The present disclosure generally relates to the technical field of bathtub nozzle lamps and, in particular, to a luminous nozzle and a nozzle base thereof.
With the improvement of living standards, people's pursuit of quality of life is becoming higher and higher, and the outdoor jacuzzi industry has developed accordingly. While people are pursuing the function of the massage bathtub, they also put forward higher requirements on lighting effect of the bathtub. At this stage, a main lighting method for bathtub nozzles on the market is to provide a lamp to a lock nut of a nozzle base. This lighting method requires an additional lamp housing, the installation of which is complicated and not reliable so that the housing is easy to fall off during transportation. What is even more criticized is that the lighting effect provided by this lighting method is uneven, and the light utilization efficiency is not high. Therefore, there is an urgent need for bathtub nozzles to provide a lighting solution with simple and reliable installation. More importantly, it is able to achieve an uniform lighting effect and improved light utilization efficiency.
In view of the above situation, the present disclosure mainly solves issues of low light utilization efficiency, complicated installation and uneven lighting effect in the prior luminous nozzle provided on the bathtub, and makes a design on the nozzle base of the luminous nozzle, thereby providing a luminous nozzle and a nozzle base thereof.
For this purpose, the present disclosure provides a nozzle base, which includes a nozzle base body and a fastener, wherein the fastener cooperates with a cover to clamp the nozzle base body for installation and fixation, the nozzle base body includes a water inlet portion and a water spray portion communicated with each other, and a predetermined number of lamp holes are provided transversely on an outer periphery of the water inlet portion.
Further, the lamp holes and the nozzle base are integrally formed, so that the lamp holes form more stable structures.
Preferably, a side of the lamp hole close to the water spray portion and an outer peripheral surface of the water spray portion form an angle of 75°, which adjusts the light emitting angle to improve the light utilization efficiency of the light source and make the lighting effect more uniform.
Further, the lamp hole is a round through-hole or a square through-hole, and such through-hole structure may make the installation of the lamp more stable, and allow a stop structure to be designed for a portion of the lamp protruding from the lamp hole. In this nozzle base, the outer peripheral lamp holes are provided at an end of the water inlet portion close to the water spray portion and luminous surfaces of the lamp holes face the water spray portion such that the light can be emitted from a bottom of the nozzle base in a water spray direction. Compared with the conventional light emitting from sides of the nozzle base, the nozzle base of the present disclosure improves the light utilization efficiency. Secondly, the transversely provided lamp hole provides an installation orientation perpendicular to the water spray direction of the nozzle base, such that the lamp can be installed in the transverse/lateral direction of the nozzle base. Such design of transversely provided lamp hole makes installation, maintenance and replacement of the lamp easier and more convenient. Compared with the conventional vertical installation, the transverse installation of the lamp makes the lamp not easy to fall off, and there is no need to design installation matching structure, which makes the overall installation structure of the luminous nozzle more stable.
The present disclosure also provides a luminous nozzle, which includes a nozzle core and a predetermined number of SMD LED lamps, and further includes the nozzle base according to any one of items as described above, with the nozzle core installed in the nozzle base body and the SMD LED lamps detachably installed in the lamp holes.
Preferably, the SMD LED lamp includes a rubber-coated shell and includes a circuit board and a predetermined number of LED lamp beads enclosed in the rubber-coated shell, the LED lamp beads are attached in a length direction of the circuit board, and the light emitting direction of the lamp beads faces the water spray portion.
Preferably, the rubber-coated shell is a transparent rubber material rubber-coated shell.
Preferably, the SMD LED lamp is mounted in the lamp hole with an interference fit.
Preferably, the SMD LED lamp is provided with a stop structure to prevent the SMD LED lamp from falling off the lamp hole.
Preferably, an installation orientation of the SMD LED lamp is perpendicular to an axial direction of the water spray portion. The water spray direction of the nozzle is parallel to the axial direction of the lights shooting out from the SMD LED lamps.
In the luminous nozzle, the above-mentioned nozzle base is used together with the SMD LED lamp so as to emit the light in the water spray direction, such that the high light utilization efficiency is achieved for the luminous nozzle. At the same time, the transversely inserted SMD LED lamps make the overall structure of the luminous nozzle more reliable. In addition, the SMD LED lamps are used, and thus there is no need to increase any matching structure for the lamp holes, which reduces the cost while achieving simple installation and plug-and-play, and making the overall luminous nozzle easy to maintain.
The technical solution of the present disclosure will be further explained below in conjunction with the drawings and embodiments.
Referring to
Specifically, with reference to
Secondly, the L-shaped sealing ring 2 and the O-shaped sealing ring 3 achieve radial and axial sealing of the luminous nozzle in an installation state, respectively.
In addition, referring to
In addition, in this embodiment, the wire 52 has a white PVC outer skin such that the LED lamp can be used in an environment of −20° C. to 105° C. for a long time. Similarly, the rubber-coated shell 51 is made of white 75° PVC material, which also increases the service life of the LED lamp. In order to further lengthen the product life, a waterproof layer is provided on an outer side wall of the circuit board 53, which improves the waterproof performance of the circuit board 53 such that it is suitable for more various environments. The waterproof layer may be a UV glue/adhesive waterproof layer, insulation paint waterproof layer or a EPTFE micro-porous film waterproof layer. Preferably, it is the UV glue/adhesive waterproof layer.
Finally, in this embodiment, the cover 1 is made of plastic, metal or other materials, and the nozzle base 4 is made of transparent or light-transmitting materials.
When the luminous nozzle according to the present disclosure is used, the light is emitted in the water spray direction, which improves the light utilization efficiency, and the lamp has a stable installation structure and is easy to install and maintain, which improves user experience while reducing manufacturing and maintenance costs.
The above descriptions are only specific implementations of the present disclosure, but those skilled in the art should understand that they are only exemplary, and the protection scope of the present disclosure is defined by the appended claims. Therefore, the equivalent changes made to the scope of the present disclosure still fall within the scope covered by the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202022012896.9 | Sep 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6644561 | Daane | Nov 2003 | B1 |
8550643 | Kownacki | Oct 2013 | B2 |
9320088 | Laporte | Apr 2016 | B2 |
9475080 | Lee | Oct 2016 | B2 |
9719667 | Drury | Aug 2017 | B2 |
10317023 | Li | Jun 2019 | B2 |
20050218801 | Hon | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20220082234 A1 | Mar 2022 | US |