 and the illumination circuit board openings 315. The light guide plate 331 comprises plural light guide plate openings 3311 and plural light-guiding parts (not shown). Each light guide plate opening 3311 is aligned with one of the plural light-emitting elements 332. The light-guiding parts are used for guiding the light beams B to be exited from the light guide plate 331 and transmitted through the supporting plate openings 322 and the illumination circuit board openings 315. The light-emitting elements 332 are used for generating the light beams B. The plural light-emitting elements 332 are supported on the illumination circuit board 334. The illumination circuit board 334 is located under the reflecting plate 34 and electrically connected with the light-emitting elements 332. The illumination circuit board 334 provides electric power to the plural light-emitting elements 332. By acquiring the electric power, the plural light-emitting elements 332 are driven to emit the light beams B. In this embodiment, the light-emitting element 332 is a side-view light emitting diode, the light-guiding part is one of a light-guiding microstructure, a light-guiding dot, a light-guiding ink and a light-guiding texturing structure, and the illumination circuit board 334 is a flexible printed circuit (FPC).
The reflecting plate 34 is arranged between the light guide plate 331 and the illumination circuit board 333. The reflecting plate 34 comprises plural reflecting plate openings 341. The reflecting plate openings 341 are aligned with the corresponding light guide plate openings 3311. The light-emitting elements 332 are inserted into the corresponding reflecting plate openings 341 and the corresponding light guide plate openings 3311. Consequently, the light beams B from the light-emitting elements 332 are introduced into the light guide plate 331. The light-shading plate 35 is arranged between the supporting plate 32 and the light guide plate 331. The light-shading plate 35 comprises plural light-shading plate openings 351. The plural light-shading plate openings 351 are aligned with the corresponding to the supporting plate openings 322. Consequently, the light beams B are transmitted through the light-shading plate openings 351 and the supporting plate openings 322, and projected to the corresponding light-outputting zones 3011 of the keycaps 301.
In an embodiment, the plural ring-shaped structures 36 are produced by dispensing, coating or attaching a fluorescent material on the switch circuit board 31 and at the positions under the periphery regions 3012 of the keycaps 301. That is, the ring-shaped structures 36 are arranged around the positions overlying the corresponding circuit board openings 315 and the corresponding supporting plate openings 322. In an example of the attaching process, the fluorescent material is firstly formed on a sticker paper and then the sticker paper is adhered on the switch circuit board.
When the light-emitting elements 332 are driven to emit the light beams B, the light beams B are introduced into the light guide plate 331. The light beams B are guided by the light-guiding parts and exited from the light guide plate 331. Then, the light beams B are transmitted through the light-shading plate openings 351, the supporting plate openings 322 and the illumination circuit board openings 315 of the switch circuit board 31, and projected to the corresponding light-outputting zones 3011 of the keycaps 301. Moreover, portions of the light beams B are exited from the light guide plate 331 but not guided by the light-guiding parts. The portions of the light beams B that are exited from the light guide plate 331 are reflected back into the light guide plate 331 by the reflecting plate 34 and further guided to the light-outputting zones 3011 by the light-guiding parts. After the light beams B are transmitted through the supporting plate openings 322 and the illumination circuit board openings 315, first-portion beams B1 of the light beams B are projected to the light-outputting zones 3011 in order to illuminate the light-outputting zones 3011. In addition, second-portion beams B2 of the light beams B are reflected to the ring-shaped structures 36 by the keycaps 301 and the connecting elements 302. Since the ring-shaped structures 36 are made of the fluorescent material, the periphery regions 3012 of the keycaps 301 can provide the uniform luminous effect. Consequently, even if the supporting plate openings 322 are not uniformly distributed in the supporting plate 32, the light beams B can be uniformly projected.
The operations of depressing the keycap 301 of the luminous keyboard 3 will be described as follows. Please refer to
The following two aspects should be specially described. Firstly, the ring-shaped structures of the luminous keyboard are made of a light diffusion material. In an embodiment, the ring-shaped structures are produced by dispensing, coating or attaching the light diffusion material on the switch circuit board and at the positions under the periphery regions of the keycaps. That is, the ring-shaped structures are arranged around the positions overlying the corresponding circuit board openings and the corresponding supporting plate openings. In an example of the attaching process, the light diffusion material is firstly formed on a sticker paper and then the sticker paper is adhered on the switch circuit board. Consequently, the second-portion beams of the light beams are reflected to the ring-shaped structures by the keycaps and the connecting elements. Under this circumstance, the periphery regions of the keycaps can provide the uniform light diffusion effect. Secondly, the reflecting plate and the light-shading plate are not the essential components of the luminous keyboard. That is, the luminous keyboard is selectively equipped with the reflecting plate and the light-shading plate according to the practical requirements.
From the above descriptions, the present invention provides the luminous keyboard. The ring-shaped structures are made of the fluorescent material or the light diffusion material. Moreover, the ring-shaped structures are disposed on the switch circuit board and at the positions under the periphery regions of the keycaps. That is, the ring-shaped structures are disposed within the vacant spaces between the keycaps and the switch circuit board. The portions of the light beams that are not projected to the light-outputting zones of the keycaps are reflected to the ring-shaped structures by the keycaps and the connecting elements. Due to the material properties of the ring-shaped structures, the periphery regions of the keycaps can provide the uniform luminous effect or the uniform light diffusion effect. In other words, the luminous keyboard of the present invention can provide enhanced luminous uniformity.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
106142216 | Dec 2017 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
10276326 | Wang | Apr 2019 | B1 |
20140166456 | Chen | Jun 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20190171297 A1 | Jun 2019 | US |